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Abstract: In this paper, an Integrated Radial Basis Function (IRBF)-based mul-
tiscale method is used to simulate the rheological properties of dilute fibre suspen-
sions. For the approach, a fusion of the IRBF computation scheme, the Discrete
Adaptive Viscoelastic Stress Splitting (DAVSS) technique and the Fibre Configu-
ration Field has been developed to investigate the evolution of the flow and the fibre
configurations through two separate computational processes. Indeed, the flow con-
servation equations, which are expressed in vorticity-stream function formulation,
are solved using IRBF-based numerical schemes while the evolution of fibre con-
figuration fields governed by the Jeffery’s equation is captured using the principle
of Brownian Configuration Fields. The two procedures are coupled together by
the Lipscomb expression which is used to determine the fibre stress of dilute fibre
suspensions. Owing to advantages of the IRBF scheme and the DAVSS technique,
the present method yields a more accurate solution and faster convergence rate.
The simulation method is verified and its capability is demonstrated with the fibre
suspension flows through two parallel plates, a circular tube and the 4:1 and 4.5:1
axisymmetric contraction geometries which are usually chosen to test a numerical
method because of the challenging nature of these problems.

Keywords: Fibre Configuration Field, Integrated Radial Basis Function, Dilute
fibre suspension flow, Jeffery equation, Lipscomb model, Discrete adaptive vis-
coelastic stress splitting, Multiscale simulation method.

1 Introduction

Fibre-reinforced composite materials, e.g. polymer matrices strengthened by glass
fibres, are popularly used in many important industrial areas because of their ad-
vanced mechanical properties such as high strength and stiffness, and low density
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[Folkes (1982)]. These exceptional properties are mostly dominated by the distri-
bution and orientation of fibres existing inside matrices. Hence, a sufficient un-
derstanding of the orientation distribution of fibre configurations in the solvent of
a moulding process is very important and needs to be carefully investigated using
both experimental and numerical approaches. On the numerical simulation, due
to the multiphase nature of the materials, various multiscale simulation methods
have been developed based on the micro-mechanical characteristics of the materi-
als. For heterogeneous solid materials such as metals/alloys with precipitates/pores
or particulate-reinforced composite materials, several different multiscale schemes
were devised to predict the effective properties of the materials as reviewed by
Wu, Nie, and Yang (2014) while methods based on the Voronoi Cell Finite Ele-
ments [Dong and Atluri (2012)] and the Voronoi Cell Boundary Elements [Dong
and Atluri (2013)] were developed for heterogeneous materials with voids and/or
rigid/elastic inclusions. For the simulation of inhomogeneous suspensions, whose
particles may migrate from one region to another, the readers can refer to pub-
lications of Phan-Thien, Graham, Altobelli, Abbott, and Mondy (1995) and Fan,
Phan-Thien, and Zheng (2000). In this work, we focus on homogeneous materials
with the assumption of constant volume fraction on the flow field at all times [Fan
(2006)]. One of the most active research trends in this area is to simulate the flow of
fibre suspensions in complex geometries, which has been stimulated by Lipscomb,
Denn, Hur, and Boger (1988).

We consider rigid cylindrical fibres of the same length and diameter. Fibre suspen-
sions can be classified into three main groups: dilute, semi-dilute and concentrated
suspensions based on two basic parameters, the fibre volume fraction φ and the
aspect ratio ar of the fibre (length/diameter). Specifically, a suspension is consid-
ered as dilute, semi-dilute or concentrated for the case of φa2

r < 1, 1 < φa2
r < ar or

φar > 1, respectively.

Generally, the physical description of flow and the evolution of fibre configurations
poses challenges related to the necessity to take into account the fibre-fibre, fibre-
fluid, and fibre-boundary interactions, especially for suspension flows through com-
plex geometries [Lipscomb, Denn, Hur, and Boger (1988)]. For dilute suspensions,
the fibre-fibre interaction is neglected and the evolution of the fibre configuration
is captured by the Jeffery’s motion equation [Jeffery (1922)]. For semi-dilute and
concentrated suspensions, the fibre-fibre interaction is significant. Thus, it is neces-
sary to take into consideration this interaction and one possible way is to introduce
a diffusion term into Jeffery’s equation [Folgar and Tucker (1984)].

From the literature, the simulation of a fibre suspension is basically carried out
through the following three steps: (i) Introduce a fibre stress component into the
momentum conservation equation to include dynamic effects of fibres on the bulk
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properties of the flow; (ii) Apply an appropriate motion equation to describe the
evolution of fibre configuration, as stated above, the Jeffery’s equation is suitable
for dilute suspension whereas the Folgar and Tucker’s equation is applicable for
semi-dilute and concentrated ones; and (iii) Determine the fibre contribution to
stress (named fibre stress tensor) using a relevant constitutive equation as a function
of the fibres’ orientation.

Since the fibre stress tensor is essentially calculated from the fourth-order orienta-
tion tensor 〈PPPP〉, the basic difference between numerical methods for the simula-
tion of fibre suspensions is the way to handle the fourth-order tensor. There are sev-
eral approaches to process the fourth-order orientation tensor. One approach is to
use a quadratic closure approximation to break the tensor 〈PPPP〉 into two second-
order tensors 〈PP〉 [Lipscomb, Denn, Hur, and Boger (1988)]. A full alignment
assumption is subsequently applied to calculate these second-order tensors. This
approach was employed to successfully simulate fibre suspension flows through
axisymmetric contraction and expansion geometries [Lipscomb, Denn, Hur, and
Boger (1988); Chiba, Nakamura, and Boger (1990); Baloch and Webster (1995)].
Another one is to directly solve the evolution of the fourth-order tensor as presented
in Advani and Tucker III (1987). And last but not least is the Brownian Configu-
ration Field (BCF) approach [Hulsen, Van Heel, and Van Den Brule (1997); Tran-
Canh and Tran-Cong (2004)] which was successfully applied to the simulation of
fibre suspensions by Fan, Phan-Thien, and Zheng (1999); Lu, Khoo, Dou, Phan-
Thien, and Seng Yeo (2006) and Dou, Khoo, Phan-Thien, Yeo, and Zheng (2007).
Following the approach, a high number of fibre configurational fields is initiated on
each computational node and the fourth-order tensor is averagely calculated.

Recently, the macro-micro multiscale methods based on the differentiated and inte-
grated RBF approximations have been developed to simulate successfully a range
of dilute polymer solutions [Tran, Phillips, and Tran-Cong (2009); Tran, An-Vo,
Mai-Duy, and Tran-Cong (2011); Nguyen, Tran, and Tran-Cong (2015)]. Owing
to the advantages of RBF-based high order approximation schemes, the approach
achieved high-order convergence rate and accuracy [Tran, Mai-Duy, Le-Cao, and
Tran-Cong (2012); Nguyen, Tran, and Tran-Cong (2015)]. In this paper, one-
dimensional IRBF (1D-IRBF) scheme [Mai-Duy, Le-Cao, and Tran-Cong (2008)]
is employed to discretise the conservation equations using vorticity-stream func-
tion, whereas the fibre configurations governed by Jeffery’s equation are processed
using BCF approach. In addition, the constitutive equation of Lipscomb is exploit-
ed to evaluate the fibre stress tensor.

The paper is organised as follows. The governing equations in the dimensionless
form are presented in section 2. Section 3 gives a short review of the DAVSS’s
formulation introduced in the governing momentum equation. The vorticity-stream
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function approach in planar and axisymmetric flow problems are detailed in section
4, where an implementation of DAVSS technique for the axisymmetric geometry is
also described. In section 5, the Euler explicit scheme for temporal discretisation of
the equation of fibre configuration fields is presented. The semi-implicit schemes
followed by the IRBF-based approximation to the governing flow equations are also
described. An algorithm is introduced in detail in section 6. Numerical examples
and obtained results are discussed in 7. Finally, the work is closed by concluding
remarks in section 8.

2 Dimensionless governing equations for fibre suspension flow

Consider an isothermal and incompressible flow of fibre suspensions in two-dimen-
sional (2-D) space. The continuity and momentum equations of the flow are given
by [Lu, Khoo, Dou, Phan-Thien, and Seng Yeo (2006)]

∇ ·u = 0, (1)

∂u
∂ t

+u ·∇u =−∇p+
1

Re
∇ · τττe, (2)

where t, u, p and τττe are the time, velocity field, pressure and extra-stress tensor,
respectively, and Re the Reynolds number based on the viscosity η0 of the New-
tonian solvent. For fibre suspensions with a Newtonian solvent, the extra-stress
tensor (τττe) consists of two components as follows.

τττe = τττs + τττ f , (3)

where τττs = 2D and τττ f are the stress components contributed by the Newtonian
solvent and the suspended fibres, respectively, and D = 1

2 (∇u +(∇u)T the rate of
strain tensor.

There are several models used to calculate the stress contributed by suspended fi-
bres, for example, the Lipscomb model [Lipscomb, Denn, Hur, and Boger (1988)]
for dilute suspensions and the Phan-Thien–Graham model [Phan-Thien and Gra-
ham (1991)] for semi-dilute and concentrated suspensions. In this paper, the former
one is used to investigate the present method in simulations of dilute fibre suspen-
sion flows. The Lipscomb model is given by

τττ f = k f D : 〈PPPP〉 , (4)

where P is the unit vector representing the orientation of a fibre; 〈PPPP〉 the fourth
order orientation tensor or structure tensor; and 〈(·)〉 the statistical average of (·).
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The dimensionless quantity k f is the fibre parameter and defined by

k f =
φ µ

η0
, (5)

where η0 is the Newtonian fluid viscosity; φ the volume fraction of fibres; µ the
material constant and chosen in the limit of high aspect ratio of fibre as follows
[Chiba, Yasuda, and Nakamura (2001)].

µ =
η0ar

2

ln(ar)
, (6)

where ar is the aspect ratio of fibres. Substituting Eq. (6) into Eq. (5) yields

k f =
φar

2

ln(ar)
. (7)

Therefore, the fibre parameter is considered as the only single one in the fibre stress
equation (4), which describes the impact of suspended fibres on the kinematic be-
haviour of the flow.

The evolution of fibres’ orientation in flow is captured by the Jeffery’s equation as
follows [Lipscomb, Denn, Hur, and Boger (1988)].

∂P
∂ t

+u ·∇P = ΩΩΩ ·P+λ (D−D : PPI) ·P, (8)

where ΩΩΩ = 1
2

(
(∇u)T −∇u

)
is the vorticity tensor; λ a parameter dependent on

the aspect ratio, λ = a2
r−1

a2
r+1 and I the identity matrix. As shown in Phan-Thien and

Graham (1991), by introducing

Q(x, t) = QP(x, t) , (9)

where Q is the modulus of Q, the Jeffery’s equation (8) is transformed into

∂Q
∂ t

+u ·∇Q = (∇u)T ·Q−ζ D ·Q (10)

where ζ = 2/(a2
r +1) = 1−λ . The fourth order orientation tensor 〈PPPP〉 in Eq.

(4) can be now defined by

〈PiPiPiPi〉=
1

N f

N f

∑
i=1

〈
Qi

Qi

Qi

Qi

Qi

Qi

Qi

Qi

〉
, (11)
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where N f is the number of fibres. The components of the tensor 〈PPPP〉 in a 2-D
fibre orientation field are given by [Chiba, Yasuda, and Nakamura (2001)]

P1111 =
N f

∑
i=1

cos4 θi

N f
, P1112 =

N f

∑
i=1

cos3 θi sinθi

N f
, P1122 =

N f

∑
i=1

cos2 θi sin2
θi

N f
, (12)

P1222 =
N f

∑
i=1

cosθi sin3
θi

N f
, P2222 =

N f

∑
i=1

sin4
θi

N f
, (13)

where θi is the angle between the x-axis and the axis of fibre i.

3 The Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) formulation

The DAVSS scheme has been widely used in numerical methods to maintain the
numerical stability for simulations of viscoelastic fluids [Sun, Phan-Thien, and Tan-
ner (1996); Sun, Smith, Armstrong, and Brown (1999)] and fibre suspensions [Fan,
Phan-Thien, and Zheng (1999); Lu, Khoo, Dou, Phan-Thien, and Seng Yeo (2006)].
The DAVSS transformation is introduced into the original momentum equation (2)
as follows [Fan, Phan-Thien, and Zheng (1999); Lu, Khoo, Dou, Phan-Thien, and
Seng Yeo (2006)].

∂u
∂ t

+u ·∇u− 1
Re

∇ ·
[
ηa

(
∇u+(∇u)T

)]
=−∇p− 2

Re
∇ · [(ηa−1)D]+

1
Re

∇ ·τττ f ,

(14)

where ηa is the adaptive viscosity. For the dilute fibre suspension using Lipscomb
model, the adaptive viscosity is a function of fibre stress and given by [Lu, Khoo,
Dou, Phan-Thien, and Seng Yeo (2006)]

ηa = k f +
1+
√
(1/2)τττ f : τττ f

1+
√

2D : D
, (15)

where k f is the fibre parameter. It is worth noting that there are several differences
appearing in the second term of the right-hand-side of Eq. (14) and in the denom-
inator of the second term in Eq. (15) as compared with ones mentioned in Fan,
Phan-Thien, and Zheng (1999) and Lu, Khoo, Dou, Phan-Thien, and Seng Yeo
(2006). These differences happen because the strain rate tensor D is here defined
as 1

2

(
∇u+(∇u)T

)
, instead of

(
∇u+(∇u)T

)
as presented in the cited papers.

Furthermore, in this work, the DAVSS formulation is only applied to simulate fi-
bre suspensions in axisymmetric flows but not in the planar Poiseuille one whose
geometry is quite simple.
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4 Vorticity-stream function formulation for 2-D flows

For 2-D problems considered in this work, it is more convenient to use the vorticity-
stream function formulation which offers several numerical benefits as (i) the con-
tinuity equation is automatically satisfied; and (ii) the pressure field disappears in
the equation of motion.

4.1 Vorticity-stream function formulation in the 2-D Cartesian coordinates (x,y)

The relations between velocity (u,v), vorticity ω and stream function Ψ are given
by

ω =
1
2

(
∂u
∂y
− ∂v

∂x

)
, (16)

u =
∂Ψ

∂y
, v =−∂Ψ

∂x
. (17)

Substituting the expressions in Eq. (17) into Eq. (16) yields the following vorticity-
stream function formulation

∂ 2Ψ

∂x2 +
∂ 2Ψ

∂y2 = 2ω. (18)

Taking the curl of Eq. (2) and using Eqs. (1), (3) - (16), the vorticity transport
equation is written as follows.

∂ω

∂ t
+u

∂ω

∂x
+v

∂ω

∂y
=

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
+

1
2Re

(
∂ 2τxx

f

∂x∂y
+

∂ 2τ
xy
f

∂y2 −
∂ 2τ

yx
f

∂x2 −
∂ 2τ

yy
f

∂x∂y

)
,

(19)

where τxx
f , τ

xy
f , τ

yx
f and τ

yy
f are the stress components of the symmetric fibre stress

tensor τττ f .

4.2 Axisymmetric vorticity-stream function formulation in the cylindrical coor-
dinates (r,z)

The considered flow is predominantly in the z-direction and the relations between
velocity (ur,uz), vorticity ω , and stream function Ψ are given by

ω =
1
2

(
∂uz

∂ r
− ∂ur

∂ z

)
, (20)

uz =
1
r

∂Ψ

∂ r
, ur =−

1
r

∂Ψ

∂ z
. (21)
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Following manipulation as done in section 4.1, the vorticity transport and stream
function equations are given by

∂ω

∂ t
+uz

∂ω

∂ z
+ur

∂ω

∂ r
− ur

r
ω =

1
Re

(
∂ 2ω

∂ z2 +
∂ 2ω

∂ r2 +
1
r

∂ω

∂ r
− 1

r2 ω

)
+

1
2Re

(
∂ 2τ

rz
f

∂ r2 −
∂ 2τ

zr
f

∂ z2 +
∂ 2τ

zz
f

∂ r∂ z
−

∂ 2τrr
f

∂ z∂ r
+

1
r

∂τ
rz
f

∂ r
− 1

r

∂τrr
f

∂ z
− 1

r2 τ
rz
f

)
,

(22)

1
r

∂ 2Ψ

∂ z2 +
1
r

∂ 2Ψ

∂ r2 −
1
r2

∂Ψ

∂ r
= 2ω, (23)

where τ
zz
f , τ

zr
f , τ

rz
f and τrr

f are the stress components of the fibre stress tensor τττ f .

The vorticity transport equation (22) is rewritten with the implementation of DAVSS
as follows.

∂ω

∂ t
+uz

∂ω

∂ z
+ur

∂ω

∂ r
− ur

r
ω− 1

Re
ηa

(
∂ 2ω

∂ z2 +
∂ 2ω

∂ r2

)
=− 1

Re
(ηa−1) ·(

∂ 2ω

∂ z2 +
∂ 2ω

∂ r2

)
+

1
Re

(
1
r

∂ω

∂ r
− 1

r2 ω

)
+

1
2Re

(
∂ 2τ

rz
f

∂ r2 −
∂ 2τ

zr
f

∂ z2 +

∂ 2τ
zz
f

∂ r∂ z
−

∂ 2τrr
f

∂ z∂ r
+

1
r

∂τ
rz
f

∂ r
− 1

r

∂τrr
f

∂ z
− 1

r2 τ
rz
f

)
,

(24)

where ηa is the adaptive viscosity and given in Eq. (15).

5 Numerical method

In this work, the fusion of IRBF and DAVSS is used to simulate fibre suspension
flows, in which a semi-implicit scheme is applied to temporally discretise the vor-
ticity transport equations (19) and (24) while the Euler explicit scheme is used
for the equation of fibre configuration fields (9). At each time step, the 1D-IRBF
scheme is employed to approximate both the field variables of flow and the fibre
stress tensor.
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5.1 Temporal discretisation of the vorticity transport equation and the equation
of fibre configuration fields

Consider a time dependent differential equation together with its initial and bound-
ary conditions as follows.

∂ω(x, t)
∂ t

+L ω(x, t) = f , (x, t) ∈ Γ× [0,T ] (25)

ω(x, t) = g, (x, t) ∈ Γ×{0} (26)

Bω(x, t) = h, (x, t) ∈ ∂Γ× [0,T ] , (27)

where Γ and ∂Γ are a bounded domain and its boundary, respectively; T a final
time; L a differential operator; B an operator expressing a boundary condition;
and f , g and h known functions. Assume that the time interval [0, T] is parti-
tioned into Nt equal sub-intervals [tn, tn+1] of length ∆t (∆t = T/Nt) with t0 = 0
and tNt = T . In fully discrete schemes, Eq. (25) is discretised with respect to
both time and space variables. The discretisation in time is accomplished by a
time-stepping scheme, followed by the spatial discretisation based on an IRBFN
method. Applying the θ scheme to Eq. (25) yields

ωn+1−ωn

∆t
+θL ω

n+1 +(1−θ)L ω
n = f , (28)

where superscripts (n+1) and n indicates the two successive time steps at tn+1 =
(n+1)∆t and tn = n∆t, respectively; ∆t the size of the time step; and ωn = ω(x, tn)
and ωn+1 = ω(x, tn+1). Equation (28) together with the constraint conditions Eq.
(26) and Eq. (27) at time tn+1 are then spatially discretised using an IRBF ap-
proach described in the next section. The obtained solution is the values of the field
variable at the grid points.

It is noted that the θ -formulation (28) is the Euler explicit, fully implicit and semi-
implicit (Crank-Nicolson) schemes for θ = 0, θ = 1 and θ = 0.5, respectively.

5.1.1 Semi-implicit scheme for temporal discretisation of the vorticity transport
equation

For 2-D planar flow problem, the Crank-Nicolson scheme is employed to discretise
the vorticity transport equation (19) in the Cartesian coordinate system as follows.
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ω
n+1− ∆t

2Re

(
∂ 2ωn+1

∂x2 +
∂ 2ωn+1

∂y2

)
= ω

n +
∆t

2Re

(
∂ 2ωn

∂x2 +
∂ 2ωn

∂y2

)
−∆tun ∂ωn

∂x
−∆tvn ∂ωn

∂y
+

∆t
2Re

(
∂ 2(τxx

f )n

∂x∂y
+

∂ 2(τxy
f )

n

∂y2

−
∂ 2(τyx

f )
n

∂x2 −
∂ 2(τyy

f )
n

∂x∂y

)
,

(29)

where superscripts (n+ 1), n and ∆t are defined above. The components of fibre
stress tensor τxx

f , τ
xy
f , τ

yx
f and τ

yy
f on the right-hand side (RHS) of Eq. (29) are

known quantities, which are determined from the solution of the fibre configuration
fields at the previous time step tn.

For 2-D axisymmetric flow problems, the vorticity equation (24) is temporally dis-
cretised as follows.

ω
n+1− ∆t

Re
ηa

(
∂ 2ωn+1

∂ z2 +
∂ 2ωn+1

∂ r2

)
= ω

n− ∆t
Re

(ηa−1)
(

∂ 2ωn

∂ z2 +
∂ 2ωn

∂ r2

)
+

∆t
Re

(
1
r

∂ωn

∂ r
− 1

r2 ω
n
)
−∆tun

z
∂ωn

∂ z
−∆tun

r
∂ωn

∂ r
+∆t

un
r

r
ω

n

+
∆t

2Re

(
∂ 2(τrz

f )
n

∂ r2 −
∂ 2(τzr

f )
n

∂ z2 +
∂ 2(τzz

f )
n

∂ r∂ z
−

∂ 2(τrr
f )

n

∂ z∂ r
+

1
r

∂ (τrz
f )

n

∂ r

−1
r

∂ (τrr
f )

n

∂ z
− 1

r2 (τ
rz
f )

n
)
,

(30)

where the adaptive viscosity ηa is defined as before; and τ
zz
f , τ

zr
f , τ

rz
f and τrr

f are
components of fibre stress tensor τττ f .

5.1.2 Euler explicit scheme for temporal discretisation of the equation of fibre
configuration fields

As noted in section 2, the motion equation for fibres’ direction (8) has been convert-
ed into the evolution equation (10) for the configuration Q by executing a variable
transformation in Eq. (9). Thus, the Euler explicit scheme is applied for Eq. (10)
as follows.

Q
(
x, tn+1)= Q(x, tn)−∆tu(x, tn) ·∇Q(x, tn)+∆t (∇u(x, tn))T ·Q(x, tn) , (31)

where tn = n∆t and tn+1 = (n+ 1)∆t are the times at steps n and (n+ 1), respec-
tively; ∆t the time step size for both micro and macro procedures as stated above.
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In Eq. (31), the velocity field and its gradient are known and obtained from the
macro procedure. Furthermore, in order to ensure the stability of the present method,
the high-order upwind scheme (Ferreira, Tomé, Mangiavacchi, Castelo, Cuminato,
Fortuna, and McKee, 2002) is used to approximate the gradient of configuration
fields (∇Q).

Since the configuration fields, Qi’s with i = (1,2, · · · ,N f ), are independent from
each other, Eq. (31) can be solved for each configuration field in parallel. The
original fibre configuration fields Pi are then calculated using Eq. (9). The fourth-
order orientation tensor and the fibre stress are subsequently determined. Lastly, the
gradient of the fibre stress tensor is approximated and introduced into the vorticity
transport equation in the macro procedure.

5.2 The 1D-IRBF based spatial discretisation scheme

At a time t, the highest-order derivative of dependent variable ω(x, t) (the second
order in this work), the first order derivatives and the function itself are decomposed
as follows [Mai-Duy, Le-Cao, and Tran-Cong (2008)].

d2ω

dx2 =
m

∑
j=1

w j (t)g j (x) =
m

∑
j=1

w j (t)G[2]
j (x) , (32)

dω

dx
=

m

∑
j=1

w j (t)G[1]
j (x)+C1 (t) , (33)

ω (x, t) =
m

∑
j=1

w j (t)G[0]
j (x)+C1 (t)x+C2 (t) , (34)

where
{

w j (t)
}m

j=1 is the RBF weights;
{

g j (x)
}m

j=1 the RBFs; m a chosen number;

G[1]
j (x) =

∫
G[2]

j (x)dx; G[0]
j (x) =

∫
G[1]

j (x)dx; and C1 and C2 are unknown integra-
tion constants at time t. In this paper, the multi-quadric RBF (MQ-RBF) is used
and given by

g j (x) =
√
(x− c j)2 +a2

j , (35)

where
{

c j
}m

j=1 and
{

a j
}m

j=1 are the RBF centres and widths, respectively. The
centres are chosen to be the same as the data points x j in this work.

Eqs. (32), (33) and (34) are evaluated at every collocation point and re-arranged to
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produce the following set of algebraic equations

d̂2ωωω

dx2 = Ĝ[2] (x) ŵ(t) , (36)

d̂ωωω

dx
= Ĝ[1] (x) ŵ(t) , (37)

ω̂ωω = Ĝ[0] (x) ŵ(t) , (38)

where

ŵ =
(

w1 (t) w2 (t) · · · wm (t) C1 (t) C2 (t)
)T ;

ω̂ωω =
(

ω1 (t) ω2 (t) · · · ωm (t)
)T with ω j = ω (x j);

d̂kωωω

dxk =
(

dkω1(x,t)
dxk

dkω2(x,t)
dxk · · · dkωm(x,t)

dxk

)T
with k = {1,2};

Ĝ[2] =


G[2]

1 (x1) · · · G[2]
m (x1) 0 0

G[2]
1 (x2) · · · G[2]

m (x2) 0 0
...

. . .
...

...
...

G[2]
1 (xm) · · · G[2]

m (xm) 0 0

;

Ĝ[1] =


G[1]

1 (x1) · · · G[1]
m (x1) 1 0

G[1]
1 (x2) · · · G[1]

m (x2) 1 0
...

. . .
...

...
...

G[1]
1 (xm) · · · G[1]

m (xm) 1 0

; and

Ĝ[0] =


G[0]

1 (x1) · · · G[0]
m (x1) x1 1

G[0]
1 (x2) · · · G[0]

m (x2) x2 1
...

. . .
...

...
...

G[0]
1 (xm) · · · G[0]

m (xm) xm 1

.

Owing to the presence of integration constants, more additional constraints can be
incorporated into the algebraic equation system through Eq. (38) as follows.(

ω̂ωω

f̂

)
= Ĉŵ,

where Ĉ =

[
Ĝ[0]

L̂

]
; and f̂ = L̂ŵ are additional constraints. The conversion of the
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network-weight space into the physical space yields

ŵ = Ĉ−1
(

ω̂ωω

f̂

)
, (39)

where Ĉ−1 is the conversion matrix. Eq. (39) is substituted into Eqs. (32) and
(33) to obtain the second and first-order derivatives of ω in terms of nodal variable
values as follows.

d2ω

dx2 = D2ω̂ωω + k2,
dω

dx
= D1ω̂ωω + k1 (40)

where D1 and D2 are known vectors of length m; and k2 and k1 are scalars deter-
mined by f̂. Applying Eq. (40) at every collocation point on the grid lines yields

d̂2ωωω

dx2 = D̂2xω̂ωω + k̂2x,
d̂ωωω

dx
= D̂1xω̂ωω + k̂1x (41)

where D̂2x and D̂1x are known matrices of dimension m×m; and k̂2x and k̂1x are
known vectors of length m; m is defined as before. The subscript x expresses the
spatial direction, in which the matrices D̂2x, D̂1x and the vectors k̂2x, k̂1x are con-
structed. For two-dimensional problems, a similar process is carried out in the
y-direction in order to achieve known matrices and vectors D̂2y, D̂1y, k̂2y and k̂1y.
The algorithm of the present multiscale method is detailed in the next section.

6 Algorithm of the present method

The algorithm of the present method is presented in this section. The implementa-
tion will be then described in several illustrative examples in the next section.

(a) Generate a set of collocation points on the considered domain. The initial
and boundary conditions of the velocity field and fibre configurations are cor-
respondingly assigned at each collocation point. The stream function’s and
vorticity’s initial and boundary conditions are then determined using Eqs. (16),
(17) and (18) for planar flow problems or Eqs. (20), (21) and (23) for ax-
isymmetric ones. Meanwhile, the initial fibre configurations including a set of
randomly oriented unit vectors P’s and the transformed vectors Q’s are defined
by Eq. (9);

(b) Assign N f fibres to each collocation point based on the BCF idea. All fibres
having the same index constitute a fibre configuration field. Hence, there is an
ensemble of N f fibre configuration fields;
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(c) Velocity gradients and the strain rate tensor D are directly calculated from the
current velocity field.

(d) Solve the evolution equation of fibres (31) for the new configurations (Q’s).
Determine the orientation vectors of fibre configurations using Eq. (9) and
then calculate the fourth-order orientation tensor 〈PPPP〉 and the fibre stress
tensor at each collocation point. The gradients of fibre stresses are calculated
in advance and will be used in the following step as known quantities in the
vorticity transport equation;

(e) Solve the stream function equation for the new solution and then calculate the
new velocity field. The new velocity field together with the gradients of the
fibre stress components obtained by step (d) are used to solve the vorticity
equation;

(f) Terminate the simulation when either the desired time or convergence is reached.
The latter is determined by a convergence measure (CM) for the velocity, de-
fined by

CM(u) =

√√√√∑
N
1 ∑

ds
i=1

(
un

i −un−1
i

)2

∑
N
1 ∑

ds
i=1(u

n
i )

2
≤ tol (42)

where ds is the number of dimensions; tol a preset tolerance; ui the i-component
of the velocity at a collocation point; N the number of collocation points and n
the iteration number.

(g) Return to step (c) for the next time step until the steady state or a given time is
reached.

7 Numerical examples

The present method is employed to simulate fibre suspension flows between two
parallel plates (a planar channel) and through a circular tube. The capability of
the present method is then demonstrated with the simulation of the axisymmet-
ric contraction flow of fibre suspension. The obtained results of the first problem
are compared with the results published by Chiba, Yasuda, and Nakamura (2001)
whereas the solutions to the last problem are compared with those presented in Chi-
ba, Nakamura, and Boger (1990) and Lipscomb, Denn, Hur, and Boger (1988). In
order to compare the present results with those cited above, we also choose λ = 1,
and as a result ζ = 0 in Eq. (10) as shown in the examples below.
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7.1 Fibre suspension flow between two parallel plates

This problem was studied by Chiba, Yasuda, and Nakamura (2001). The geometry
of the problem is given in Fig. 1 where L = 10 and H = 1 are the length and height
of the channel, respectively.

Figure 1: Flow through two parallel plates: the geometry of the problem.

7.1.1 Governing equations and boundary conditions

The system of governing equations for this particular problem is obtained from the
discussion in sections 2 and 4 as follows.

∂ω

∂ t
+u

∂ω

∂x
+v

∂ω

∂y
=

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
+

1
2Re

(
∂ 2τxx

f

∂x∂y
+

∂ 2τ
xy
f

∂y2 −
∂ 2τ

yx
f

∂x2 −
∂ 2τ

yy
f

∂x∂y

)
,

(43)

∂ 2Ψ

∂x2 +
∂ 2Ψ

∂y2 = 2ω, (44)

u =
∂Ψ

∂y
, v =−∂Ψ

∂x
, (45)

∂Q
∂ t

+u ·∇Q = (∇u)T ·Q, (46)

〈PPPP〉=
〈

Q
Q

Q
Q

Q
Q

Q
Q

〉
, (47)

τττ f = k f D : 〈PPPP〉 . (48)

In the system of equations (43) - (48), the first three equations relate to solutions
of stream function, vorticity and velocity variables of the flow, while the next two
equations are for solutions of the fibre configuration fields Q’s and P’s. The so-
lutions at two different scales are linked together by the last equation, which is to
calculate the fibre stress tensor τττ f .

Boundary conditions are applied to the problem as follows.
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• At the inlet AB:

– A parabolic velocity profile of the Newtonian fluid is applied, i.e. u =

umax

(
1−
(

2y
H −1

)2
)

and v = 0, where umax = 1.5 is the maximum

value of the velocity profile;

– For the fibre configuration field, a set of N f fibres are generated and
assigned at each collocation point on the inlet boundary. A fibre i is
defined by its angle θi =−π

2 +
π(i−1)

N f
, (i = 1, ...,N f );

• On the walls BC and AD:

– There is no-slip boundary condition for the velocity field, i.e. u = 0 and
v = 0;

– The condition of co-linear alignment is used for the fibre configuration
fields, i.e. θi = 0;

• At the outlet DC: The flow out condition is applied, i.e. ∂u
∂x = 0 and v = 0.

7.1.2 Discretisation of governing equations and numerical results

Applying the temporal discretisation schemes presented in section 5 to the vor-
ticity transport equation and the evolution equation of fibre configurations in 2-
dimensional space yields the following equations

ω
n+1− ∆t

2Re

(
∂ 2ωn+1

∂x2 +
∂ 2ωn+1

∂y2

)
= ω

n +
∆t

2Re

(
∂ 2ωn

∂x2 +
∂ 2ωn

∂y2

)
−∆tun·

∂ωn

∂x
−∆tvn ∂ωn

∂y
+

∆t
2Re

(
∂ 2(τxx

f )n

∂x∂y
+

∂ 2(τxy
f )

n

∂y2 −
∂ 2(τyx

f )
n

∂x2 −
∂ 2(τyy

f )
n

∂x∂y

)
,

(49)

Qn+1
x = Qn

x−∆t
(

un ∂Qn
x

∂x
+ vn ∂Qn

x

∂y

)
+∆t

(
∂un

∂x
Qn

x +
∂un

∂y
Qn

y

)
, (50)

Qn+1
y = Qn

y−∆t
(

un ∂Qn
y

∂x
+ vn ∂Qn

y

∂y

)
+∆t

(
∂vn

∂x
Qn

x +
∂vn

∂y
Qn

y

)
, (51)

where superscripts n and (n+1) indicate the two successive time steps tn = n∆t and
tn+1 = (n+ 1)∆t; Qn+1

x and Qn+1
y the two components of vector Q along x and y
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directions at the time tn+1, respectively. The time step size is chosen ∆t = 0.001. A
range of fibre parameters, k f = {2,4,6,8,10,12} is considered. Other parameters
of the fluid include the Reynolds number, Re = 10 and the number of configuration
fields, N f = 180.

A grid convergence study for the flow with k f = 12 is done with four different
uniform Cartesian grids, whose grid parameters are given in Table 1. The four
grids are labelled as M1, M2, M3 and M4 where M1 is the coarsest one and M4 is
the finest one.

Table 1: A grid convergence study for the fibre suspension flow between two par-
allel plates. Four different grids are used where ∆x and ∆y are grid spaces in x-
direction and y-direction, respectively; and Nx and Ny the number of grid nodes in
each direction.

Grid’s label ∆x ∆y Nx×Ny

M1 1/16 1/16 161×17
M2 1/18 1/18 181×19
M3 1/20 1/20 201×21
M4 1/24 1/24 241×25

The convergence of the solutions with four different meshes is confirmed through
the convergence measure of the velocity field introduced in Fig. 2. Meanwhile,
the grid convergence is reflected through the centreline velocity profile and the
distribution of the extra shear stress at the outlet in Fig. 3.

Grid M3, with ∆x=∆y= 0.05 presented in Fig. 4, is chosen for all simulation cases
in this problem. The numerical results obtained by the present method confirm a
very good agreement with those by Chiba, Yasuda, and Nakamura (2001) using
the finite difference method and the statistical scheme and a much finer mesh of
∆x = ∆y = 0.025. Several observations are presented as follows.

The orientation of fibres at a position in the flow is illustrated by the ellipse’s geom-
etry (Fig. 5) whose length and direction of two axes are determined by the eigenval-
ues and the eigenvectors of the second-order orientation tensor 〈PP〉. Thus, there
are three cases: a) a circle/circular ellipse indicates an isotropic orientation of fibres
at a position; b) an ellipse implies that the predominant direction of fibres is parallel
with its major axis and c) a straight line depicts that all fibres completely align with
the line.

Fig. 6 shows that the fibres near the channel wall tend to align with the flow direc-
tion (x) whereas the fibres’ orientation is isotropic at the centreline. The relation-
ship between the shear stress and the fibre’s orientation will be discussed later in
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Figure 2: A grid convergence study for flow with k f = 12: the convergence measure
of the velocity field for grids M1, M2, M3, and M4.

this section. The results in Fig. 6 whose top figure is for k f = 2 and bottom one for
k f = 10 also show that the fibre parameter does not significantly affect the fibres’
orientation in the flow.

Furthermore, Fig. 7 presents the distribution of the components P1111 (top figure)
and P1122 (bottom figure) of the fourth-order tensor 〈PPPP〉 on several vertical
planes (xi = {0.05,0.15,0.25,0.5,0.75,1,1.25,2.5,5,7.5,10}) along the channel’s
length with respect to y (across the channel). The results show that more and more
fibres tend to align with the main flow direction (x) as they approach the outlet,
especially in the near-wall region.

Fig. 8 depicts the development of velocity along the centreline of the channel with a
range of fibre parameters k f = {2,4,6,8,10,12}. The undershoot is observed in all
cases and the undershoot is more pronounced as the fibre parameter increases. The
undershoot reflects the effect of the isotropy of fibre configurations at the inlet. The
isotropy of fibre configurations resists the development of velocity (u) on the flow
direction (x) at the region near the inlet. The velocity then increases along the flow
direction to the outlet with a gradual decrease of the isotropy of fibres orientation
as described in Fig. 6.

Numerical experiments show that the fibre parameter has a considerable effect on
the transient velocity field near the inlet (Fig. 8). In the downstream direction,
as the flow becomes more and more developed, there is insignificant difference
between the velocity profiles at the outlet as shown in Fig. 9.
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Figure 3: A grid convergence study for flow with k f = 12: the axial velocity distri-
bution on the centreline (top figure) and the distribution of the extra shear stress at
the outlet (bottom figure) for grids M1, M2, M3, and M4.

Finally, the distributions of the shear stress (Txy) and the first normal stress differ-
ence (Txx−Tyy) for the flow with k f = 10 are presented in Fig. 10. In contrast to
the Newtonian flow, a high-stress concentration for the shear stress (left figure) and
the first normal stress difference (right figure) appears near the corner between the
inlet and the walls in the fibre suspension flow. The reason of the high-stress con-
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Figure 4: Flow through two parallel plates: a uniform Cartesian grid.

Figure 5: Orientation of fibres: a) Circle: the fibres’ direction is isotropic; b) El-
lipse: the major axis is the predominant direction of fibres and c) Straight line: all
fibres completely align with the line.
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Figure 6: Fibre suspension flow between two parallel plates: the evolution of fibres’
orientation along the channel with k f = 2 (top figure) and k f = 10 (bottom figure).
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Figure 7: Fibre suspension flow between two parallel plates: the
distribution of components P1111 (top figure) and P1122 (bottom fig-
ure) of the fourth-order orientation tensor on several vertical planes
({xi = 0.05,0.15,0.25,0.5,0.75,1,1.25,2.5,5,7.5,10}) with respect to y us-
ing k f = 10.
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Figure 8: Fibre suspension flow between two parallel plates: the centreline velocity
profiles for flows with k f = {2,4,6,8,10,12}.

centration is the anisotropy of fibres’ orientation near the corner (see Fig. 6), where
there is a steep transition between two extreme states of fibres’ orientation, namely
the co-linear alignment configuration on the wall and the isotropic configuration at
the inlet. The distribution of Txy and Txx−Tyy together with their values are in very
good agreement with those presented in Chiba, Yasuda, and Nakamura (2001).

On the efficiency of the present method, the convergence measures (CM’s) of the
vorticity, stream function and velocity fields are presented in Fig. 11, where the
top figure is for k f = 2 and the bottom figure for k f = 10. The convergence in the
present method is significantly improved in comparison with one achieved by Chi-
ba, Yasuda, and Nakamura (2001). Specifically, with k f = 10 the present method
achieves a convergence measure of approximately 3E−4 for vorticity and 2E−6 for
stream function (Fig. 11 - bottom figure) using a much coarser mesh (a factor of 2
in each of the coordinate directions). Furthermore, the results depict that CMs de-
crease with increasing value of the fibre parameter, for example, CM(ω)≈ 3E−5,
CM(Ψ) ≈ 2E−7, CM(V ) ≈ 1E−6 for k f = 2 and CM(ω) ≈ 3E−4, CM(Ψ) ≈
2E−6, CM(V ) ≈ 1E−5 for k f = 10. Finally, the efficiency of the present method
can also be improved by increasing the number of fibre configuration fields (see
Fig. 12).
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Figure 9: Fibre suspension flow between two parallel plates: the effect of the fibre
parameter k f on the axial velocity profiles at several sections x= {0.5,1.25,2.5,10}
of the channel.
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Figure 10: Fibre suspension flow between two parallel plates: the distribution of
shear stress (left figure) and the first normal stress difference (right figure) in the
fibre suspension flow with k f = 10.
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Figure 11: Fibre suspension flow between two parallel plates: the convergence
measure for vorticity, stream function and velocity fields of flows with k f = 2 (top
figure) and k f = 10 (bottom figure).
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Figure 12: Fibre suspension flow between two parallel plates: the convergence
measure for vorticity (top figure), stream function (middle figure) and veloci-
ty field (bottom figure) of flows using several fibre configuration fields N f =
{180,270,360,450,540}.
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7.2 Fibre suspension flow through a circular tube

This problem is simulated using the same parameters as described in the fibre sus-
pension flow between two parallel plates. The obtained results are compared with
those for fibre suspension flow between two parallel plates. Furthermore, the ve-
locity profile as well as the vorticity and stream function at the outlet will be used
to determine several Dirichlet boundary conditions for the fibre suspension flow
through an axisymmetric contraction presented in section 7.3.

The flow through a circular tube is described in Fig. 13 where a half of the flow’s
domain is considered, owing to the geometrical symmetry. For this problem, L= 10
is the length of the tube and R = 0.5 the tube’s radius. The other parameters include
the Reynolds number Re = 10, time step size ∆t = 1E−3 and the number of fibre
configuration fields N f = 180.

Figure 13: Fibre suspension flow through a circular tube: the geometry of the
problem.

7.2.1 Governing equations and boundary conditions

The governing equations for this particular problem is obtained from sections 2 and
4 as follows.

∂ω

∂ t
+uz

∂ω

∂ z
+ur

∂ω

∂ r
− ur

r
ω− 1

Re
ηa

(
∂ 2ω

∂ z2 +
∂ 2ω

∂ r2

)
=

− 1
Re

(ηa−1)
(

∂ 2ω

∂ z2 +
∂ 2ω

∂ r2

)
+

1
Re

(
1
r

∂ω

∂ r
− 1

r2 ω

)
+

1
2Re

(
∂ 2τ

rz
f

∂ r2 −
∂ 2τ

zr
f

∂ z2 +
∂ 2τ

zz
f

∂ r∂ z
−

∂ 2τrr
f

∂ z∂ r
+

1
r

∂τ
rz
f

∂ r
− 1

r

∂τrr
f

∂ z
− 1

r2 τ
rz
f

)
,

(52)

1
r

∂ 2Ψ

∂ z2 +
1
r

∂ 2Ψ

∂ r2 −
1
r2

∂Ψ

∂ r
= 2ω, (53)

uz =
1
r

∂Ψ

∂ r
, ur =−

1
r

∂Ψ

∂ z
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∂Q
∂ t

+u ·∇Q = (∇u)T ·Q, (55)

〈PPPP〉=
〈

Q
Q

Q
Q

Q
Q

Q
Q

〉
, (56)

τττ f = k f D : 〈PPPP〉 , (57)

where the parameters in the system (52) - (57) were presented before. For the
numerical stability of the present method, the vorticity transport equation (52) is
developed using the DAVSS scheme as follows.
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(58)

Similar to the previous problem, the boundary conditions are given by

• At the inlet OB:

– A Newtonian parabolic velocity profile is applied, i.e. uz=umax

(
1−
( r

R

)2
)

and ur = 0, where umax = 1.5 is the maximum value of the velocity pro-
file;

– For the fibre configuration field, a set of N f = 180 fibres are generated
and assigned at each collocation point on the inlet boundary. A fibre i
is defined by the angle θi =−π

2 +
π(i−1)

N f
, (i = 1, ...,N f );

• On the wall BC:

– No-slip boundary condition is used, i.e. uz = 0 and ur = 0;
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– For the fibre configuration, the co-linear alignment condition is im-
posed on the wall, i.e. θi = 0;

• At the outlet DC: A flow out condition is used, i.e. ∂uz
∂ z = 0 and ur = 0;

• On the centreline OD: The symmetric boundary condition is imposed, i.e.
∂uz
∂ r = 0 and ur = 0.

7.2.2 Discretisation of governing equations

The temporal discretisation of the fibre configuration field Q is described in the
axisymmetric cylindrical coordinates as follows.

Qn+1
z = Qn

z −∆t
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un
z
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z

∂ z
+un

r
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, (59)
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where parameters were defined before. A non-uniform grid described in Fig. 14
is installed for the simulation with ∆z1 = 0.05,∀z ∈ [0,9.9] and ∆z2 = 0.01,∀z ∈
[9.9,10]; ∆r1 = 0.01,∀r ∈ [0,0.1]; and ∆r2 = 0.05,∀r ∈ [0.1,0.5]. Experiences
show that finer meshes near the outlet and the centreline are necessary for an accu-
rate solution at these regions.

z
0 1 2 3 4 5 6 7 8 9 10

r

0

0.5

Figure 14: Fibre suspension flow through a circular tube: a non-uniform Cartesian
grid for the problem.

7.2.3 Results and discussion

Fig. 15 depicts the velocity distribution of fibre suspension flows along the cen-
treline of the tube for a range of fibre parameters k f = {2,6,10}. An undershoot
is also observed in all cases of fibre parameter (solid lines) as in the flow between
two parallel plates (dashed lines) but much stronger. Furthermore, the undershoot’s
positions are closer to the entrance than the ones in the flows between two paral-
lel plates. The undershoot’s feature is presented in detail in Table 2 for the fibre
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suspension flows between two parallel plates and a circular tube. The influence
of the fibre parameter on the undershoot feature of velocity profiles for both fibre
suspension flows is illustrated in Fig. 16.
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Figure 15: Fibre suspension flow through a circular tube: the centreline velocity
profiles of flows with k f = {2,6,10} (solid lines). The corresponding results for
the fibre suspension flow between two parallel plates presented in section 7.1 are
also reproduced in dashed-line form for comparative purpose.

Table 2: Fibre suspension flow through a circular tube. Value and distance from
the inlet boundary of undershoots appearing in the centreline velocity profiles with
k f = {2,6,10}. Results for planar flows are included for comparative purpose.

k f Undershoot value Undershoot’s position

Flow through a
circular tube

2 1.362 z = 0.65
6 1.2177 z = 0.65
10 1.1338 z = 0.55

Flow between two
parallel plates

2 1.4552 x = 0.95
6 1.3954 x = 0.95
10 1.3547 x = 1
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Figure 16: Fibre suspension flow through a circular tube: the undershoot val-
ue of the centreline velocity profiles for the fibre suspension flows with k f =
{2,4,6,8,10,12}. The corresponding results of the flow between two parallel
plates are also presented here for comparative purpose.
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Figure 17: Fibre suspension flow through a circular tube: the distribution of shear
stress (left figure) and the first normal stress difference (right figure) for the case of
fibre parameter k f = 10.

Fig. 17 depicts the shear stress and the first normal stress difference of the suspen-
sion flow through a circular tube with the fibre parameter k f = 10. The distribution
of shear stress presented in Fig. 17 (left figure) shows that there is no significant
difference in comparison with the one by the suspension flow between two parallel
plates (Fig. 10 - left figure) . Furthermore, a maximum shear stress of 12 was also
observed near the corner of the inlet and the wall boundaries. Meanwhile there is
only a small difference in the first normal stress difference distribution between the
two suspension flows: a distribution of the first normal stress difference [−3,13]
(Fig. 17 - right figure) for the flow through a circular tube versus [−2,11] (Fig. 10
- right figure) for the flow between two parallel plates.
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7.3 Fibre suspension flow through 4 : 1 and 4.5 : 1 axisymmetric contractions

Figure 18: Fibre suspension flow through an axisymmetric contraction: A schemat-
ic geometry for the 4 : 1 and 4.5 : 1 axisymmetric contraction flows.

The geometry of the axisymmetric contraction problem presented in Fig. 18 was
considered by Chiba, Nakamura, and Boger (1990) where LU = 5 and RU = 1 are
the length and radius of the upstream tube; LD = 3 and RD = 0.25 the length and
radius of the downstream tube and Lv the vortex length at the upstream corner.
For the 4.5 : 1 contraction flow, the radius of the upstream tube is increased to
RU = 1.125 while the other geometry parameters are the same.

The contraction ratio β and the dimensionless vortex length L∗v of the problem are
defined, respectively, as follows.

β =
RU

RD
, L∗v =

Lv

2RU
. (61)

A non-uniform grid used in the simulation is described in Fig. 19. A finer grid
are generated to capture sufficiently the values of field variables in the contraction
area where the variable gradients are very steep. Furthermore, the axial velocity in
the area close to the centreline cannot be calculated using uz =

1
r

∂Ψ

∂ r because of the
singularity. In order to avoid this issue, uz is approximated as limr→0

1
r

∂Ψ

∂ r = ∂ 2Ψ

∂ r2

(L’Hospital rule) on the centreline. Therefore, a finer mesh is installed near the
centreline. A detailed cartesian grid is generated as follows. ∆z1 = 0.05,∀z ∈ [4,6]
and ∆z2 = 0.1,∀z < 4

⋃
z > 6; and ∆r1 = 0.01,∀r ∈ [0,0.1] and ∆r2 = 0.025,∀r >

0.1. The time step size is chosen as 5E−4.
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Figure 19: Fibre suspension flow through an axisymmetric contraction: a non-
uniform Cartesian grid for the 4 : 1 axisymmetric contraction flow.

7.3.1 Governing equations and boundary conditions

The fibre suspension flow through an axisymmetric contraction is governed by Eqs.
(52) - (60) with the following boundary conditions (see Fig. 18).

• At the inlet OA: The velocity profile and the corresponding stream function
and vorticity at the inlet are obtained from the solution of the fibre suspension
flow through circular tube with the same parameters of the fluid as present-
ed in section 7.2 (We use a length to diameter ratio of 30 to obtain a fully
developed velocity profile). Furthermore, ∂Ψ

∂ z = 0 is also imposed;

• At the outlet DE: The flow-out boundary condition is defined by ∂uz
∂ z = 0 and

ur = 0; ∂Ψ

∂ z = 0; and ∂ω

∂ z = 0;

• On the walls AB, CD and BC: The non-slip boundary condition is imposed
for the velocity: uz = 0 and ur = 0. Hence, the corresponding boundary
conditions for the stream function and the vorticity on the walls are given as
follows.

– On the wall AB:

Ψ = 0,
∂Ψ

∂ r
= 0;

ω = ωw1 ;

– On the wall CD:

Ψ = 0,
∂Ψ

∂ r
= 0;

ω = ωw3 ;
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– On the wall BC:

Ψ = 0,
∂Ψ

∂ z
= 0;

ω = ωw2 ,

where ωw1 , ωw2 and ωw3 are determined and updated using Eq. (53)
with the known stream function at each time step;

• On the centreline OE:

– The symmetric boundary condition of the velocity field is applied, i.e.
∂uz
∂ r = 0 and ur = 0;

– The corresponding boundary conditions for the stream function and the
vorticity are given by

Ψ = Ψc,
∂Ψ

∂ r
= 0;

ω = 0,

where Ψc is determined by Eq. (54) using the inlet boundary condition
of the velocity.

7.3.2 Results and discussion

A range of fibre parameters and Reynolds numbers is used to simulate the two
challenging 4 : 1 and 4.5 : 1 axisymmetric contraction flow problems by the present
method. The number of fibre configuration fields used in all cases is N f = 1000.
Results obtained by the present method are in very good agreement with those of
Chiba, Nakamura, and Boger (1990) or Lipscomb, Denn, Hur, and Boger (1988).
Results are detailed and discussed as follows.

The 4 : 1 contraction flow is simulated with a range of fibre parameters k f =
{0,1, . . . ,11,12} for Re = 0 (the creeping flow); k f = {0,1, . . . ,7,8} for Re = 1;
and k f = 6 for Re = 2 and Re = 5. Fig. 20 presents the effect of the fibre parameter
(k f ) on the vortex length for the flows with Re = 0 and Re = 1. Results showed
insignificant differences on the vortex length by the present method and the publi-
cation in Chiba, Nakamura, and Boger (1990). For example, for the creeping fibre
suspension flow (Re = 0), while the vortex length is 0.170 by the experiment men-
tioned in (Chiba, Nakamura, and Boger, 1990), it is approximately 0.160 and 0.175
by (Chiba, Nakamura, and Boger, 1990) using the Finite Different Method and
the present method, respectively. Furthermore, the vortex lengths by our present
method are slightly higher for k f < 5 but a bit lower for k f > 5 than those of Chi-
ba, Nakamura, and Boger (1990) for creeping fibre suspension flows, whereas the
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obtained results by the present work and from Chiba, Nakamura, and Boger (1990)
are nearly the same for the flows with Re = 1.
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Figure 20: The axisymmetric 4 : 1 contraction flows of fibre suspensions: the
effect of the fibre parameter on the vortex length (L∗v) with a range of k f =
{0,1, . . . ,11,12} for the flows with Re = 0 and k f = {0,1, . . . ,7,8} for the flows
with Re = 1.

Effect of the fibre suspension on the development of the salient corner vortex is
clearly reflected in Fig. 21. As compared with the Newtonian fluid flow (k f =
0 - top left figure) the size of the salient corner vortex of fibre suspension flows
gradually grows with increasing fibre parameter. Furthermore, due to the impact by
the growing vortex, the gradient of streamlines close to the contraction area reduces
with increasing fibre parameter. Results shown in Fig. 21 by the present work are in
very good agreement with those of Chiba, Nakamura, and Boger (1990). However,
a minor difference has been found in our present work in comparison with others
(Chiba, Nakamura, and Boger, 1990; Lipscomb, Denn, Hur, and Boger, 1988; Lu,
Khoo, Dou, Phan-Thien, and Seng Yeo, 2006) in the form of a small secondary
vortex at the upstream corner of the contraction as shown in Fig. 21. This result
may indicate that the present method is capable of capturing such fine details.

Fig. 22 depicts the effect of the fibre parameter on the fibres orientation around
the contraction area. It can be recognised that fibres tend to align with the flow
direction when approaching the contraction region. The fibres are mostly parallel
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Figure 21: The axisymmetric 4 : 1 contraction flows of fibre suspensions: the effect
of the fibre parameter on the streamlines and the vortex of the velocity field for the
flows with Re = 0 and a range of k f = {0,4,8,12}.

with the flow direction in the downstream due to the impact of the elongation of the
fluid. This tendency is more pronounced with increasing fibre parameter.

The effect of Reynolds number on the contraction flow of fibre suspensions was
also investigated and presented in Fig. 23 with a range of Re = {0,1,2,5} with
k f = 6. In contrast to the effect of the fibre parameter (Fig. 21), the salient corner
vortex diminishes in size as the Reynolds number increases as stated and explained
by Chiba, Nakamura, and Boger (1990).

Fig. 24 describes the axial velocity profile along the centreline of fibre suspension
flows with a range of k f = {0,4,8,12} and Re = 0. Unlike the case of a viscoelastic
fluid, where an overshoot of the velocity profile on the centreline appears near
the contraction area (Marchal and Crochet, 1987), it was not observed in the fibre
suspension flows. This result was previously confirmed by Chiba, Nakamura, and
Boger (1990); Baloch and Webster (1995). Furthermore, results presented in Fig.
24 showed that the axial velocity at the far upstream and far downstream of the flow
does not significantly change with the fibre parameter while the velocity gradient
increases, with the decrease of the fibre parameter, around the contraction region
(Fig. 25). This increment of the velocity gradient reaches a maximum peak value
(65) with the case of Newtonian fluid (k f = 0).

The first normal stress difference (τzz
e − τrr

e ) of the fibre suspension flow on the
centreline is finally determined by the following expression of Chiba, Nakamura,
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Figure 22: The axisymmetric 4 : 1 contraction flows of fibre suspensions: the dis-
tribution of the fibres’ orientation around the contraction area for the flows with
Re = 0 and a range of k f = {0,4,8,12}.

and Boger (1990)

τ
zz
e − τ

rr
e = 2(

∂uz

∂ z
− ∂ur

∂ r
)+ k f

∂uz

∂ z
, (62)

where the first and second terms of the RHS are the Newtonian solvent contribution
and the fibre stress contribution to the first normal stress difference of the fibre sus-
pension flow, respectively. Fig. 26 depicts the first normal stress difference which
gradually increases and reaches a peak value at the position just before the contrac-
tion region of the upstream. Furthermore, the first normal stress difference together
with its peak value increase with increasing fibre parameter. In other words, the
first normal stress difference along the centreline is smallest for the Newtonian flu-
id where fibre stress contribution is non-existent (black line, Fig. 26).
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Figure 23: The axisymmetric 4 : 1 contraction flows of fibre suspensions: the effect
of Reynolds number on the streamlines and vortices of the velocity field for a range
of Re = {0,1,2,5} and k f = 6.
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Figure 24: The axisymmetric 4 : 1 contraction flows of fibre suspensions: The axial
velocity profile on the centreline for a range of k f = {0,4,8,12} and Re = 0.
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Figure 25: The axisymmetric 4 : 1 contraction flows of fibre suspensions: The
velocity gradient profile on the centreline for a range of k f = {0,4,8,12} and Re =
0.
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Figure 26: The axisymmetric 4 : 1 contraction flows of fibre suspensions: The
first normal stress difference on the centreline for a range of k f = {0,4,8,12} and
Re = 0.
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Finally, the 4.5 : 1 contraction flow of fibre suspensions is simulated with range
of k f = {0,1, . . . ,7,8} and Re = 0. The problem was previously investigated by
both experiment and the finite element method in Lipscomb, Denn, Hur, and Boger
(1988). Fig. 27 describes the effect of the fibre parameter on the length of vortex
at the contraction corner. The figure shows that the results by the present method
are comparable with the experimental ones and in very good agreement with the
numerical ones presented by Lipscomb, Denn, Hur, and Boger (1988).
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Figure 27: The axisymmetric 4.5 : 1 contraction flows of fibre suspensions:
the effect of the fibre parameter on the vortex length (L∗v) for a range of k f =
{0,1, . . . ,7,8} and Re = 0.

8 Conclusions

This paper reports the use of a multiscale method based on the fibre configura-
tion field, the 1D-IRBF scheme and the DAVSS technique to simulate dilute fibre
suspension flows. In this new approach, at each time step, the governing differen-
tial equations, including the stream function and vorticity transport equations, are
spatially discretised using the 1D-IRBF method. Meanwhile, the evolution of fi-
bre configurations governed by Jeffery’s equation are approximated using the BCF
principle. The two scales are linked together by the Lipscomb’s model, which is
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applied to calculate the fibre stress tensor for dilute suspensions. In addition, the
adoption of the DAVSS enhances the numerical stability of the 1D-IRBF based
scheme in simulating fibre suspension flow problems. As a result, the efficiency
of the present approach is significantly increased as stated in section 7. Indeed,
the obtained results of the simulation of fibre suspension flows through the chal-
lenging 4 : 1 and 4.5 : 1 axisymmetric contraction geometries may indicate that the
present approach is capable of capturing such fine details as secondary vortices in
the corners.
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