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Hierarchal Decomposition for the
Structure-Fluid-Electrostatic Interaction in a

Microelectromechanical System
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Abstract: In this study, a hierarchal decomposition is proposed to solve the stru-
cture-fluid-electrostatic interaction in a microelectromechanical system (MEMS).
In the proposed decomposition, the structure-fluid-electrostatic interaction is parti-
tioned into the structure-fluid interaction and the electrostatic field using the itera-
tively staggered method, and the structure-fluid interaction is split into the structure-
fluid velocity field and the fluid pressure field using the projection method. The
proposed decomposition is applied to a micro cantilever beam actuated by the elec-
trostatic force in air. It follows from the comparisons among the numerical and
experimental results that the proposed method can predict the MEMS vibration
characteristics accurately.
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1 Introduction

Microelectromechanical system (MEMS) is typically smaller than 1 millimeter and
larger than 1 micrometer in size [Gad-el-Hak (1999)]. At these size scales, surface
force is superior to body force due to the scale effect. Therefore, MEMS is often
driven by the electrostatic force, and its vibration under atmospheric condition [Mi-
hara, Ikehara, Konno, Murakami, Maeda, Fukawa, and Kimura (2011)] is strongly
damped by the fluid viscous force from the surrounding [Cho, Pisano, and Howe
(1994)]. Moreover, both of these forces are sensitive to the dynamical behavior of
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MEMS. Therefore, the interaction of the structure, fluid and electrostatic field or
the structure–fluid–electrostatic interaction has to be carefully taken into account
during the design process in order to predict the vibration characteristics such as the
resonance frequency and the damping ratio, which are the key design parameters
[De and Aluru (2006)].

Initially a partitioned algorithm was proposed for the structure-electrostatic inter-
action [Shi, Ramesh, and Mukherjee (1996)]. Then a monolithic algorithm was
proposed in order to analyze a pull-in [Rochus, Rixen, and Golinval (2005, 2006);
Ghosh and Mukherjee (2009); De and Aluru (2004)]. Recently a monolithic algo-
rithm for the structure-fluid-electrostatic interaction was proposed [De and Aluru
(2006); Rochus, Gutschmidt, Cardona, and Geuzaine (2012); Ghosh and Mukher-
jee (2009)]. However, the monolithic analysis tends to be expensive computa-
tionally [Rugonyi and Bathe (2001)]. Generally, complex coupled systems can
be analyzed using decomposition [Felippa, Park, and Farhat (2001)]. Therefore,
instead of the monolithic analysis, the decomposed analysis for the structure-fluid-
electrostatic interaction is expected for the purpose of computational efficiency.

In this study, a hierarchal decomposition is proposed in order to solve the structure-
fluid-electrostatic interaction. In the proposed decomposition, the entire system is
partitioned into the mechanical and electric subsystems or the structure-fluid in-
teraction and the electrostatic field using the iteratively staggered method, and the
structure-fluid interaction is split into the structure-fluid velocity field and the pres-
sure field using a projection method [Ishihara and Horie (2014)]. Moreover, the
structure-fluid velocity field is partitioned into the structural velocity field and the
fluid velocity field using an explicit method. In this way, the proposed decomposi-
tion consists of the partitioning and the splitting in a hierarchical way. Therefore, it
is called the hierarchal decomposition. The proposed decomposition is implement-
ed using the finite element method and is applied to a micro cantilever actuated
by the electrostatic force in vacuum and air. It follows from the comparisons a-
mong the numerical and experimental results that the proposed method taking into
account the full interaction can predict the vibration characteristics of MEMS ac-
curately.

2 Equation system for structure-fluid-electrostatic interaction

2.1 Governing equations

The open air surrounding MEMS can be regarded as an incompressible fluid [Ye,
Wang, Hemmert, Freeman, and White (2003); Beskok, Karniadakis, and Trimmer
(1996)], and the nonlinear inertial force can be negligible compared to the viscous
force due to the scale effect [Cho, Pisano, and Howe (1994)]. Moreover, the finite-



Hierarchal Decomposition for the Structure-Fluid-Electrostatic Interaction 431

size effect on the drag force is significant [Ye, Wang, Hemmert, Freeman, and
White (2003)]. Therefore, instead of simplified fluid models such as the Reynold’s
squeeze film model [Rochus, Gutschmidt, Cardona, and Geuzaine (2012); Lee,
Tung, Raman, Sumali, and Sullivan (2009); Chang, Lee, and Li (2002); De and
Aluru (2006); Xu and Sun (2011)], the incompressible Stokes’ model [Ye, Wang,
Hemmert, Freeman, and White (2003); De and Aluru (2006); Ghosh and Mukherjee
(2009); Mukherjee, Telukunta, and Mukherjee (2005)] is used in this study.

Let us define Ωs
t , Ωf

t , and Ωe
t as the domains of structure, fluid, and electrostatic

field for each instant of time t, respectively, and Γsf
t and Γse

t as the structure-fluid
and structure-electrostatic interfaces, respectively, where the superscripts s, f, e, sf,
and se denote the quantities of structure, fluid, electrostatic field, structure-fluid
interaction, and structure-electrostatic interaction, respectively.

The incompressible Stokes’ equation can be expressed as

ρ
f ∂vf

i

∂ t
=

∂σ f
ji

∂x j
+ρ

fgf
i (1a)

and
∂vf

i

∂xi
= 0 in Ω

f
t , (1b)

where ρ is the mass density, vi is the ith component of the velocity vector (i = 1, 2,
and 3), σi j is the ijth component of the Cauchy stress tensor ( j = 1, 2, and 3), and gi

is the ith component of the body force vector. The air is assumed to be Newtonian.
Since rarefaction effects are unlikely to be significant at the size scales of MEMS,
no-slip boundary conditions are used [Gad-el-Hak (1999); Beskok, Karniadakis,
and Trimmer (1996)]. The arbitrary Lagrangian-Eulerian (ALE) method [Hughes,
Liu, and Zimmerman (1981)] is used to describe the moving boundary.

The equilibrium equation for the elastic body can be expressed as

ρ
s d2us

i
dt2 =

∂σ s
ji

∂x j
+ρ

sgs
i in Ω

s
t , (2)

where ui is the ith component of the displacement vector. The strain is such small
that the linear elastic material is assumed, while the geometrical nonlinearity is
taken into account since MEMS often undergoes finite deformation [Li and Aluru
(2001); Hu, Yang, and Kitipornchai (2010); De and Aluru (2006); Rochus, Rixen,
and Golinval, (2007)].

The electrostatic potential ϕe satisfies the following Laplace equation:

∂ 2ϕe

∂x2
i

= 0 in Ω
e
t . (3)
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The ith component of the electrostatic field vector Ee
i is given by the following

equation:

Ee
i =−

∂ϕe

∂xi
. (4)

The ith component of the electrostatic force vector τe
i acting on the conductor’s or

structural surface is given by the following equation:

τ
e
i =−ε

2
(Ee

j n
s
j)

2ns
i on Γ

se
t , (5)

where ns
i is the ith component of the outward unit normal vector on the conductor’s

or structural surface, and ε is the dielectric constant.

The following geometrical compatibility and equilibrium conditions (the structure-
fluid interface condition) are imposed on the structure-fluid interface:

vs
i = vf

i (6a)

and σ
s
i jn

s
j +σ

f
i jn

f
j = τ

sf
i on Γ

sf
t , (6b)

where τsf
i is ith component of the traction force acting on the structure-fluid inter-

face, and satisfies the following equation:

τ
sf
i = τ

e
i on Γ

se
t . (7)

2.2 Space discretization

Applying finite element discretization to Eqs. (1a, b), the equilibrium equation
system and the incompressibility constraint can be obtained in matrix form, re-
spectively, as

Qf ≡ LMfaf +Cfvf−Gfpf = gf, (8a)

TGfvf = 0 (8b)

where M is the mass matrix, C is the diffusive matrix, G is the divergence operator
matrix, g is the external force vector, a is the acceleration vector, v is the velocity
vector, p is the pressure vector, Q is the internal force vector including all effects,
the subscript L indicates the lumping of the matrix, and the subscript T indicates
the transpose of the matrix.

Applying finite element discretization to Eq. (2), the equilibrium equation system
can be obtained in matrix form as

Qs ≡ LMsas +qs(us) = gs, (9)
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where qs is the elastic internal force vector, which is the nonlinear function of the
structural displacement vector us. Since MEMS can undergo large deformation
[Li and Aluru (2001); Hu, Yang, and Kitipornchai (2010); De and Aluru (2006);
Rochus, Rixen, and Golinval, (2007)], the finite deformation is taken into accoun-
t using the total Lagrangian formulation, where the Hooke’s law is used for the
relation between the second Piola-Kirchhoff stress and the Green-Lagrange strain
under the assumption of small strain.

The structure-fluid interface conditions (6a) and (6b) can be rewritten in vector
form, respectively, as

vsf
c ≡ vf

c = vs
c, (10a)

and

Qs
c +Qf

c = gsf
c , (10b)

where the subscript c indicates the coupled degrees of freedoms (DOFs).

Eqs. (8), (9), and (10) can be rewritten as the following monolithic equation system:

Q≡ LMa+Cv+q(u)−Gp = g, (11a)

and

TGv = 0, (11b)

where the matrices and the vectors appearing in these equations are defined as

LM≡

LMs
ii 0 0

0 LMsf
cc 0

0 0 LMf
ii

 , (12a)

C≡

0 0 0
0 Cf

cc Cf
ci

0 Cf
ic Cf

ii

 , (12b)

G≡

 0
Gf

c
Gf

i

 , (12c)

q(u)≡


qs

i (us)
qs

c(us)
0

 , (12d)

g≡


gs

i
gsf

c
gf

i

 , (12e)
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a≡


as

i
asf

c
af

i

 , (12f)

v≡


vs

i
vsf

c
vf

i

 , (12g)

u≡


us

i
usf

c
∗

 , (12h)

p≡ pf, (12i)

LMsf
cc ≡ LMs

cc + LMf
cc, (12j)

where the subscript i indicates uncoupled DOFs.

Taking into account Eq. (7), the equilibrium equation for the interaction of the
fluid, structure, and electrostatic field can be given as

Qsf = ge(us), (13)

where the right–hand side ge is the electrostatic force vector acting on the structure,
which is the function of us, and can be given as follows:

First, the electric potential vector ϕϕϕe is derived using the following finite element
equation for Eq. (3):

Le
ϕϕϕ

e = 0, (14)

where Le is the Laplacian matrix.

Next, the electrostatic filed Ee is derived using the following finite element equation
for Eq. (4):

MeEe =−Ge
ϕϕϕ

e, (15)

where Me and Ge are defined, respectively, as

(Me)i j ≡∑
e

∫
Ve

NiN jdV and (Ge)i jk ≡∑
e

∫
Ve

NiN j,kdV , (16)

where Ve is the volume of element e and Ni is the shape function.

Finally, substituting Ee into Eq. (5), the nodal values of the electrostatic force
are derived, and their integrals on the structural surface give the equivalent nodal
electrostatic force vector ge in Eq. (13).
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3 Hierarchal decomposition

3.1 Multilevel decomposition hierarchy

For two-field coupled systems, various decomposition algorithms have been pro-
posed by many researchers. In Ref. Minami and Yoshimura (2010), some strongly
coupled partitioned algorithms were compared with each other using typical test
problems in a systematic way. For multi-field coupled systems, also, the decom-
position is possible, and, usually, it has a multilevel hierarchy (multilevel decom-
position hierarchy) [Felippa, Park, and Farhat (2001)]. For example, the structure
of an airplane can be decomposed into substructures such as wings according to
their function, and substructures can be further decomposed into subdomains to
accommodate parallel computing requirements [Felippa, Park, and Farhat (2001)].

The basic idea proposed here is that the multilevel decomposition hierarchy that
characterizes each level system as two-field coupled system can give the multi-
field decomposition algorithm reusing existing two-field decomposition algorithms
in a systematic way. In this study, a new hierarchal decomposition based on this
idea is proposed in order to solve the structure-fluid-electrostatic interaction. As
shown in Fig. 1, the proposed method has the following multilevel decomposition
hierarchy:
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Figure 1: Hierarchal decomposition for the structure-fluid-electrostatic interaction.

In the first level, the structure-fluid-electrostatic interaction is partitioned into the
structure-fluid interaction and the electrostatic field using the iteratively staggered
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method. In the second level, the structure-fluid interaction is split into the structure-
fluid velocity field and the fluid pressure field using the projection method. In the
third level, the structure-fluid velocity field is partitioned into the structural velocity
field and the fluid velocity field using the explicit method.

3.2 Partitioning using the iterative staggered method

Regarding the structure-fluid interaction as a single mechanical subsystem, the
structure-fluid-electrostatic interaction is characterized as a two-field coupled sys-
tem or a mechanical-electric coupled system. This physical consideration can drive
the decomposition at the first level in Fig. 1 as follows:

The iteratively staggered method has been successfully used for partitioning the
structure-electrostatic interaction [Shi, Ramesh, and Mukherjee (1996)], which is a
most fundamental mechanical-electric coupled system. Similarly, it can be used to
partition the structure-fluid-electrostatic interaction into the mechanical and elec-
tric subsystems or the structure-fluid interaction and the electrostatic field. Let us
consider the nonlinear iteration for the equilibrium equation (13) at the current time
t +∆t as

t+∆tQsf(k) = ge(t+∆tus(k−1)) (k = 0,1,2, · · ·). (17)

Following this equation, the structure-fluid interaction and the electrostatic field are
solved separately as follows:

The nodal vector of the electrostatic field Ee is derived from Eq. (15) for the known
structural displacement t+∆tus(k−1). Then, the equivalent nodal force ge acting on
the structural surface is derived from Ee using Eq. (5) and the surface integral. Sub-
stituting the derived ge into the right-hand side of Eq. (17) and using the expression
of Eqs. (11a, b), the equations for the structure-fluid interaction can be written as
follows:

LMt+∆ta(k)+Ct+∆tv(k)+q(t+∆tu(k))−Gt+∆tp(k) = ge(t+∆tu(k−1)), (18a)

τGt+∆tv(k) = 0. (18b)

Since Eq. (18a) is nonlinear equation, it is linearized using the increments of the
acceleration, velocity, displacement, and pressure ∆a, ∆v, ∆u, and ∆p as

t+∆tM∗(k−1)
∆a−G∆p = ∆g, (19)

where ∆a, ∆v, ∆u, and ∆p are defined, respectively, as

t+∆ta(k) = t+∆ta(k−1)+∆a, (20a)
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t+∆tv(k) = t+∆tv(k−1)+ γ∆t∆a, (20b)
t+∆tu(k) = t+∆tu(k−1)+β∆t2

∆a, (20c)
t+∆tp(k) = t+∆tp(k−1)+∆p, (20d)

where the linear relations among ∆a, ∆v, and ∆u based on the Newmark’s β method
are used, and M∗ appears in the left-hand side of Eq. (19) is the generalized mass
matrix, which is defined as

M∗ ≡ LM+ γ∆tC+β∆t2K, (21)

where K is defined using the tangential stiffness matrix Ks or the Jacobian matrix
of qs as

K =

Ks
ii Ks

ic 0
Ks

ci Ks
cc 0

0 0 0

 , (22)

and ∆g appears in the light-hand side of Eq. (19) is the residual force, which is
defined as

∆g= ge(t+∆tu(k−1))−{LMt+∆ta(k−1)+Ct+∆tv(k−1)+q(t+∆tu(k−1))−Gt+∆tp(k−1)}.
(23)

3.3 Splitting using the projection method

The projection method for the incompressible fluid has been gaining popularity
in the computational fluid dynamics [Guermond, Minev, and Shen (2006)], and,
most recently, it has been applied for the structure-fluid interaction including the
fluid incompressibility [Ishihara and Yoshimura (2005); Fernandez, Gerbeau, and
Grandmont (2007); Idelsohn, Del Pin, Rossi, and Onate (2009); Ishihara, Kanei,
Yoshimura, and Horie (2008); Ishihara and Horie (2014); Badia, Quaini, and Quar-
teroni (2008a,b)]. Their applications can be seen, for example, in Refs. Ishihara,
Horie, and Denda (2009); Ishihara, Horie, and Niho (2014). In these studies, the
monolithic equation system for the structure-fluid interaction is split into its sub-
systems algebraically. When the block-LU factorization [Badia, Quaini, and Quar-
teroni (2008a,b)] or the sub-structuring [Ishihara and Yoshimura (2005); Idelsohn,
Del Pin, Rossi, and Onate (2009); Ishihara, Kanei, Yoshimura, and Horie (2008)]
is used for the splitting, the Schur complement is inevitably produced during the
formulation. Therefore, a major concern in these studies is how to approximate the
Schur complement without loss of robustness [Minami and Yoshimura (2010); Fer-
nandez and Moubachir (2005); Idelsohn, Del Pin, Rossi, and Onate (2009); Zhang
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and Hisada (2004); Heil (2004)]. On the contrary, the algebraic splitting proposed
in Ref. Ishihara and Horie (2014) uses the intermediate state variables and never
produces any Schur complement during the formulation. Therefore, in this study,
it is used to split the structure-fluid interaction into the structure-fluid velocity field
and the pressure field as shown in Fig. 1. The formulation is summarized as fol-
lows:

Let us assume the intermediate state variables satisfy the equilibrium equation (18a)
for the known pressure t+∆tp(k−1). Then, Eq. (18a) is linearized as

M∗∆â = ∆g, (24)

where ∆â is the increment of the intermediate acceleration. Subtracting both sides
of Eq. (24) from those of Eq. (19) and similarly subtracting Eq. (20b) from the
following equation:

t+∆t v̂(k) = t+∆t v̂(k−1)+ γ∆t∆â, (25)

and substituting the result into the first difference gives, after suitable rearrange-
ment,

γ∆tG∆p = M∗(t+∆tv(k)− t+∆t v̂(k)). (26)

Left multiplying both sides of Eq. (26) by τGLM−1, the following equation is
obtained:

γ∆tτGLM−1G∆p = τGt+∆tv(k)− τGt+∆t v̂(k)

+ τGLM−1(γ∆tC+β∆t2K)(t+∆tv(k)− t+∆t v̂(k)),
(27)

where Eq. (21) is used. It is shown from Eq. (27) that the incompressibility
constraint (18b) for the unknown fluid velocity t+∆tv(k) is satisfied solving the fol-
lowing pressure Poisson equation (PPE):

γ∆tτGLM−1G∆p =−τGt+∆t v̂(k). (28)

When the PPE (28) is solved, Eq. (27) is reduced as

τGt+∆tv(k)+ τGLM−1(γ∆tC+β∆t2K)(t+∆tv(k)− t+∆t v̂(k)) = 0. (29)

Since the present nonlinear iterations will be convergent, t+∆t v̂(k) agrees with t+∆tv(k)
asymptotically as

|t+∆tv(k)−t+∆t v̂(k)| → 0 as k→ ∞. (30)
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Therefore, the second term of Eq. (29) will vanish, and the incompressibility con-
straint (18b) for the current fluid velocity is satisfied.

The predictor-multicorrector algorithm (PMA) for the FSI [Zhang and Hisada (2001)]
is used for the time integration. The loop of the iterative procedure corresponds to
the multicorrection loop of PMA and the relation (20) corresponds to the corrector
of the PMA. The predictor of the PMA is given by Newmark’s β method as

t+∆ta(0) = 0, (31a)
t+∆tv(0) = tv+∆t(1− γ)ta, (31b)
t+∆tu(0) = tu+∆ttv+∆t2(1/2−β )ta, (31c)
t+∆tp(0) = tp, (31d)

where ta, tv, tu, and tp are the known acceleration, velocity, displacement, and
pressure that are obtained in the previous time step t.

The solution procedure using the proposed hierarchal decomposition is summarized
in Fig. 2. As shown in this figure, in each iteration k, the FSI is solved after the
electrostatic force is derived as follows:

Step 1: The increment of the intermediate acceleration ∆â is derived from the lin-
earized equilibrium equation for the previous pressure t+∆tp(k−1) (24), and
the intermediate velocity t+∆t v̂(k) is obtained from Eq. (25).

Step 2: The pressure increment ∆p is derived from the PPE (28).

Step 3: The acceleration increment ∆a is derived from the linearized equilibrium
equation for the current pressure t+∆tp(k) (19), and then the acceleration
t+∆ta(k), the velocity t+∆tv(k), and the displacement t+∆tu(k) are obtained
from the relation (20).

3.4 Partitioning using the explicit method

The structure-fluid velocity field can be further partitioned into the structure ve-
locity field and the fluid velocity field using the explicit method. Let us use the
following generalized mass matrix instead of (21):

M∗ ≡ LM+β∆t2K, (32)

where the diffusive term in Eq. (18a) is evaluated using the known velocity field.
In this case, the fluid interior DOFs of M∗ is reduced to the diagonal matrix. There-
fore, the linearized equilibrium equations (19) and (24) can be partitioned into its
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Figure 2: Solution procedure of the proposed analysis.
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fluid interior part and the structural part without any algebraic operation. The equi-
librium equation (19) can be partitioned into[

LMs
ii +β∆t2Ks

ii β∆t2Ks
ic

β∆t2Ks
ci LMsf

cc +β∆t2Ks
cc

]{
∆as

i
∆asf

c

}
=

{
∆gs

i
∆gsf

c +Gf
c∆pf

}
, (33a)

and

LMf
ii∆af

i = ∆gf
i +Gf

i∆pf, (33b)

while the equilibrium equation (24) can be partitioned into[
LMs

ii +β∆t2Ks
ii β∆t2Ks

ic
β∆t2Ks

ci LMsf
cc +β∆t2Ks

cc

]{
∆âs

i
∆âsf

c

}
=

{
∆gs

i
∆gsf

c

}
, (34a)

and

LMf
ii∆âf

i = ∆gf
i . (34b)

Eqs. (33a) and (34a) have the structural DOFs, while Eqs. (33b) and (34b) have
the fluid interior DOFs. Note that this partitioning requires the following necessary
condition (Diffusion number condition) imposed on the time increment ∆t for the
stability of the time integration:

(µ f/ρ
f)∆t/∆hf 2 < 1/2, (35)

where µ f is the fluid viscosity, and ∆hf is the minimum size of fluid elements.

4 Coupled analysis of MEMS

4.1 Problem setup

The present problem is schematically shown in Fig. 3. A micro cantilever beam is
driven by the electrostatic force and vibrates in vacuum (under 2Pa) and air. The
beam is actually made using a chemical etching for a SOI wafer chip as shown
in Fig. 4. The top and base layers of the chip are made of arsenic-doped single
crystal Si, which is conductive, and the middle layer of the chip is made of SiO2,
which is isolated. The beam has the dimensions of the length L = 1.00 × 103 µm
and the width W = 36 µm, which are identified from the metallurgical microscope
images, while the thickness H = 3.0 µm and the gap length G = 5.0 µm, which are
identified from the scanning electron microscope (SEM) images. The voltage Vs as
shown in Fig. 5 is supplied between the top and base layers using the high-speed
DC supply via Au electrodes. The risetime of Vs is approximately 50 µsec. The



442 Copyright © 2015 Tech Science Press CMES, vol.108, no.6, pp.429-452, 2015

z

x

y

(a) birds-eye view
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(b) y-z plane view

Figure 3: Schematic view of the problem setup. The micro cantilever beam is
driven and vibrated by the electrostatic force generated by the step voltage applied
between the top layer including the beam and the base layer.

Figure 4: Example of the SEM images of the micro cantilever beam.
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analysis domains.

convergence value of Vs is denoted by V̄s. In the present chip, the top and base layers
are electrically bridged and Vs is divided between the equivalent resistances of the
top layer and the gap. Therefore, the gap voltage between the beam and the base Vg
is reduced from Vs constantly, and the reduction rate is estimated at approximately
82%. The velocity of the deflection at the free end of the beam vtip is measured
using the laser doppler vibrometer (the laser spot diameter 3 µm, the resolution
0.05 µm/sec, Ono Sokki Co., Ltd., Japan). Vs and vtip are simultaneously collected
using a data acquisition system with a sampling speed of 500,000Hz, which is far
larger than the natural frequency of the beam.

4.2 Material properties

The material properties of air (26 degrees C) are the mass density ρ f = 1.18× 10−3

g/cm3 and the viscosity µ f = 1.82 × 10−4 g/(cm sec). The dielectric constants of
air and vacuum are 8.859 × 10−12 F/m and 8.854 × 10−12 F/m, respectively. The
thin membrane thicker than 1 µm has the mass density equivalent to that of the bulk
material. Therefore, the mass density of the beam ρs is assumed to be that of the
bulk material of Si 2328 kg/m3. The Poisson’s ratio of the thin membrane is such
small [Namazu, Tanaka, and Inoue (2007)] that it is negligible in the structural
analysis. Therefore, the Poisson’s ratio of the beam νs is assumed to be 0. The
Young’s modulus of the membrane is different from that of the bulk material due to
the scale effect [Sato, Yoshida, Ando, Shikida, and Kawabata (1998)]. Therefore,
the Young’s modulus of the beam Es is determined as follows:

The natural frequency of the first bending mode of the beam f (1)n is measured ex-
perimentally from its free vibration in vacuum as 4320Hz. The theoretical solution
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of f (1)n under the assumption of the Euler-Bernoulli beam is given as

f (1)n =
1

2π

(
1.875

L

)2
√

EsI
ρsWH

, (36)

where I is the second moment of the sectional area of the beam. Substituting the
value of f (1)n from the experiment into Eq. (36), Es is given as 184.2 GPa, which
is consistent with that in the previous study [Sato, Yoshida, Ando, Shikida, and
Kawabata (1998)].

4.3 Numerical setup

The schematic view of the analysis domains is shown in Fig. 6. As shown in this
figure, the present problem is assumed to be symmetry with respect to the y-z plane.
For the structural domain, the beam’s end is fixed at z= 0. For the fluid domain, the
boundary conditions are no-slip at y = 0 and the structural surface, while traction-
free in the other outer boundaries. For the domain of the electrostatic field, 0 V and
Vg [V] are imposed on the boundaries at y = 0 and the structural surface, respec-
tively. The mesh for the structural domain consists of 661 nodes and 240 elements,
where the quadratic hexahedral elements are used, the mesh for the fluid domain
consists of 5916 nodes and 26698 elements, where the linear tetrahedral elements
with the pressure-stabilizing/Pertov-Galerkin (PSPG) method [Tedzduyar, Mittal,
Ray, and Shih (1992)] are used, and the mesh for the electrostatic field domain con-
sists of 195 nodes and 480 elements, where the linear tetrahedral elements are used.
The time increment ∆t is 1 µsec. Note that the diffusion number condition (31) im-
poses the smaller time increment for the present setup. Therefore, the second level
decomposition in Figs. 1 and 2 is used in this study.

4.4 Results and discussion

4.4.1 Structure-electrostatic interaction analysis

In this section, the vibration of the micro cantilever beam driven by the step elec-
trostatic force in vacuum is analyzed. Fig. 7 (a) shows the time histories of vtip
for V̄s = 3.5V. As shown in this figure, the numerical result from the structure-
electrostatic interaction analysis is consistent with the experimental result, while
the numerical result from the structural analysis is inconsistent with the other re-
sults. The vibration period from the structural analysis is constant and equivalent
to the natural period of the beam. On the contrary, as shown in Fig. 7 (b), the
vibration period from the structure-electrostatic interaction analysis as well as the
experiment is larger than that from the structural analysis for any voltage, and their
difference increases as the voltage increases. Similarly, as shown in Fig. 7 (c),
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Figure 7: Numerical and experimental results in vacuum.

the vibration amplitude from the structure-electrostatic interaction analysis as well
as the experiment is larger than that from the structural analysis for any voltage,
and their difference increases as the voltage increases. This effect of the structure-
electrostatic interaction can be explained theoretically as follows:

Let us consider a single-degree-of-freedom system that consists of the mass m driv-
en by the electrostatic force f and the supporting spring k. The equation of motion
can be written as

ma+ ku = f (u), (37a)

f (u) =−(εW/2G2)(1+u/G)−2V 2
g , (37b)

where a and u denote the acceleration and the displacement, respectively. Eq. (37b)
is expanded about u/G = 0, the second and higher-order terms are ignored from the
series, and Eq. (37a) is reduced as

ma+(k+ ke)u = f (0), (38a)

ke =−(εW/G3)V 2
g , (38b)
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Figure 8: Time histories of the tip velocity in air. The red lines indicate the results
from the structure-fluid-electrostatic interaction analyses, the blue lines indicate the
results from the structure-fluid interaction analyses, and the grey lines indicate the
experimental results.

where ke is the added stiffness that represents the effect of the structure-electrostatic
interaction. As shown in Eq. (38b), ke is negative and proportional to the square of
Vg. This theoretical result is consistent with the effect of the structure-electrostatic
interaction appears in Figs. 7(a)–(c). Therefore, the structure-electrostatic interac-
tion analysis as well as the experiment is different from the structural analysis qual-
itatively as well as quantitatively. It follows from these results that the structure-
electrostatic interaction analysis is necessary for the accurate prediction for the
vibration characteristics of MEMS driven by the electrostatic force in vacuum.

4.4.2 Structure-fluid-electrostatic interaction analysis

In this section, the vibration of the micro cantilever beam driven by the step elec-
trostatic force in air is analyzed Figs. 8 (a), (b), and (c) show the time histories of
vtip for V̄s = 3.0V, 4.0V, and 5.0V, respectively. It follows from the comparison of
these figures with Fig. 7 (a) that the air damping effect is significant at the present
size scale. As shown in these figures, different from the structure-fluid interac-
tion analysis, the numerical results from the structure-fluid-electrostatic interaction
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Figure 9: Time histories of the tip displacement in air. The red lines indicate the
results from the structure-fluid-electrostatic interaction analyses, and the blue lines
indicate the results from the structure-fluid interaction analyses.

analysis are consistent with the experimental results. The vibration period from
the structure-fluid interaction analysis is approximately equivalent to the natural
period of the beam. On the contrary, the vibration period from the structure-fluid-
electrostatic interaction analysis as well as the experiment is larger than that from
the structure-fluid interaction analysis for any voltage, and their difference increas-
es as the voltage increases. Similarly, the vibration amplitude from the structure-
fluid-electrostatic interaction analysis as well as the experiment is larger than that
from the structure-fluid interaction analysis for any voltage, and their difference
increases as the voltage increases. The cause of these phenomena will be explained
by the negative added stiffness from the electrostatic field. On the contrary, the
following phenomenon cannot be explained by only it:

As shown in Figs. 8 (a), (b), and (c), in the case of the structure-fluid interaction
analysis, the kinematical characteristic of the vibration is underdamping for any
voltage. On the contrary, as shown in these figures, in the case of the structure-
fluid-electrostatic interaction analysis, the kinematical characteristic of the vibra-
tion changes from underdamping to overdamping as the voltage increases. This
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qualitative difference of the vibration characteristic will be caused as follows:

Figs. 9 (a), (b), and (c) show the time histories of utip for V̄s = 3.0V, 4.0V, and 5.0V,
respectively, where utip denotes the displacement of the deflection at the free end
of the beam. As shown in these figures, the magnitude of utip from the structure-
fluid-electrostatic interaction analysis is larger than that from the structure-fluid
interaction analysis due to the negative added stiffness. For example, in the case of
V̄s = 5.0V, the magnitude of utip at equilibrium from the structure-fluid-electrostatic
interaction analysis is 1.36 µm, while that from the structure-fluid interaction anal-
ysis is 0.899 µm. The former is about 1.5 larger than the latter. Since the magnitude
of damping of the flow in the narrow gap is proportional to the inverse of a power
of the actual gap length, the damping in the structure-fluid-electrostatic interac-
tion is larger than that in the structure-fluid interaction. Therefore, the structure-
fluid-electrostatic interaction analysis is different from the structure-fluid interac-
tion analysis qualitatively as well as quantitatively. It follows from these results
that the structure-fluid-electrostatic interaction analysis is necessary for the accu-
rate prediction of the vibration characteristics of MEMS driven by the electrostatic
force in air.

5 Conclusion

The structure-fluid-electrostatic interaction is one of typical phenomena in MEMS
due to the scale effect. Therefore, it should be carefully taken into account during
the design process in order to predict the vibration characteristics. In this study, the
hierarchal decomposition was proposed in order to solve it efficiently. Based on
the multilevel decomposition hierarchy that characterized system in each level as a
two-field coupled system, the proposed decomposition consisted of the partitioning
and the splitting in a hierarchal way as follows:

In the first level, the structure-fluid-electrostatic interaction was partitioned into
the structure-fluid interaction and the electrostatic field using the iterative stag-
gered method. In the second level, the structure-fluid interaction was split into
the structure-fluid velocity field and the fluid pressure field using the projection
method. In the third level, the structure-fluid velocity field was partitioned into the
structural velocity field and the fluid velocity field using the explicit method.

The proposed decomposition was implemented using the finite element method,
where the three-dimension and the structural large deformation were taken into ac-
count because of the significant finite-size effect on the drag force, and was applied
to the micro cantilever beam driven by the step electrostatic force in vacuum and
air.

It was shown from the comparisons among the numerical and experimental results
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that (a) the numerical results from the proposed method taking into account the
full interaction showed the good agreements with the experimental results, (b) the
interaction effects were the negative added stiffness, the significant air damping,
and their coupling, and (c) they affected on the vibration characteristics of the micro
cantilever beam qualitatively as well as quantitatively.
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