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Simulation of Hot Shape Rolling of Steel in Continuous
Rolling Mill by Local Radial Basis Function Collocation

Method

U. Hanoglu1 and B. Šarler1,2,3

Abstract: The aim of this paper is to demonstrate the use of the novel Local Ra-
dial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] in
an industrial coupled thermo-mechanical problem of hot shape rolling of steel. The
physical concept of such a large deformation problem is based on a two dimen-
sional traveling slice model [Glowacki (2005)], which assumes deformation and
heat flow only in the perpendicular direction to rolling. The solution is performed
based on strong formulation. Elliptic Node Generation (ENG) is applied to reposi-
tion the nodes over a slice when necessary in order to sustain stability throughout
the simulation. Coupled mechanical equilibrium steady Navier-Cauchy equation-
s for a quasi-elastic material with temperature dependent material properties and
the transient heat conduction equations are considered. The displacement and trac-
tion boundary conditions are assumed in the mechanical model and Dirichlet and
Neumann boundary conditions in the thermal model, both specific for hot shape
rolling. The solution procedure for mechanical model is based on local colloca-
tion on seven nodded influence domains with multiquadrics radial basis functions,
augmented with the first order polynomials. Five nodded subdomains and explicit
time-stepping are used in the thermal model. The elements of the thermomechan-
ical LRBFCM model are tested on 3 different test cases: bending of a cantilever
beam, compression and convective cooling. The results are compared with either
FEM or analytical solution. The LRBFCM results of hot shape rolling of steel for a
continuous 5 stand rolling mill are presented for the case of rolling of a rectangular
billet from initial dimension 80 mm x 95 mm to a circular bar with a diameter of
60 mm. The advantage of the meshless method is in accuracy and straightforward
node generation that does not require any polygonisation. The paper presents one
of the increasingly emerging examples of the industrial use of LRBFCM.
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1 Introduction

Hot shape rolling of steel, that usually follows continuous casting of billets or
blooms, provides different shapes of long products for various applications such as
automotive industry, construction, shipbuilding, railway, etc. The demand is con-
stantly changing due to the newly introduced designs and the production should be
quickly adaptable. Respectively, computational modeling of the continuous casting
as in [Lorbiecka, Vertnik, Gjerkeš, Manojlovič, Senčič, Cesar and Šarler (2009)]
and/or hot rolling gains its importance for better understanding, control, and better
insight into these processes. It helps to improve the quality, productivity, safety and
environmental impact of the production. The principal goal of rolling simulation
is to connect the process variables, such as the rolling speed, rolling temperature,
rolling stand geometry, to the temperature, strain, strain rate, stress field in the
billet, its microstructure with static and dynamic recrystallization, and calculation
of the rolling torque and power. The modeling of rolling started with Hitchcock
[Hitchcock (1935)] where he solved the problem of the roll deformation. A rea-
sonably current state of the rolling technology and modeling can be perceived from
[Lenard (2007); Lenard, Pietrzyk and Cser (1999)].

The majority of the simulations in solid mechanics are done by using Finite Ele-
ment Method (FEM). This method requires meshing and re-meshing which might
be problematic and time consuming, especially in case of rolling, where the shape
is constantly and drastically changing. The advantages of using a meshless method
over FEM are: it does not depend on node positioning as much as FEM, but FEM
dramatically depends on mesh quality, a FEM model is usually overly stiff, which
might give less accurate stress results. Meshless method is easier to code, it pro-
vides more flexibility in engineering applications, it is more capable of calculating
large deformations, it is simple to pre-process, it allows to simply relocate the nodes
and it has a high precision.

In the last decade, meshless numerical methods [Atluri (2004)] started to represent
an appealing alternative to the classical numerical methods, such as FEM. Mesh-
less method is a numerical technique that uses a set of arbitrary distributed nodes,
both on the boundary and within the computation domain, to represent the solu-
tion of physical phenomena. The main feature of meshless methods is omission
of the polygonalisation between the nodes which can be remarkably demanding,
particularly in realistic 3D geometrical situations. The basis for meshless method
discretization forms the meshless local Petrov-Galerkin method (MLPG) [Atluri
and Shen (2005)]. A review of applications of this method can be found in recen-
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t comprehensive review article [Sladek, Stanak, Han, Sladek and Atluri (2013)].
Meshless methods are applied to large deformation problems such as forging and
extrusion by [Hu, Yao and Hua (2007)] based on weak formulation. A strong form
meshless solution procedure for plastic deformation problems is applied by [Guo,
Nakanishi and Yokouchi (2005)]. A comparison between weak and strong formu-
lation is also made by [Batra and Zhang (2007)] for elastic deformation problems.
In some publications, the use of strong form with Radial Basis Functions (RBF) is
shown as a successful method [Kee, Liu, Zhang and Lu, (2008)] as well as using
RBF with polynomial functions [Liu, Kee, Zhong, Li and Han, (2007)] in elastic
cases. One of the simplest meshless methods, able to solve the fluid flow prob-
lems and solid mechanics problems is Local Radial Basis Function Collocation
Method (LRBFCM), which is a special variant of MLPG. This method was first
developed in [Šarler and Vertnik (2006)] for diffusion problems and in [Tolstykh
and Shirobokov (2003)] for elasticity problems. The idea behind this method is to
approximate the function and its derivatives locally over a set of neighboring nodes
using RBFs [Buhmann (2004)] and to use collocation for determining the expan-
sion coefficients. The method has been recently applied to numerous scientific and
engineering problems, connected with fluid mechanics [Vertnik and Šarler (2009);
Kosec, Založnik, Šarler and Combeau (2011)], simulation of continuous casting
[Vertnik and Šarler (2014)] as well as solid mechanics [Hanoglu, Islam and Šar-
ler (2011)]. Thermoelasticity was by the LRBFCM recently coped in [Mavrič and
Šarler (2015)]. In this paper, a basic model for simulation of hot shape rolling is
performed by using LRBFCM.

2 Physical model

During the hot shape rolling, a billet goes through vertical and/or horizontal rolling
stands to get the desired final shape. A major difference from the flat rolling origi-
nates from the fact that the roll surface has specific geometry such as oval or round.
Hence, the simulation of hot shape rolling is a complex 3D problem. The problem
can be reduced to 2D by taking into account the following assumptions: homoge-
neous compression (no deformation in rolling direction) and no heat flow in rolling
direction. The problem is described in Cartesian coordinates with base vectors ix,
iy and iz with coordinates px, py, pz. The calculations can be respectively done
on 2D cross-sections which are parallel and aligned with the rolling direction, and
perpendicular with base vector iz. This solution concept is referred as the travelling
slice method. The slice model is in the direction of rolling of the Lagrangean type,
and perpendicular to rolling of the Eulerian type. This assumption is reasonable ac-
curate when the heat flow in rolling direction can be neglected and the homogenous
compression is assumed (planes remain planes).



450 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.5, pp.447-479, 2015

Figure 1: Scheme of slice model of hot shape rolling.

Figure 2: Symmetry of a rolled slice. Only the top right quarter is considered in the
calculations.
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2.1 Slice model assumptions

A scheme of a symmetrical quarter of the hot rolled billet is shown in Fig. 1 with s-
ketch of traveling slices. The temperature and the deformation field of a slice can be
computed from the known position and time dependent boundary conditions. The
homogenous compression assumption is based on planes remain planes criteria,
therefore no deformation occur in rolling direction. There are two possible ways
to analyze the simulation in terms of slices. A time incremental or position incre-
mental method can be selected. In this research, predefined position increments ∆z
are used between the slices. The slice time is on the other hand associated with the
position in the rolling direction pz. The pz coordinate can be considered parabolic,
while the px and py coordinates are elliptic. The slices form at the longitudinal
coordinate of rolling pz = p0, at time t = t0 and travel in the direction of the iz with
the rolling speed v(t) and slice area A(t) (see Fig. 1). For calculating the cooling
intensity of the slice as a function of time, a connection between the pz coordinate
of the rolling mill and the corresponding time t is needed

z(t) =
t∫
v(t) ·dt;v(t) = v(t) · iz, v(t) = A(t0)v(t0)/A(t), t j =

j

∑
i=1

∆z
v(ti)

. (1)

2.2 Thermal model

The main aim of the thermal model is to calculate the thermal field over a slice by
considering deformation which generates internal heat. The governing equation of
the thermal model on a 2D slice is

ρcp
∂T
∂ t

= ∇ · (k∇T )+ Q̇, (2)

with ρ, cp, T, t, k, Q̇ standing for density, specific heat, temperature, time, thermal
conductivity and internal heat generation rate per unit volume due to deformation,
respectively. The boundary temperatures of the travelling slice were obtained from
the Robin type boundary conditions over ΓR or Neumann type over ΓN in point p,
in 2D Cartesian coordinate system p = pxix+ pyiy, over the boundary Γ = ΓR∪ΓN .

−k
∂T (p, t)

∂nΓ

= h
[
T (p, t)−T re f

Γ
(p, t)

]
; p ∈ Γ

R, (3)

−k
∂T (p, t)

∂nΓ

= q; p ∈ Γ
N , (4)
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at slice boundaries Γ, with h standing for the heat transfer coefficient to the air
hair or to the roll hroll , T re f

Γ
standing for the ambient temperature T air

Γ
or the roll

temperature T roll
Γ

. On the two symmetry axis q is set to 0, as shown in Fig. 2. The
heat source due to deformation is calculated as

Q̇ = η
∂

∂ t

∫
ε

σσσ ·dεεε, (5)

where Q̇ is the heat generation rate per unit volume due to deformation, σ , ε are the
stress and strain vectors which are explained later in the mechanical model, and η

is the Taylor-Quinney parameter which is the ratio of work done turning into heat.

2.3 Mechanical model

The main aim of the mechanical model is to calculate the displacement field of the
slice due to deformation by the roll, in order to get the new shape of the slice. The
governing equation of the mechanical model on a 2D slice is

LT
σσσ +++bbb = 0, (6)

where L is the derivative operator matrix with components L11 = L32 = ∂
/

∂ px,
L22 = L31 = ∂

/
∂ py and L12 = L21 = 0, σσσ = [σxx σyy σxy]

T is the vector of stresses,
and b = [bx by]

T is the body force vector, considered b = 0. Two dimensional plane
strain model is assumed. The material is in the present basic rolling model assumed
to be elastic, obeying plane strain assumption

σσσ = Cεεε, (7)

where C is the stiffness matrix defined as

C(T ) =
E (T )

(1+ν (T ))(1−2ν (T ))

 1−ν (T ) ν 0
ν 1−ν (T ) 0
0 0 1−2ν(T )

2

 (8)

where E (T ) and ν (T ) are the temperature depended Young’s modulus and Pois-
son’s ratio respectively. The strain vector εεε = [εxx εyy εxy]

T can be written in terms
of displacement vector as

εεε= Lu. (9)

Therefore, the strong formulation of deformation problem gives two individual bal-
ance equations in each principle direction on a 2D slice in terms of displacement
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u = [ux,uy]
T which are

C11
∂ 2ux

∂ p2
x
+C12

∂ 2uy

∂ px∂ py
+C33

(
∂ 2ux

∂ p2
y
+

∂ 2uy

∂ px∂ py

)
+bx = 0, (10)

C21
∂ 2ux

∂ px∂ py
+C22

∂ 2uy

∂ p2
x
+C33

(
∂ 2ux

∂ px∂ py
+

∂ 2uy

∂ p2
x

)
+by = 0. (11)

The boundary is divided into natural Γu and essential Γτ part Γ = Γu ∪Γτ . The
essential boundary conditions are considered between the slice and the roll and
natural boundary condition are assumed at the boundary parts with no contact, as
well as along the symmetry lines. The natural boundary conditions are defined in
terms of displacement as

nx

(
C11

∂ux (p)
∂ px

+C12
∂uy (p)

∂ py

)
+ny

(
C33

(
∂ux (p)

∂ py
+

∂uy (p)
∂ px

))
= τ̄x;p ∈ Γ

τ ,

(12)

ny

(
C21

∂ux (p)
∂ px

+C22
∂uy (p)

∂ py

)
+nx

(
C33

(
∂ux (p)

∂ py
+

∂uy (p)
∂ px

))
= τ̄y;p ∈ Γ

τ ,

(13)

where in ni is component of unit normal and τ̄i is the prescribed shear stress compo-
nent equal to 0 in case of no contact. The essential boundary condition is described
as

ui = ūi; i = x,y ; p ∈ Γ
u, (14)

Where ui is the displacement and ūi is the prescribed displacement due to sticking
boundary conditions with the roll. Corresponding boundary conditions for thermal
and mechanical models, over a slice in contact with the roll, are shown in Fig. 3.
In order to be able to use the elastic model in rolling, an assumption is additionally
made, which considers no elastic recovery (quasi-elastic material) after exit of each
rolling stand.

3 Solution procedure

The coupled thermo-mechanical simulation is structured in the following way. First,
collocation nodes are generated on the un-deformed slice with known initial tem-
perature field and velocity. Boundary conditions are defined for the next slice re-
garding the roll contact and then, mechanical model is run for the displacement,
strain and stress values. Afterwards, the thermal model is run for the same slice
and a new temperature field is obtained. This process is repeated till the end of the
rolling stand. Details of the solution process can be seen in Fig. 4.
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Figure 3: Scheme of boundary conditions. Left for the thermal model, right for the
mechanical model when there is a contact with a roll.

3.1 Local radial basis function collocation method

LRBFCM is a very straightforward approach to solve partial differential equations.
In order to get the results for a field ϕ , it needs to be approximated with interpola-
tion function ψn (p) and coefficients αn

ϕ (p) =
Nω+NP

∑
n=1

ψn (p)αn, (15)

where the interpolation function is defined by scaled multiquadrics radial basis
functions inside seven nodded influence domains (Nω = 7), and first order poly-
nomials (NP = 3).

ψn (p) =
√
(px− pxn)

2 /x2
max +(py− pyn)

2 /y2
max + c2,

ψn+1 (p) = 1, ψn+2 (p) = px− xmea, ψn+2 (p) = py− ymea,
(16)

where xmax, ymax, xmea, ymea represent maximum distance between the seven n-
odes in ix and iy directions, and mean position of the seven nodes in ixand iy direc-
tions, respectively. c is set to 32. The calculation of the coefficients αn is elaborated
in [Šarler (2005)]. The derivatives of the functions, needed in the solution, are cal-
culated from the derivatives of the radial basis functions.

∂

∂ pς

ϕ (p) =
Nω+Np

∑
n=1

∂

∂ pς

ψn (p)αn,

∂ 2

∂ pς ∂ pξ

ϕ (p) =
Nω+Np

∑
n=1

∂ 2

∂ pς ∂ pξ

ψn (p)αn; ς ,ξ = x,y,

(17)
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Figure 4: Flowchart of the thermo-mechanical simulation.

3.2 Solution of the thermal model

The discretization of the thermal model is performed in terms of temperature T as
shown below.

T
(
pk(l,m)

)
=

Nω+Np

∑
n=1

lψn(pk(l,m)) lαT n, (18)

where k (l,m) is a function returning the global node index taking influence domain
index l and node index in an influence domain m. The thermal field is calculated
whether there is a contact with the roll or not. We employ fully explicit (backward
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Euler) time discretization of temperature.

Ti = Ti0 +
∆t

ρcp

(
∇k0 ·∇T + k∇

2T
)
+

Qi0

ρcp
. (19)

The discretized governing equation of the thermal model becomes

T
(
pk(l,m)

)
=T0

(
pk(l,m)

)
+

∆t
ρcp



[
Nω+Np

∑
m=1

(
∂

∂x lψm(pk(l,m))lαkm
∂

∂x lψm(pk(l,m))lαT m

)]
+[

Nω+Np

∑
m=1

(
∂

∂y lψm(pk(l,m)) lαkm
∂

∂y lψm(pk(l,m))lαT m

)]
+

k×

[
Nω+Np

∑
m=1

(
∂ 2

∂x2 lψm(pk(l,m))

+ ∂ 2

∂y2 lψm(pk(l,m))

)
lαT m

]


+

Q0

ρcp
.

(20)

Neumann and Robin boundary conditions are also discretized in terms of tempera-
ture.

− k
Nω+Np

∑
m=1

(
nxk(l,m)

∂

∂x lψm(pk(l,m))+nyk(l,m)
∂

∂y lψm(pk(l,m))

−hlψm(pk(l,m))

)
lαT m = h

(
T air

Γ

)
;

p ∈ Γ
R,

(21)

−k
Nω+Np

∑
m=1

(
nxk(l,m)

∂

∂x lψm(pk(l,m))+nyk(l,m)
∂

∂y lψm(pk(l,m))

)
lαT m = q; p ∈ Γ

N .

(22)

The solution of the thermal model requires inversion of a local interpolation matrix
Ψ of the size Nω +NP for each of the influence domain l which contains interpola-
tion functions ψn (p), therefore, no global matrix is formed.

3.3 Solution of the mechanical model

The mechanical model is solved by expressing the displacements by radial basis
functions

ux
(
pk(l,m)

)
=

Nω+Np

∑
n=1

lψn(pk(l,m)) lαxn, uy
(
pk(l,m)

)
=

Nω+Np

∑
n=1

lψn(pk(l,m)) lαyn. (23)
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Therefore the governing equation is discretized as

Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uxk(l,r)

[
C11

∂ 2
lψn
(
pk(l,m)

)
∂ p2

x
+C33

∂ 2
lψn
(
pk(l,m)

)
∂ p2

y

]

+
Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uyk(l,r)

[
(C12 +C33)

∂ 2
lψn
(
pk(l,m)

)
∂ py∂ px

]
+bx = 0,

(24)

Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uxk(l,r)

[
(C21 +C33)

∂ 2
lψn
(
pk(l,m)

)
∂ py∂ px

]

+
Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uyk(l,r)

[
C22

∂ 2
lψn
(
pk(l,m)

)
∂ p2

y
+C33

∂ 2
lψn
(
pk(l,m)

)
∂ p2

x

]
+by = 0.

(25)

Traction boundary conditions are also discretized in terms of displacement as

Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uxk(l,r)

(
nxC11

∂ lψn
(
pk(l,m)

)
∂ px

+nyC33
∂ lψn

(
pk(l,m)

)
∂ py

)

+
Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uyk(l,r)

(
nxC12

∂ lψn
(
pk(l,m)

)
∂ py

+nyC33
∂ lψn

(
pk(l,m)

)
∂ px

)
= τ̄x,

(26)

Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uxk(l,r)

(
nxC33

∂lψn
(
pk(l,m)

)
∂ py

+nyC21
∂ lψn

(
pk(l,m)

)
∂ px

)

+
Nω+Np

∑
n=1

Nω

∑
r=1

lΨ
−1
r uyk(l,r)

(
nxC33

∂ lψn
(
pk(l,m)

)
∂ px

+nyC22
∂ lψn

(
pk(l,m)

)
∂ py

)
= τ̄y.

(27)

A set of global system of equations, composed from Eq. 23, Eq. 24, Eq. 25 and Eq.
26, can be written in a matrix form AU = B where A is a global solution (sparse)
matrix, U is a column vector of displacements and B is the adjacent vector. Hence,
the displacements can be solved from these equations. The size of the solution
matrix is 2 times the total number of collocation nodes.

3.4 Elliptic node generation

Large deformation problems such as hot shape rolling might create numerical in-
stabilities during the solution procedure. The instabilities might be caused from
severe collocation node displacements during the simulation. In order to overcome
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Figure 5: An example of regeneration of nodes with Elliptic Node Generation (EN-
G). Picture on the left is the deformation result after an oval rolling when uniform
node distribution applied to a rectangle initially and picture on right is the same
deformed slice when nodes are redistributed with ENG.

this issue, repositioning of the nodes can be done in between certain deformation
steps.

The nodes are newly generated on the new, deformed shape of the slice, based
on elliptic node generation [Thompson, Soni, Weatherill (1999)]. The previously
calculated values are interpolated to the new position of the nodes by the simple
Shepards’s interpolation method [Shepard (1968)]. The calculated values of the old
slice serve as initial values for the next slice. A demonstration of ENG is shown
in Fig. 4. In the calculations, Gauss-Seidel iteration is used and can be written for
a global node ϑ (r,s) with latitudinal node order r and longitudinal node order s
starting from the origin of the coordinate system.

pxϑ(r,s) =
1

2(g11 +g22)


g22
(

pxϑ(r+1,s)+ pxϑ(r−1,s)
)

+g12
2

(
−pxϑ(r+1,s+1)+ pxϑ(r+1,s−1)
−pxϑ(r−1,s−1)+ pxϑ(r−1,s+1)

)
+g11

(
pxϑ(r,s+1)+ pxϑ(r,s−1)

)
 ;

r = 2,3, ..,rmax−1;s = 2,3, ..,smax−1,

(28)

pyϑ(r,s) =
1

2(g11 +g22)


g22
(

pyϑ(r+1,s)+ pyϑ(r−1,s)
)

+g12
2

(
−pyϑ(r+1,s+1)+ pyϑ(r+1,s−1)
−pyϑ(r−1,s−1)+ pyϑ(r−1,s+1)

)
+g11

(
pyϑ(r,s+1)+ pyϑ(r,s−1)

)


r = 2,3, ..,rmax−1;s = 2,3, ..,smax−1,

(29)
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where the parameters g11,g12 and g22 are defined as

g11 =

(
pxϑ(r+1,s)− pxϑ(r−1,s)

)2
+
(

pyϑ(r+1,s)− pyϑ(r−1,s)
)2

4
, (30)

g12 =

[ (
pxϑ(r+1,s)− pxϑ(r−1,s)

)(
pxϑ(r,s+1)− pxϑ(r,s−1)

)
+
(

pyϑ(r+1,s)− pyϑ(r−1,s)
)(

pyϑ(r,s+1)− pyϑ(r,s−1)
) ]

4
, (31)

g22 =

(
pxϑ(r,s+1)− pxϑ(r−1,s−1)

)
+
(

pyϑ(r,s+1)− pyϑ(r,s−1)
)

4
. (32)

Shepard’s interpolation can be written for a field f (p)

f (p) =

Nω

∑
i=1

w(p,pi) f (pi)

Nω

∑
i=1

wi (p,pi)

; wi (p,pi) =
1

Di (p,pi)
λ
, (33)

where D is the Euclidean distance and λ is in the present work chosen as 2.

3.5 Groove geometry

A groove is a particular 3D shape which can have oval, diamond, box, round and
many other types of shapes. A cross section of the groove has been calculated for
each position of the slice towards the rolling direction. Thus, all the geometrical
parameters are known for each groove such as seen on Figure 6.

Figure 6: Horizontal oval groove dimensions. GH is the groove height, GR is the
groove radius, GW is the groove width, RG is the roll gap and RR is the roll radius.
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4 Numerical results

The LRBFCM is first tested for bending of a cantilever beam and compared with
the analytical solution. Afterwards, a prescribed pressure is applied on a square
material for compression. Thermal part of the numerical implementations is tested
on convective cooling example. The last two examples are compared with FEM,
calculated by DEFORM [DEFORM (2009)] code. Later, a complete rolling simu-
lation is done based on a rolling schedule given in Tab. 2 with given parameters in
Tab. 1.

4.1 Bending of a cantilever beam

A deformation example, widely used for verification, is bending of a cantilever
beam. Length of the beam L is 48 m and height H is 12 m. The traction applied at
the end P = 30Pa, Young’s modulus of the beam E = 1000Pa and Poisson’s ratio
ν = 0.3. Boundary conditions on each side are explained below and shown in Fig.
6.

τ̄x = 0 Pa, τ̄y = 0 Pa p ∈ Γ
T ,

τ̄x = 0 Pa, τ̄y = P p ∈ Γ
R,

τ̄x = 0 Pa, τ̄y = 0 Pa p ∈ Γ
B,

ūx = ux , ūy = uy p ∈ Γ
L.

The boundary conditions on the left side are taken from the analytical solution [Liu
(2003)].

Figure 7: Scheme of bending of a cantilever beam problem.

The results calculated by LRBFCM are shown in Fig. 8 and compared with analyt-
ical solution as in [Liu (2003)]. Root mean square error (RMSE) of displacement
values are calculated against the increasing number of the collocation nodes in Fig.
9.
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Figure 8: 572 collocation nodes used in calculations (round points) by LRBFCM
compared with analytical solution (squares) at the boundary points.

Figure 9: RMSE of displacements versus the number of the collocation nodes.
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The shear stress at the end of the beam (x = L), can be obtained from the calculated
displacements with LRBFCM and compared with analytical solution as in Figure
10.

Figure 10: Shear stress at the end of the cantilever beam when x = L compared with
the analytical solution.

4.2 Compression test compared with FEM

A 2 m × 2 m shaped material with Young’s modulus E = 1 Pa and Poisson ratio
ν = 0.3 is chosen for the present example. Centre of the coordinate system is in
the middle of the bottom line of the object. At the top, the prescribed pressure is
applied towards the y direction, however the displacement in x direction is always
fixed to 0. A definition of the problem is given in Fig. 11. The results in this paper
are compared with FEM [DEFORM (2009)] code.

ūx = 0 m, τ̄y =−0.5 Pa p ∈ Γ
T ,

τ̄x = 0 Pa, τ̄y = 0 Pa p ∈ Γ
R,

ūx = 0 m, ūy = 0 m
τ̄x = 0 Pa, ūy = 0 m

{
p ∈ ΓB∧p ∈ (0,0)
p ∈ ΓB∧p /∈ (0,0)

,

τ̄x = 0 Pa, τ̄y = 0 Pa p ∈ Γ
L.

The deformation results calculated by LRBFCM and FEM are shown in Fig. 12
and Fig. 13 in terms of displacement vectors and displacement fields.

A further comparison of calculated strain components are made in Fig. 14, Fig. 15
and Fig. 16 below and a very good agreement has been achieved.
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Figure 11: Scheme of the geometry and boundary conditions for compression-
tension examples.

Figure 12: Displacement vectors calculated by LRBFCM (on top) with 441 collo-
cation nodes and FEM (at the bottom) with 196 quadrilateral finite elements.



464 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.5, pp.447-479, 2015

Figure 13: Comparison of displacement fields with LRBFCM (on top) and FEM
(at the bottom). Lines represent A = 0.154 m, B = 0.308 m, C = 0.462 m, D = 0.617
m and E = 0.771 m.

Figure 14: Comparison of εxx fields with LRBFCM (on top) and FEM (at the bot-
tom). Lines represent A = 0.0648, B = 0.102, C = 0.139 and D = 0.176.
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Figure 15: Comparison of εyy fields with LRBFCM (on top) and FEM (at the bot-
tom). Lines represent A = -0.459, B = -0.436, C = -0.412 and D = -0.388.

Figure 16: Comparison of εxy fields with LRBFCM (on top) and FEM (at the bot-
tom). Lines represent A = -0.152, B = -0.0914, C = -0.0305, D = 0.0305, E =
0.0914 and F = 0.152.
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4.3 Convective cooling compared with FEM

A square domain with 50 mm side is used for testing. The density is ρ = 7450
kg/m3, specific heat is cp = 630 J/kgK, thermal conductivity is k = 29 W/mK.
Uniformly distributed 676 discretization points are used across the domain. 1076
elements are used in reference FEM. The time step in LRBFCM is set to 0.1 s and
for FEM 1 s is used. The scheme of the problem is given in Figure 17.

Left and bottom boundaries are of the Neumann type where the prescribed heat flux
is 0 W/m2. For the top and right boundaries Robin type of boundary condition is
applied.

T N
Γ = nx

∂T
∂ px

= 0 W
/

m2K p ∈ Γ
L,

T R
Γ = nx

∂T
∂ px

=−
(
h1
/

k
)
(T −Tre f 1) p ∈ Γ

R,

T R
Γ = ny

∂T
∂ py

=−
(
h2
/

k
)
(T −Tre f 2) p ∈ Γ

T ,

T N
Γ = ny

∂T
∂ py

= 0 W
/

m2K p ∈ Γ
B.

The initial temperature is set to 1000 ˚C, h1 = 20 W/m2K, h2 = 5000 W/m2K,
Tre f 1 = 25 ˚C, Tre f 2 = 500 ˚C and Q̇ = 0 W/m3. The heat transfer coefficient on the
top side is chosen in such a way to be consistent with the contact with the roll and
the heat transfer coefficient of the right side imitates the heat flow to the air.

The simulation result at 10 s and 60 s are compared with FEM in Fig. 18 and Fig.
19 respectively.

As expected, excellent agreement has been achieved between LRBFCM and FEM
for the thermal model.

4.4 Solution of hot shape rolling by LRBFCM

A complete rolling schedule is put on test and solution is obtained by LRBFCM.
The process parameters are given in Tab. 1. The slice positions towards the rolling
direction have predefined distances in between such as 5 or 10 mm. The successive
groove lines for each slice positions under each groove are drawn as well as the
displacement vectors in figures Fig. 20, Fig. 21, Fig. 22, Fig. 23 and Fig. 24.
Initial cross section of the bloom is 80 mm× 95 mm but due to symmetry, only the
top right quarter is considered. The rolling simulation is carried out over 13 m long
rolling schedule considering 1455 discrete slice positions.
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Figure 17: Scheme of the boundary conditions of the thermal test case.

Figure 18: Thermal test case. Left: LRBFCM, Right: FEM at time 10 s. All of the
sides have the length of 50 mm. Lines represent B = 709 ˚C, C = 745 ˚C, D = 782
˚C, E = 818 ˚C, F = 854 ˚C, G = 891 ˚C, H = 927 ˚C and I = 964 ˚C.
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Figure 19: Thermal test case. Left: LRBFCM, Right: FEM at time 60 s. All of
the sides have the length of 50 mm. The contour lines represents B = 620˚C, C =
662˚C, D = 703˚C, E = 745˚C, F = 787˚C, G = 829˚C, H = 871˚C and I = 913˚C.

Table 1: Thermal and mechanical parameters used in calculations.
Heat transfer coefficient to air hair 20 W

/
m2K

Heat transfer coefficient to roll hroll 10000 W
/

m2K
Thermal conductivity of steel k 29 W

/
m2K

Specific heat of steel cp 630 J
/

kgK
Initial rolling temperature Tf ur 1100 ˚C

Initial rolling speed ventry 0.76 m/s
Ambient temperature Tre f 25 ˚C

Roll temperature Troll 500 ˚C
Taylor-Quinney parameter η 0.0001 -

Time step dt 10−4 s
Young’s modulus E(1250 0C)−E(50 0C) 85.229 – 209.82 GPa

Poisson’s ratio ν
(
1250 0C

)
−ν

(
50 0C

)
0.36203 – 0.28799 -
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Table 2: Rolling schedule used in the simulation.

Rolling
Stand

Groove Type GR
(mm)

RR
(mm)

RG
(mm)

GH
(mm)

GW
(mm)

pz

(mm)
1 OVAL (H) 85 450 17 26 122.4 0
2 OVAL (H) 85 450 5 26 122.4 3000
3 ROUND(V) 40 450 14 33 78.5 5600
4 OVAL (H) 55 450 2.6 25 92.2 9200
5 F.ROUND(V) 30.4 450 4 28.4 62 12200

Table 3: Elastic material properties for 16MnCrS5 steel for corresponding temper-
ature values used in hot shape rolling simulation.

T (˚C) E (Gpa) ν T (˚C) E (Gpa) ν

1250 85.22943 0.36203 600 160.3023 0.30777
1200 90.32191 0.35919 550 166.7976 0.30602
1150 95.38027 0.35634 500 172.9635 0.30427
1100 99.40249 0.35407 450 178.8045 0.30248
1050 104.3998 0.35122 400 184.3409 0.30058
1000 109.3633 0.34837 350 189.4259 0.29870
950 114.2931 0.34553 300 194.0477 0.29688
900 120.1642 0.34211 250 198.1534 0.29509
850 125.0506 0.33926 200 201.7815 0.29330
800 129.9864 0.33618 150 204.8988 0.29153
750 134.9266 0.33270 100 207.5477 0.28975
700 146.4786 0.31128 50 209.8250 0.28799
650 153.5124 0.30952 - - -
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The geometrical details of the rolling schedule are given in Tab. 2. H and V stand
for horizontal and vertical rolling stands in which the top and bottom rolls in a
rolling stand are aligned horizontally or vertically.

The coupling of mechanical and thermal models is achieved through the tempera-
ture depended material properties, as given in Tab. 3, which are used in the solution
procedure of the mechanical model.

Figure 20: Displacement vectors at the exit of the first rolling stand. 26 groove
lines represent necessary deformation steps as a consequence of the process with
120 collocation nodes.

In the rolling simulation, except for the displacment vectors, initially 480 colloca-
tion nodes are uniformly distributed, after the exit from the first rolling stand ENG
is applied and total number of collocation nodes becomes 340 and it is carried out
with the same number untill the end of the simulation. The displacment fileds cal-
culated by LRBFCM after exit of each rolling stand can be seen in Fig. 25.

The temperature field calculated by LRBFCM at the exit of each rolling stand are
shown in Fig 26, Fig. 27 and Fig. 28 below. As expected, heat loss is proportional
to the roll contact area and duration.

Sensitivity studies of the thermal model during the rolling simulation based on
increased roll temperature and increased heat transfer coefficient to the roll can
be seen in Fig. 29. The corresponding velocities of the slices towards the rolling
direction at nominal conditions are shown in Fig. 30 for each slice position.
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Figure 21: Displacement vectors at the exit of the second rolling stand. 16 groove
lines represent necessary deformation steps as a consequence of the process with
112 collocation nodes.

Figure 22: Displacement vectors at the exit of the third rolling stand. 25 groove
lines represent necessary deformation steps as a consequence of the process with
112 collocation nodes.
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Figure 23: Displacement vectors at the exit of the fourth rolling stand. 17 groove
lines represent necessary deformation steps as a consequence of the process with
112 collocation nodes.

Figure 24: Displacement vectors at the exit of the fifth rolling stand. 23 groove
lines represent necessary deformation steps as a consequence of the process with
112 collocation nodes.
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Figure 25: Contour graphs of displacement fields at the exit of each rolling stand
starting from the initial shape (top-left) untill the 5th rolling stand (bottom-right).
The values are in mm.
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Figure 26: Temperature field at the exit of the first rolling stand (on left) and the
lines represent A = 1060.04 ˚C, B = 1068.03 ˚C, C = 1076.02 ˚C, D = 1084.02 ˚C,
E = 1092.01 ˚C and F = 1100.00 ˚C. Temperature field at the exit of the second
rolling stand (on right) are represented by values; A = 1057.06 ˚C, B = 1066.04 ˚C,
C = 1074.53 ˚C, D = 1083.02 ˚C and E = 1091.51 ˚C.

Figure 27: Temperature field at the exit of the third rolling stand (on left) and the
lines represent A = 1060.77 ˚C, B = 1067.31 ˚C, C = 1073.84 ˚C, D = 1080.38 ˚C,
E = 1086.91 ˚C, F = 1093.45 ˚C and G = 1999.99 ˚C. Temperature field at the exit
of the fourth rolling stand (on right) are represented by values; A = 1058.24 ˚C, B
= 1066.58 ˚C, C = 1074.91 ˚C, D = 1083.25 ˚C, E = 1091.58 ˚C and F = 1099.92
˚C.
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Figure 28: Temperature field at the exit of the fifth rolling stand. The lines represent
A = 1048.63 ˚C, B = 1055.02 ˚C, C = 1061.40 ˚C, D = 1067.78 ˚C, E = 1074.17 ˚C,
F = 1080.56 ˚C and G = 1086.94 ˚C and H = 1093.32 ˚C.

Figure 29: Average slice temperatures in ˚C versus the slice positions towards the
rolling direction. Different thermal conditions are used and results are compared
with nominal conditions.
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Figure 30: Velocity of slices versus the slice positions towards the rolling direction.
The dashed line represents the results when slice temperature is kept constant at 500
˚C.

5 Conclusions and future work

In this paper simulation of hot shape rolling is done by LRBFCM. This method is
previously tested for bending of a cantilever beam problem with analytical solu-
tion, compression and convective cooling test results are compared with FEM. In
the rolling simulation a coupled thermo-mechanical model is used for plane strain
slice model results. The temperature depended material properties are obtained for
16MnCrS5 steel. The simulation is carried out over 13 m long rolling mill which
includes 5 rolling stands. The results are calculated through 1455 slice positions
and in this paper results after each rolling stand are given in terms of displacement
and temperature fields. Two sensitivity studies are done to see the behavior of the
solution procedure based on average slice temperature and slice velocities. It is
shown that LRBFCM is a stable method to simulate a complete rolling schedule.

Different material types such as ideal plastic will be included in the simulation
in our future work. The non-linear behavior of the materiel models used in the
ideal plastic deformation requires additional effort to achieve stable solutions. This
complexity is expected to be solved by Newton-Raphson iteration method [Chen
and Han (1988)]. However, the solution time is also expected to increase since this



Local Radial Basis Function Collocation Method 477

process will be repeated in every deformation step through the simulation. New
rolling schedules with different parameters will be incorporated in future industrial
rolling analyses.
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