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Boundary Element Analysis of Thin Anisotropic
Structures by a Self-regularization Scheme

Y.C. Shiah1, C.L. Tan2,3 and Li-Ding Chan1

Abstract: In the conventional boundary element method (BEM), the presence of
singular kernels in the boundary integral equation or integral identities causes seri-
ous inaccuracy of the numerical solutions when the source and field points are very
close to each other. This situation occurs commonly in elastostatic analysis of thin
structures. The numerical inaccuracy issue can be resolved by some regularization
process. Very recently, the self-regularization scheme originally proposed by Cruse
and Richardson (1996) for 2D stress analysis has been extended and modified by
He and Tan (2013) to 3D elastostatics analysis of isotropic bodies. This paper
deals with the extension of the technique developed by the latter authors to the
elastostatics analysis of 3D thin, anisotropic structures using the self-regularized
displacement boundary integral equation (BIE). The kernels of the BIE employ the
double Fourier-series representations of the fundamental solutions as proposed by
Shiah, Tan and Wang (2012) and Tan, Shiah and Wang (2013) recently. Numerical
examples are presented to demonstrate the veracity of the scheme for BEM analysis
of thin anisotropic bodies.

Keywords: Self-regularization, boundary element method, nearly singular inte-
grals, thin anisotropic bodies.

1 Introduction

Thin-walled structures are commonly seen in engineering applications, e.g., pres-
sure vessels and surface panels of flight vehicles, and composite materials are
increasingly being used for their construction. Although the boundary elemen-
t method (BEM) is well recognized as a powerful numerical tool for engineering
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analysis, its use for treating thin-walled structures requires special attention because
of the presence of singular kernel functions in the boundary integral equation (BIE)
which gives rise to nearly singular integrals. These nearly singular integrals occur
because the source point on one surface becomes very close to the field points on
the elements which lie on the the other side of the thin wall. Because of the rapid
variations of the integrands due to this condition, the conventional numerical in-
tegration scheme in BEM will fail to yield accurate results unless a regularization
scheme is adopted, without having to employ a very refined mesh.

Integral regularization schemes that have been implemented in BEM include those
by, e.g., Ma and Kamiya, 2001; Niu, Wendland, Wang and Zhou (2005); Zhou,
Niu, Cheng and Guan (2008); Xie, Zhang, Qin, and Li (2011); Shiah (2014). Al-
though these approaches have been shown to be very effective in treating 2D prob-
lems, they are either analytically complex and/or relatively difficult to implement
for general 3D problems. It is worth noting too that the above-mentioned work-
s deal only with isotropic analyses; to treat 3D generally anisotropic problems in
elastostatics, these regularization schemes of the boundary integrals will be even
more challenging due to the additional mathematical complexity of the anisotropic
Green’s function.

For dealing with thin bodies in particular, the methods hitherto reported in the BE-
M literature are mostly to carry out the integration of the nearly singular integrals
analytically [see, e.g. Ye and Liu (1985); Liu (1987); Krishnasamy, Rizzo, and
Liu (1994)]. In Liu (1998), a non-degeneracy approach to analytically evaluate the
boundary integrals was proposed. Cruse and Aithal (1993) also proposed a scheme
using regularization of integral operators and a theta integration algorithm. Again,
these mathematically involved approaches are far from simple to implement, and
even more so for 3D generally anisotropic elastic bodies. Another general scheme,
often referred to as “self-regularization”, has also been proposed by several authors,
see, e.g. Rudolphi (1991); Sladek, Sladek, and Tanaka (1993); Matsumoto and
Tanaka (1993); Cruse and Richardson (1996); Richardson and Cruse (1999); Fran-
gi and Guigianni (2001); Dong and Atluri (2012, 2013); He and Tan (2013). For
treating 3D thin isotropic bodies, He and Tan (2013) proposed a self-regularized
displacement-BIE, employing similar notions as for the self-regularized traction-
BIE presented by Cruse and Richardson (1996); Richardson and Cruse (1999).
This proposed self-regularization scheme does not require the C1,α Holder conti-
nuity of the boundary element being used. It was found in that study that for 3D,
this requirement must be met for the self-regularized traction-BIE if accuracy of
the numerical solution is to be assured. The big advantage of the self-regularization
procedure of the displacement-BIE as proposed by He and Tan (2013) is the rela-
tive simplicity in its implementation. The aim of the present study is to extend this
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scheme to treat 3D generally anistotropic thin elastic bodies. In the present work,
the fundamental solutions in the displacement-BIE are represented by the formu-
lations of double-Fourier series as proposed by Shiah, Tan, and Wang (2012); Tan,
Shiah and Wang (2013). The use of the double-Fourier series representation for the
anisotropic Green’s function and its derivatives has been shown to significantly im-
prove the numerical efficiency of the BEM algorithm. A brief review of this will be
presented next, followed similarly of the self-regularization scheme of He and Tan
(2013). The successful implementation and verification will then be demonstrated
by some numerical examples.
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Figure 1: Unit circle on the oblique plane at the field point Q.

2 Displacement-BIE for 3D anisotropic elasticity

As has been well established in BEM for 3D elastostatics, the boundary integral
equation relating the displacements u j and tractions t j at the surface S of the homo-
geneous elastic domain can be written in the indicial notation as

Ci j (P)u j (P)+
∫
S

u j (Q)Ti j (P,Q)dS =
∫
S

t j (Q)Ui j(P,Q)dS (i, j = 1,2,3), (1)

where Ci j(P) is the free term of the source point P; and, Ui j(P,Q)≡U and Ti j(P,Q)
≡ T represent the fundamental solutions of displacements and tractions, respective-
ly, in the xi-direction at the field point Q due to a unit load applied in the x j-direction
at P in a homogeneous infinite elastic body. The Green’s function, U, for a 3D
anisotropic medium was first derived by Lifschitz and Rosenzweig (1947) in the
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form of a line integral around a unit circle about the source point on an oblique
plane, with the integrand containing the Christoffel matrix defined in terms of elas-
tic constants. Since then, there have been numerous efforts to reformulate it into
simpler or more explicit analytical forms. As discussed in Shiah, Tan, and Lee
(2008) and Tan, Shiah, and Lin (2009), the fully explicit expression for U derived
by Ting and Lee (1997) is very well suited indeed for implementation in BEM. Re-
ferring to Figure 1, let n and m be two mutually perpendicular unit vectors on the
oblique plane at Q normal to the position vector x; the vectors [n, m, x /r] form a
right-angle triad. In the spherical coordinate system as shown, the Green’s function
of an anisotropic material with stiffness C̃i jks may be expressed as

U(x) =
1

4πr
1
|κκκ|

4

∑
n=0

qnΓ̂ΓΓ
(n)
, (2)

where r represents the radial distance between the source point P and the field point
Q; all the other parameters are given by

qn =


−1

2β1β2β3

[
Re

{
3

∑
t=1

pn
t

(pt−p̄t+1)(pt−p̄t+2)

}
−δn2

]
for n = 0,1,2,

1
2β1β2β3

Re

{
3

∑
t=1

pn−2
t p̄t+1 p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

}
for n = 3,4,

(3a)

Γ̂
(n)
i j = Γ̃

(n)
(i+1)( j+1)(i+2)( j+2)− Γ̃

(n)
(i+1)( j+2)(i+2)( j+1), (3b)

κik= C̃i jksm jms, m = (−sinθ ,cosθ ,0). (3c)

In Equation (3a), the Stroh eigenvalues, pi, are the roots of the sextic equation,
obtained from setting |κκκ| = 0. They appear as three pairs of complex conjugates,
expressed as pv = αv + iβv, where βv > 0 and i =

√
(−1). The conjugate of the

eigenvalue is represented with an overbar, namely, p̄i. Carrying out the appropri-
ate algebraic operations, the quantity Γ̃ΓΓ

(n) in Equation (3b) can be shown to be as
follows:

Γ̃
(4)
pqrs = κpqκrs, Γ̃

(3)
pqrs =Vpqκrs +κpqVrs,

Γ̃
(2)
pqrs = κpqQrs +κrsQpq+V pqVrs,

Γ̃
(1)
pqrs =VpqQrs +VrsQpq, Γ̃

(0)
pqrs = QpqQrs.

(4)

From the above, the computations for obtaining the numerical values of U(x) can
be seen to be relatively straightforward. The only numerical scheme required is to
obtain the roots of the sextic equation for the Stroh’s eigenvalues.



Boundary Element Analysis of Thin Anisotropic Structures 19

Unlike the fundamental solution for displacements, the explicit expressions of the
derivatives of U(x) are significantly more complex in form and their computations
are significantly more involved, as they contain very high order tensors. Taking
advantage of the periodic nature of the fundamental solution when expressed in
spherical coordinates, the present lead authors have proposed that the Green’s func-
tion and its derivatives be represented by a double-Fourier series [see, Tan, Shiah,
and Wang (2013); Shiah and Tan (2013)]. This alternative representation of U(x)
and its derivatives has been demonstrated to be computationally more efficient than
using the original form of Ting and Lee’s (1997) solution, besides being relatively
simpler to implement. In the double-Fourier series form, U(x) can be written as
follows:

Uuv(r,θ ,φ) =
1

4πr

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ), (5)

where

λ
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

1
|κκκ|

4

∑
n=0

qnΓ̂ΓΓ
(n)

e−i(mθ+nφ)dθdφ . (6)

Taking spatial derivatives of Equation (5) in the spherical coordinate system yields

Ui j,l =
1

4πr2



α

∑
m=−α

α

∑
n=−α

λ
(m,n)
i j ei(mθ+nφ)

[
−cosθ (sinφ − incosφ)

−imsinθ/sinφ

]
for l = 1

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
i j ei(mθ+nφ)

[
−sinθ (sinφ − incosφ)

+imcosθ/sinφ

]
for l = 2

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
i j ei(mθ+nφ) [−(cosφ + insinφ)] for l = 3

.

(7)

Computations of T ≡ Ti j are required in the boundary integral equation; they can
be carried out using

Ti j = σ
( j)
ik n̄k, (8)

where n̄k are components of the unit outward normal vector at Q, and stresses σ
( j)
ik

are given by

σ
( j)
ik = C̃ikmn (Um j,n +Un j,m)/2. (9)
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Equation (1) can be solved for the unknown displacements and tractions on the
surface of the body by the usual collocation process of BEM analysis. The self-
regularization of this equation by the scheme proposed by He and Tan (2013) will
next be discussed as it is extended to 3D general anisotropy.

3 Self-regularization of the displacement-BIE

The quantities U and T have singularities of orders r−1 and r−2, respectively. The
element sub-division process for dealing with singular integrations still applies,
when the source point belongs to the element being integrated. However, the prob-
lem of nearly singular integration arises when the source point on the surface is very
near the opposite surface of a thin body. The self-regularization scheme proposed
by He and Tan (2013) is now extended to BEM for 3D general anisotropy. In this
scheme, some terms corresponding to a constant stress state need to be subtracted
from the displacement-BIE in Equation (1). For a reference point P̂ on the surface
of the body, the expression for the constant stress state can be expressed as

Ci j (P)uL
j (P̂,P)+

∫
S

Ti j (P,Q)uL
j (P̂,Q)dS =

∫
S

Ui j (P,Q) tL
j (P̂,Q)dS (10)

where uL
i (P̂,Q) and tL

i (P̂,Q) represent the displacements and tractions at Q un-
der the constant-stress state at P̂, respectively. In Equation (10), uL

j (P̂,P\Q) and
tL
i (P̂,Q) are given by

uL
j (P̂,P) = u j(P̂)+u j,m(P̂)

[
xm(P)− xm(P̂)

]
, (11a)

uL
j (P̂,Q) = u j(P̂)+u j,m(P̂)

[
xm(Q)− xm(P̂)

]
(11b)

tL
j (P̂,Q) =σ jm(P̂)n̄m(Q). (11c)

Applying the generalized Hooke’s law, Equation (11c) is rewritten as

tL
j (P̂,Q) =

C̃ jmst

2
[
us,t(P̂)+ut,s(P̂)

]
n̄m(Q). (12)

Subtracting Equation (10) from Equation (1) yields the following self-regularized
displacement-BIE:

Ci j (P)
[
u j (P)−uL

j (P̂,P)
]
+
∫
S

Ti j (P,Q)
[
u j (Q)−uL

j (P̂,Q)
]

dS

=
∫
S

Ui j (P,Q)
[
t j (Q)− tL

j (P̂,Q)
]

dS (13)
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When using the constant-stress terms defined by Equations (11) and (12), the dis-
placement gradients at P̂ need first be determined. In a similar manner as presented
in He and Tan (2013), the tractions and displacement gradients in the local coordi-
nate system, denoted by ui, j = ∂ui/∂ξ j, for general anisotropy can be expressed in
the following matrix form:[

t1 t2 t3 u1,1 u1,2 u2,1 u2,2 u3,1 u3,2
]T

= [Amn]
[
u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 u3,1 u3,2 u3,3

]T
,

(14)

where the non-zero elements of Amn can be shown to be given by

A11 =C11n1 +C61n2 +C51n3, A12 =C16n1 +C66n2 +C56n3,

A13 =C15n1 +C65n2 +C55n3,

A14 =C16n1 +C66n2 +C56n3, A15 =C12n1 +C62n2 +C52n3,

A16 =C14n1 +C64n2 +C54n3,

A17 =C15n1 +C65n2 +C55n3, A18 =C14n1 +C64n2 +C54n3,

A19 =C13n1 +C63n2 +C53n3,

A21 =C61n1 +C21n2 +C41n3, A22 =C66n1 +C26n2 +C46n3,

A23 =C65n1 +C25n2 +C45n3,

A24 =C66n1 +C26n2 +C46n3, A25 =C62n1 +C22n2 +C42n3,

A26 =C64n1 +C24n2 +C44n3,

A27 =C65n1 +C25n2 +C45n3, A28 =C64n1 +C24n2 +C44n3,

A29 =C63n1 +C23n2 +C43n3, (15)

A31 =C51n1 +C41n2 +C31n3, A32 =C56n1 +Cn2 +C36n3,

A33 =C55n1 +C45n2 +C35n3,

A34 =C56n1 +C46n2 +C36n3, A35 =C52n1 +C42n2 +C32n3,

A36 =C54n1 +C44n2 +C34n3,

A37 =C55n1 +C45n2 +C35n3, A38 =C54n1 +C44n2 +C34n3,

A39 =C53n1 +C43n2 +C33n3,

A41 = x1,1, A42 = x2,1, A43 = x3,1,

A67 = x1,1, A68 = x2,1, A69 = x3,1,

A84 = x1,2, A85 = x2,2, A86 = x3,2,

A54 = x1,1, A55 = x2,1, A56 = x3,1,

A71 = x1,2, A73 = x3,2, A74 = x2,2,

A97 = x1,2, A98 = x2,2, A99 = x3,2.



22 Copyright © 2015 Tech Science Press CMES, vol.109-110, no.1, pp.15-33, 2015

In Equation (15), Ci j is the contracted notation of C̃mnst ; xi, j represents ∂xi/∂ξ j,
given by

∂xi

∂ξ j
=

8 or 6

∑
c=1

∂N(c)(ξ P̂
1 ,ξ

P̂
2 )

∂ξ j
x(c)i , (16)

where x(c)i are the coordinates of the c-th node of the element on which P̂ is located
and (ξ P̂

1 ,ξ
P̂
2 ) are the local coordinates of P̂; c has a range of 1–8 for a quadrilateral

element and 1–6 for a triangular element. With matrix inversion of Equation (14),
the displacement gradients at P̂ are now given by

ui, j(P̂) = A−1
3i+ j−3,sts(P̂)+A−1

3i+ j−3,t+2k+1uk,t(P̂), (s,k = 1,2,3; t = 1,2), (17)

where A−1
m,n are the coefficients of A−1. In Equation (17), the local tractions and

displacement gradients at P̂ are determined by interpolation of nodal tractions (t(c))
and nodal displacements (u(c)i ) using the shape functions N(c), i.e.

ts(P̂) =
8 or 6

∑
c=1

N(c)(ξ P̂
1 ,ξ

P̂
2 )t

(c)
s , ui,s(P̂) =

8 or 6

∑
c=1

∂N(c)(ξ P̂
1 ,ξ

P̂
2 )

∂ξs
u(c)i . (18)

By substituting Equations (17) and (18) into Equations (11a) and (12), the displace-
ments and tractions corresponding to the constant-stress state can now be expressed
in terms of the corresponding nodal quantities as follows:

uL
i (P̂,P\Q) =

8 or 6

∑
c=1

N(c)(ξ P̂
1 ,ξ

P̂
2 )u

(c)
i

+



A−1
3i+m−3,s

8 or 6

∑
c=1

N(c)(ξ P̂
1 ,ξ

P̂
2 )t

(c)
s

+A−1
3i+m−3,s+3

8 or 6

∑
c=1

N′(c)s (ξ P̂
1 ,ξ

P̂
2 )u

(c)
1

+A−1
3i+m−3,s+6

8 or 6

∑
c=1

N′(c)s (ξ P̂
1 ,ξ

P̂
2 )u

(c)
2


[

xm(P\Q)−
8 or 6

∑
c=1

N(c)(ξ P̂
1 ,ξ

P̂
2 )x

(c)
m

]
,

(19a)

tL
i (P̂,Q) =

C̃imst

2



(
A−1

3s+t−3,k +A−1
3t+s−3,k

) 8 or 6

∑
c=1

N(c)(ξ P̂
1 ,ξ

P̂
2 )t

(c)
k

+
(

A−1
3s+t−3,k+3 +A−1

3t+s−3,k+3

) 8 or 6

∑
c=1

N′(c)k (ξ P̂
1 ,ξ

P̂
2 )u

(c)
1

+
(

A−1
3s+t−3,k+6 +A−1

3t+s−3,k+6

) 8 or 6

∑
c=1

N′(c)k (ξ P̂
1 ,ξ

P̂
2 )u

(c)
2


n̄m(Q),

(19b)
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where N′(c)k denotes the 1st-order derivative of N(c) with respect to ξk. The local co-
ordinates of P̂, i.e. (ξ P̂

1 ,ξ
P̂
2 ), can be easily determined from the geometrical relation

that the vector
−→
PP̂ is always perpendicular to the tangent plane at the regularization

point. Substituting Equation (19) into the self-regularized BIE, Equation (13) can
now be solved for boundary unknowns by the usual collocation process. The inte-
grands in Equation (13) are now relaxed from singularity due to the subtraction of
the constant-stress terms when the field point Q approaches the regularization point
P̂. However, there remains an issue to be addressed, namely, the evaluation of the
free-term Ci j in Equation (13). The conventional approach to obtain the numerical
values of Ci j by considering rigid-body motion in Equation (13) directly will fail
to yield proper results. This has been explained in He and Tan (2013). To resolve
this problem, they proposed a numerical scheme in which the BIE is written for
a small auxiliary model built from the elements sharing the source point P, and
rigid-body motion considerations are then performed on this model. The elements
sharing P are projected to a plane at a distance d from P, with d typically taken
to be the largest distance between P and the nodes of the elements sharing it. For
more details of this scheme, the reader is referred to He and Tan (2013). With this
resolved, all the numerical values of the elements in the system matrices can now
be obtained, and the system equations for the unknown displacements and tractions
on the surface of the body can be solved by the usual manner.

4 Numerical examples

Three example problems are presented here to demonstrate the veracity of the for-
mulation discussed in Section 3 and its successful implementation into a BEM
computer program for 3D general anisotropy based on the Fourier series repre-
sentations of the Green’s function and its derivatives. They are: (A) a thin plate
subjected to direct stresses; (B) a thin-walled cylinder subjected to internal pres-
sure; and (C) a thin-walled sphere subjected to internal pressure. For the analyses,
crystal alumina (Al2O3) is chosen as the material in all these examples. It has the
following stiffness coefficients defined in its principal directions:

C∗ =



465 124 117 101 0 0
124 465 117 −101 0 0
117 117 563 0 0 0
101 −101 0 233 0 0

0 0 0 0 233 101
0 0 0 0 101 170.5

×107 (N/m2). (20)

To generate generally anisotropic properties for the purpose of the demonstration,
the material principal axes are rotated counterclockwise about the x1-, x2-, and x3-
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axis in succession by 30◦, 45◦ and 60◦, respectively, to yield

C =



445.8 47.5 214.2 15.5 9.0 −42.9
47.5 601.9 112.1 −31.0 −32.6 70.8

214.2 112.1 413.8 59.0 30.6 −18.9
15.5 −31.0 59.0 227.0 −12.1 −27.2
9.0 −32.6 30.6 −12.1 287.9 48.8
42.9 70.8 −18.9 −27.2 48.8 137.4

×107 (N/m2). (21)

Quadratic isoparametric boundary elements are used throughout. The solutions to
these problems were also obtained using the commercial code. ANSYS, based on
the finite element method (FEM), for the purpose of verification of the BEM results.

Example (A)

The first example deals with a thin square (2L× 2L) plate with thickness t = 0.005L
as shown in Figure 2. As for the boundary conditions, all the three planes at x1 = 0,
x2 = 0, and x3 = 0 are restrained from motion in their respective normal directions,
while the remaining planes are subjected to a uniform tensile stress of magnitude
P at x1 = 2L; a uniform tensile stress of magnitude 2P at x2 = 2L; and uniform
compressive stress of magnitude 3P at x3 = 0.005L as depicted in the figure. Also
shown is the BEM mesh employed which has 48 elements and 146 nodes. For
the ANSYS-FEM analysis, 6400 Shell-181 elements with 45603 nodes were used.
To compare the results from the two different numerical methods, the resultant

displacement, u0 =
√

u2
1 +u2

2 +u2
3, at points along the centerline at x1 = L on the

top surface (x3 = 0.005L) are calculated. Similarly, the von-Mises equivalent stress,
σo, at points along the centerline at x1 = L on the bottom surface (x3 = 0) is also
determined. Figure 3 and Figure 4 show the variations of the normalized resultant

x1

x2

x3 2L=2

2L=2

t=0.005L

P

2P

3P

Figure 2: BEM mesh for a thin plate subjected to direct stresses - Example (A).
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P
 L

x2/ L

Figure 3: Variation of the normalized resultant displacement along the centerline at
x1 = L on the top surface - Example (A).

σ
o

/ 
P

x2/ L

BEM  ANSYS

Figure 4: Variation of the normalized equivalent stress along the centerline at x1 = L
on the bottom surface - Example (A).

displacements and equivalent stresses calculated along these locations, respectively.
To demonstrate also the inadequacy of the conventional BEM to treat thin bodies,
this problem was also solved using the conventional, un-regularized displacement-
BIE, i.e. Eq. (1), employing the same BEM mesh. The comparison of the results
for the normalized values of the resultant displacement and equivalent stress at the
nodes is shown in Table 1 and Table 2, respectively. From the results, it can be
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Table 1: Numerical values of the nor-
malized resultant displacement along
the centerline at x1 = L on the top
surface- Example (A)

x2/L
uo ∗C11/PL

ANSYS self-reg. un-reg.

2.00 9.59E-01
9.64E-01
(0.52%)

4.78E+01
(4884.36%)

1.75 8.53E-01
8.58E-01
(0.59%)

9.10E+01
(10568.23%)

1.50 7.54E-01
7.57E-01
(0.40%)

9.25E+01
(12167.90%)

1.25 6.59E-01
6.62E-01
(0.46%)

5.53E+01
(8291.50%)

1.00 5.71E-01
5.73E-01
(0.35%)

4.25E+01
(7343.08%)

0.75 4.89E-01
4.89E-01
(0.00%)

3.43E+01
(6914.31%)

0.50 4.17E-01
4.13E-01
(0.96%)

6.74E+01
(16063.07%)

0.25 3.56E-01
3.49E-01
(1.97%)

9.59E+01
(26838.20%)

0.00 3.14E-01
3.07E-01
(2.23%)

1.07E+02
(33976.43%)

Table 2: Numerical values of the nor-
malized equivalent stress along the cen-
terline at x1 = L on the bottom surface-
Example (A)

x2/L
σo/P

ANSYS self-reg. un-reg.

2.00 1.77E+00
1.78E+00
(0.56%)

4.20E+02
(23628.81%)

1.75 1.76E+00
1.76E+00
(0.00%)

4.38E+02
(24786.36%)

1.50 1.75E+00
1.75E+00
(0.00%)

6.78E+02
(38642.86%)

1.25 1.74E+00
1.74E+00
(0.00%)

5.61E+02
(32141.38%)

1.00 1.73E+00
1.73E+00
(0.00%)

4.82E+02
(27761.27%)

0.75 1.72E+00
1.72E+00
(0.00%)

1.72E+02
(9900.00%)

0.50 1.71E+00
1.71E+00
(0.00%)

2.08E+02
(12063.74%)

0.25 1.70E+00
1.69E+00
(0.59%)

1.61E+02
(14946.73%)

0.00 1.90E+00
2.03E+00
(6.84%)

2.35E+02
(12268.42%)

clearly seen that the solutions obtained from the self-regularized displacement-BIE
are in excellent agreement with those obtained from the ANSYS analysis, while
the un-regularized BIE fails to give reasonable values.

Example (B)

The dimensions of the thin-walled alumina cylinder for the second example are
shown in Figure 5. The cylinder is subjected to a uniform internal pressure P, with
both its ends completely fixed. Figure 6 shows the BEM mesh employed for the
analysis; it has 704 elements and 2112 nodes. Since the analytical solution to this
typical 2D isotropic problem is available, the analysis was first conducted using
the algorithm for anisotropy but with elastic constants corresponding to isotropy
with Young’s modulus = 1000 (units) and Poisson’s ratio = 0.3. Table 3 lists the
numerical values of the normalized hoop stress at some sample nodes on the in-
ner surface of the axial plane x3 = L as calculated by the self-regularized BIE and
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2L

x3

x2

x1

ro=1.005L

P

x1

x2

θ

Figure 5: A thin-walled cylinder subjected to internal pressure - Example (B).

also by the conventional, un-regularized BIE. Also shown in the table in parenthe-
ses are the percentage deviations of the BEM solutions from the exact analytical
solution from Lame theory. As can be seen, the results obtained from the self-
regularized BIE agree very well with the analytical solution, while those from the
un-regularized scheme are totally erroneous. Next, the generally anisotropic prob-
lem with the elastic constants given in Equation (21) was analyzed. For compar-
ison, the anisotropic analysis was also performed using ANSYS, the commercial
FEM software. The ANSYS model is relatively refined with 5120 Shell-181 ele-
ments and 36480 nodes as shown in Figure 7. As in the previous analysis of the
degenerate case of isotropy, the hoop stress at the nodes at the inner circumference
of the cylinder at the mid-axial plane, were obtained, as listed in Table 4. The
agreement of the results obtained using the self-regularized BEM algorithm and
those from the FEM is very good indeed, the percentage differences between them
are shown in parentheses in the table. The same cannot be said of those results
obtained with the conventional BEM.

Example (C)

The problem considered is a thin-walled sphere with inner radius ri = L and thick-
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Table 3: Normalized hoop stress around
the inner circumference of the thin-
walled isotropic cylinder at the mid-
axial plane - Example (B)

θ σθθ/P
(deg.) Analytic Self-reg. Un-reg.

0 200.50
198.24
(1.13%)

346.86
(73.00%)

45 200.50
198.40
(1.05%)

346.08
(72.61%)

90 200.50
198.35
(1.07%)

346.91
(73.02%)

135 200.50
198.45
(1.02%)

346.02
(72.58%)

180 200.50
198.28
(1.11%)

346.97
(73.05%)

225 200.50
198.46
(1.02%)

346.02
(72.58%)

270 200.50
198.21
(1.14%)

346.91
(73.02%)

315 200.50
198.64
(0.93%)

346.08
(72.61%)

Table 4: Normalized hoop stress around
inner circumference of the anisotropic
thin-walled alumina cylinder at the mid-
axial plane - Example (B)

θ σθθ/P
(deg.) ANSYS Self-reg. Un-reg.

0 196.30
192.04
(2.22%)

494.71
(152.02%)

45 200.96
201.86
(0.45%)

563.10
(178.96%)

90 197.73
190.81
(3.63%)

495.82
(159.85%)

135 201.32
201.52
(0.10%)

580.16
(188.18%)

180 196.30
189.29
(3.70%)

494.95
(161.48%)

225 200.96
201.46
(0.25%)

562.70
(180.01%)

270 197.73
192.51
(2.71%)

494.33
(150.00%)

315 201.32
201.00
(0.16%)

579.78
(187.99%)

Figure 6: BEM mesh the thin-walled
cylinder - Example (B).

Figure 7: Figure 7: FEM mesh of the
thin-walled cylinder by ANSYS - Ex-
ample (B).
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Table 5: Normalized circumferential
stress at the outer circumference of the
thin-walled isotropic sphere- Example
(C)

θ σθθ/P
(deg.) Analytic Self-reg. Un-reg.

0 100.00
100.53
(0.53%)

48.24
(51.76%)

45 100.00
100.62
(0.62%)

48.22
(51.78%)

90 100.00
100.45
(0.45%)

48.24
(51.76%)

135 100.00
100.48
(0.48%)

48.22
(51.78%)

180 100.00
100.46
(0.46%)

48.24
(71.76%)

225 100.00
100.55
(0.55%)

48.22
(51.78%)

270 100.00
100.45
(0.45%)

48.24
(51.76%)

315 100.00
100.50
(0.50%)

48.22
(51.78%)

Table 6: Normalized equivalent stress
at the outer circumference around the
equator of the thin-walled anisotropic
sphere - Example (C)

θ σ0/P
(deg.) ANSYS Self-reg. Un-reg.

0 6.09E-01
6.08E-01
(0.17%)

6.17E-01
(1.24%)

45 9.31E-01
9.28E-01
(0.32%)

1.25E+00
(34.61%)

90 7.24E-01
7.23E-01
(0.18%)

7.37E-01
(1.81%)

135 8.52E-01
8.50E-01
(0.28%)

1.21E+00
(42.16%)

180 6.09E-01
6.09E-01
(0.13%)

6.17E-01
(1.25%)

225 9.31E-01
9.28E-01
(0.33%)

1.25E+00
(34.59%)

270 7.24E-01
7.22E-01
(0.24%)

7.37E-01
(1.80%)

315 8.53E-01
8.50E-01
(0.27%)

1.21E+00
(42.15%)

ness t = 0.005L. As in Example (B), the analysis was first performed for the isotrop-
ic case using Young’s modulus = 1000 (units) and Poisson’s ratio = 0.3. The inner
surface of the sphere is subjected to uniform pressure P, while the outside sur-
face is traction free. Appropriate nodal constraints were applied to preclude rigid
body motion of the numerical model. The exact analytical solution, based again
on Lame theory, for the circumferential stress is also readily available. Figure 8
shows the BEM mesh for the analysis; there are 256 elements with 708 nodes. The
hoop stresses at the nodes on the inner surface around the equator are computed by
the both regularized and un-regularized BIE algorithms. Listed in Table 5 are the
computed results for comparison with the exact analytical solution. As expected,
consistent, accurate results are obtained by the self-regularized BIE but not for the
un-regularized scheme. The anisotropic material properties in Equation (21) were
next used in the analysis. For the boundary condition of this anisotropic analysis,
the same uniform internal pressure P was applied, but the exterior surface of the
sphere was constrained in all directions from displacements. For verification, the
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problem was also analyzed by ANSYS with the FEM mesh shown in Figure 9,
which has 4167 Shell-181 elements and 29140 nodes. The von Mises equivalent
stress, σ0, at some sample nodes around the outer surface of the equator are comput-
ed. As before, the problem was also solved using the conventional un-regularized
scheme of the BEM. Table 6 shows the comparison of the computed results from
the numerical analyses. The results by the self-regularized BIE are again in excel-
lent agreement with those from the ANSYS analysis; this is not the case with the
un-regularized BIE.

x1

x2

x3

θ

Figure 8: BEM mesh the thin-walled
sphere - Example(C).

Figure 9: FEM mesh of the thin-walled
sphere by ANSYS - Example (C).

5 Conclusions

Thin-bodies are quite commonly encountered in engineering applications. For
these problems, the conventional BEM is not a very suitable tool for the stress
analysis because of the nearly-singular integrals that arise in the boundary integral
equation (BIE). A self-regularization scheme proposed by He and Tan (2013) for
3D isotropic elastostatics has been extended to 3D generally anisotropic elasticity
in the present study. The self-regularization is performed on the displacement-BIE,
hence there is no requirement for C1,α Holder continuity between the boundary el-
ements. The scheme has been found to be relatively simple to implement and it
has been successfully carried out on an existing BEM code, based on the quadrat-
ic isoparametric formulation, for 3D general anisotropic elasticity which utilizes
double-Fourier series representations of the Green’s function and its derivatives.
This has been demonstrated by three example problems where the numerical results
are verified by similar analysis performed using relatively refined meshes with the
commercial FEM code ANSYS.
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