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The Study of Thermal Stresses of a Two Phase FGM
Hollow Sphere
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Abstract: This article focuses on the analytical solution for uniform heating of a
FGM hollow sphere made of two phase of different materials. It is assumed that the
volume fraction of one phase is a function f1 = (rn−an)/(bn−an) varied in the
radial direction. Based on the Voigt constant strain approximation, analytical solu-
tions of stresses, displacements and the effective coefficient of thermal expansion
are obtained. The effects of the volume fraction, Poisson’s ratio, Young’s moduli
and coefficients of thermal expansion on the solutions are studied. Two special
cases, constant elastic modulus and constant coefficient of thermal expansion, are
finally discussed.

Keywords: FGM hollow sphere, uniform heating, thermal stress, effective coef-
ficient of thermal expansion.

1 Introduction

Functionally graded materials (FGMs) are composite materials formed of two or
more constituent phases with a continuously variable composition. FGMs have
a lot of advantages that make them attractive in potential applications, including
a potential reduction of in-plane and transverse through-the-thickness stresses, an
improved residual stress distribution, enhanced thermal properties, higher fracture
toughness, and reduced stress intensity factors. To aid in the design of FGM, it
would be useful to have a clear understanding of the manner in which the property
gradients affect the induced thermal stresses.

Many researchers studied the thermal stresses in FGM structures by using numer-
ical methods. Fukui et al. (1993) presented a numerical solution for the problem
of uniform heating of a radially inhomogeneous thick-walled cylinder. Alavi et al.
(1993) and Kwon et al. (1994) investigated the mechanical behavior of a gradi-
ent sphere under inhomogeneous temperature distribution. Wang and Mai (2005)
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used the finite element method to analyze the transient heat conduction of one-
dimensional problems. By the MLPG method, Sladek et al. (2008a, b, c, 2009) dis-
cussed some thermoelastic problems of FGM structures, including thermal bending
and transient heat conduction. Dong L et al. (2012, 2013a, b) developed a useful
and reliable procedure of stochastic computation, which was combined with the
highly accurate and efficient Trefftz Computational Grains, for a direct numerical
simulation of heterogeneous materials with microscopic randomness. It can be used
for ground-breaking studies in micromechanical modeling of composite materials.

Analytical solutions of the thermal problems in FGM structures are presented in
many previous papers. Sugano (1990) gave the analytical solutions for the thermal
stresses in a hollow cylinder whose Young’s modulus and coefficient of thermal
expansion radially varied but with a constant Poisson ratio. Lutz and Zimmerman
(1996, 1999) presented the solution for the problem of uniform heating of a sphere
and a cylinder whose elastic modulus and coefficient of thermal expansion linearly
vary in the radial direction.

Using perturbation techniques, Obata and Noda (1994) studied the thermal stress-
es in a FGM hollow sphere and cylinder with uniform temperature. In terms
of the Green’s function approach, Kim and Noda (2002a, b) discussed the two-
dimensional unsteady thermoelastic problem of a FGM infinitely long hollow cylin-
der. With the assumption that the nonhomogeneous material properties vary in the
thickness direction, Jeon et al. (1997) solved the thermal stresses for a slab and a
semi-infinite body, while Nadeau and Ferrari (1999) presented a one-dimensional
thermal stress analysis of a transversely isotropic layer.

Assuming that the material properties are expressed as power functions of radius,
analytical solutions of the Navier equations are presented in the following papers.
Jabbari et al. (2002, 2003) derived analytical solutions for one-dimensional and two
dimensional steady-state thermoelastic problems of the functionally graded circular
hollow cylinder. Considering mutual effect of thermal and mechanical loads, Esla-
mi et al. (2005), Jabbari et al. (2008), Poultangaria et al. (2008), Sadeghian and
Toussi (2011) analytically solved the governing equation mechanical and thermal
stresses in the FGM structures respectively.

As discussed above, the thermal and mechanical properties of the structures are
assumed as special functions (such as power functions) of the radius or thickness
due to their mathematical limitations. This assumption makes it possible to obtain
the analytical solutions of the Navier equations. Actually, FGMs are composite
materials in which the concentrations of the various phases are controlled so as to
create gradients in macroscopic physical properties such as elastic moduli, thermal
conductivity and thermal expansivity. In other words, the properties gradients of
FGM only depend on the ways to change the composition, hence we can study
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the FGM structures by the volumetric ratio of constituents instead of assuming the
material properties functions.

In this paper, we study the problem of the uniform heating of a FGM hollow sphere
made of two phases of different materials, and both of whose volume fractions
vary radially. Based on the Voigt constant strain approximation, we present the
analytical solution for the stresses, displacements and the effective coefficient of
thermal expansion within the hollow sphere.

2 Theoretical model

2.1 Governing equations for radially symmetric deformations

Consider a thick hollow FGM sphere of inner radius a and outer radius b. The FGM
is a two-phase composite material. The two components, denoted by material A
and material B, whose volume fractions vary in the r-direction, thus the material
properties are functions of r. Let u be the radial displacement. It is assumed that
the volume fraction of material B is the function of r as

f1 = (rn−an)
/
(bn−an) (1)

For small deformation, the strain-displacement relations are

εrr = du
/

dr, εθθ = u/r (2)

With the Voigt constant strain approximation, we have

εkl = ε
0
kl = ε

1
kl (3)

The average stress is:

σkl = ∑ fiσ
i
kl = f0σ

0
kl + f1σ

1
kl (4)

Where i=0, 1 demotes material A and B, respectively; σ kl and εkl (k, l = r, θ )
are the average stress and strain tensors, respectively; σ i

kl and ε i
kl (i=0, 1) are the

average stress and strain tensors of the i-th material, respectively.

The thermoelastic stress-strain relations for an isotropic material are

σ
i
rr = (λi +2µi)εrr +2λiεθθ −3Kiαi(T −T0) (5a)

σ
i
θθ = λiεrr +2(µi +λi)εθθ −3Kiαi(T −T0) (5b)

where λ and µ are the Lamé parameters, respectively, α is the coefficient of thermal
expansion, K is the bulk modulus, T is the temperature and T0 is the reference
temperature at which the sphere is stress-free.
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The equilibrium equation is

r
dσrr

dr
+2(σrr−σθθ ) = 0 (6)

Combining Eqs. (2)-(5), the average stress-displacement relations are:

σrr =
1

∑
i=0

fi

[
(λi +2µi)

du
dr

+2λi
u
r
−κi∆T

]
(7a)

σθθ =
1

∑
i=0

fi

[
λi

du
dr

+2(µi +λi)
u
r
−κi∆T

]
(7b)

where κi = 3Kiαi = (3λi +2µi)αi,∆T = (T −T0).

Substituting Eqs.(7) and (1) into the stress equilibrium equation (6), we have the
following governing equation:

r
d2u
dr2 (Srn−1)+

du
dr

[S(n+2)rn−2]+
u
r

2
{

rnS
[
n(λ0−λ1)D−1−1

]
+1
}

− rnSD−1(κ0−κ1)

(
n∆T (r)+ r

dT
dr

)
+ r

dT
dr

SD−1 [
κ0−κ1

(
a
/

b
)n]

= 0
(8)

where

S =
(2µ0 +λ0)− (2µ1 +λ1)

(2µ0 +λ0)−
(
a
/

b
)n
(2µ1 +λ1)

D = [(2µ0 +λ0)− (2µ1 +λ1)]

Using the transformations u = ry(z) and z = Sr̄n, Eq. (8), a hypergeometric differ-
ential equation, reduces to

z(z−1)y′′(z)+ [(1+α +β )z−δ ]y′(z)+αβy(z)+PT
/

n2z = 0 (9)

where

δ=1+
3
n
, α =

1
2

(
δ −

√
δ 2−4

D+2(λ0−λ1)

nD

)
, β = δ −α

PT =−nz∆T (r)(κ0−κ1)D−1 + r
dT
dr

{
SD−1 [

κ0−κ1
(
a
/

b
)n]− zD−1(κ0−κ1)

}
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2.2 Thermal stresses of a FGM spherical shell

Now consider the thermal stresses in a hollow sphere that is uniformly heated. In
this case, dT

dr in PT of Eq. (9) vanishes and Eq. (9) becomes:

z(z−1)y′′(z)+ [(1+α +β )z−δ ]y′(z)+αβy(z) = n−1D−1
∆T (r)(κ0−κ1) (10)

The solution of Eq.(10) is

y(z) =C1F(α,β ,δ ,z)+C2z1−δ F(α +1−δ ,β +1−δ ,2−δ ,z)+
∆T (r)(κ0−κ1)

D+2(λ0−λ1)

(11)

where C1 and C2 are integral constants and F is the hypergeometric function defined
for

F(α,β ,δ ;z) =
∞

∑
m=0

(α)m(β )m

(δ )m

zm

m!
(12)

Here (q)m is the Pochhammer symbol, which is defined by

(q)m =

{
1 m = 0
q(q+1) · · · (q+m−1) m > 0

(13)

Recall the transformation u=ry(z), the radial displacement is finally given by

u(r) =C2rz1−δ F(α +1−δ ,β +1−δ ,2−δ ,z)

+C1rF(α,β ,δ ,z)+ r∆T (r)(κ0−κ1) [D+2(λ0−λ1)]
−1 (14)

Substituting Eq. (14) into Eqs. (2) and (7), the strains and stresses can be obtained.

The integral constants C1 and C2 can be determined by the boundary conditions.

2.3 Convergence of the series solution

It is obvious that the hypergeometric series converges for 0≤ z≤1, however, this is
not true for z <0 or z >1. To insure the convergence of the hypergeometric series F
in Eq. (11) on the interval a≤ r ≤ b, the following variable transformations can be
used to convert Eq.(10) into another hypergeometric differential equation of η(ξ )
with the independent variable ξ ∈ [0,1] as:

z < 0, ξ =
z

z−1
, y(z) = |z−1|−α

η(ξ ) (15a)

z > 1, ξ =
1
z
, y(z) = |z|−α

η(ξ ) (15b)
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3 Results and discussion

In the simulation, both the outer and the inner boundaries are stress-free. The non-
dimensional expressions for the radial coordinate, the stress and the radial displace-
ment are defined as r = r/b, σ i j = σi j/(3K0α0∆T ) and u = u/(bα0∆T ), respec-
tively. For simplicity, let α = α1/α0 and E = E1/E0. The ratio of the inner and the
outer radii is taken as a/b=0.5, throughout, which is reasonable for a thick-walled
shell.

3.1 Displacements

As shown in Eqs. (14), the stresses and the radial displacement depend on the
following factors: the ratio of the elastic moduli and the ratio of the thermal ex-
pansion coefficients of the two constituents E and α , the Poisson ratio υ0, υ1 and
the inhomogeneity parameter n which determines the contents of the compositions.
Hence, the effects of these variables on stresses and displacement are discussed in
the following, respectively.

In Figure 1, the radial displacement u is plotted as a function of radius r, with
discussing dependencies on α and E in Figure 1(a), n in Figure 1(b), and υ1 in
Figure 1(c).

If the sphere is homogeneous, the displacement is given by u(r) = α0r∆T , which
corresponds in Figure 1(a) to the case α =1, which indeed appears as a straight line
with a 1:l slope. When α>1, the local effective thermal expansion coefficient of
the composite increases with radius, and the radial normal strain εrr consequent-
ly increases with r, causing the u(r) curve to be concave upward. Conversely,
when α<1, εrr decreases with r, leading to a displacement curve that is concave
downward. The conclusion is the same as that of Melanie P. Lutz and Robert W.
Zimmerman (1996) for a FGM sphere. This effect is more obvious when E or υ1
increase. It is also strengthened by the decreasing n, which means the reduced vol-
ume fraction of material B. The radial displacement u is sensitive to all of these
variables mentioned above; therefore the effects of them are not negligible.

3.2 Thermal stresses

It is known that an unconstrained uniformly heated homogeneous hollow sphere
would incur no thermal stresses. Hence the stresses in this simulation are purely a
result of the inhomogeneous properties of the hollow sphere. The radial stress σ rr

is shown in Figure 2, and the tangential (hoop) stress σθθ is shown in Figure 3.

When α>1, the local effective thermal expansion coefficient increases with radius,
and so the outer edges of the sphere tend to expand more than the inner edges; this
causes the hollow sphere to be under tensile radial stress. Conversely, if α<1, the
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Figure 1(a): Evolution of u with different α and E (υ0=υ1=0.25, n=4)

Figure 1(b): Evolution of u with different α and n (υ0=υ1=0.25, E =4).
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Figure 1(c): Evolution of u with different α and υ1 (υ0=0.25, n=4, E =4)

outer edges of the sphere tend to expand less than the inner edges, the hollow sphere
is consequently under compression. This dependency of the radial stress on α gets
even bigger when E or υ1 rise. The radial stress σ rr is the largest in magnitude at
some intermediate radius, which increases with the argument n ascends.

The hoop stress is the largest in magnitude at one edge but is the opposite sign at
the other edge, changing signs at some intermediate radius. These results are in
qualitative agreement with the results found by Kolyano and Makhorkin (1976) for
a two-shell sphere, Obata and Noda (1994) for a hollow FGM sphere and Robert
W. Zimmerman and Melanie P. Lutz (1996) for a FGM sphere.

When α>1, the outer edges of the sphere tend to expand more than the inner edges;
this causes the inner part of the hollow sphere to be under tensile hoop stress, while
the outer edges are consequently under compression in the hoop, and vice versa.
The hoop stresses are monotonic functions of the radius. This effect of α is more
obvious with the decreasing of E .

The dependencies on n and υ1 are not small. They influence not only on the mag-
nitude but also the convexity of the hoop stress-r curves. However, it is difficult
to find a simple relationship between the hoop stresses and these arguments. It is
suggested that increasing n and decreasing υ1 lead to smaller hoop stresses in mag-
nitude at the inner edge and larger ones at the outer edge. Furthermore, when α>1,
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Figure 2(a): Evolution of σ rr with different α and E (υ0=υ1=0.25, n=4)

Figure 2(b): Evolution of σ rr with different α and n (υ0=υ1=0.25, E =4)
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Figure 2(c): Evolution of σ rr with different α and υ1 (υ0=0.25, n=4, E =4)

a more strong tendency to be concave downward of the curves is shown with the
decrease of n but increase υ1. However, it is reverse when α<1.

The deviatoric part of the stress tensor, which controls the onset of plastic defor-
mation, attains it largest magnitude at the inner or outer edge of the hollow sphere,
depending on the particular circumstances.

4 Effective coefficient of thermal expansion

It is known that if the temperature of an unconstrained homogeneous body V in-
creases ∆T , the total volume variation is 3α∆TV. Hence, the effective coefficient
of thermal expansion αe f f is

αe f f = ∆V
/
(3V ∆T ) (16)

The volume variation of the hollow sphere related to the displacement field is given
by

∆V = 4π
[
b2u(b)−a2u(a)

]
(17)

where u(r) is the radial displacement. Combining Eq. (16) and (17) leads to

αe f f =
[
u(b)− (a

/
b)2u(a)

]/{
∆T b

[
1− (a

/
b)3
]}

(18)
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Figure 3(a): Evolution of σθθ with different α and E (υ0=υ1=0.25, n=4)

Figure 3(b): Evolution of σθθ with different α and n (υ0=υ1=0.25, E =4)
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Figure 3(c): Evolution of σθθ with different α and υ1 (υ0=0.25, n=4, E =4)

The non-dimensional expressions for the the effective thermal expansion coefficient
is defined as αe f f = αe f f

/
α0 and shown in Figure 4 as a function of α .

As shown in Eq. (18) and Figure 4, αe f f depends on E, α , υ0, υ1 and n. The αe f f -
α curve is substantially a straight line through the point (1, 1). The slope of the
curve increases with the decrease of n, which means an increasing volume fraction
of material B. The increases of the relative value υ1to υ0 and E also lead to a larger
slope. In addition, the magnitudes of the Poisson ratio has only a small effect on
the effective thermal expansion coefficient if υ1=υ0.

5 Special cases of uniform moduli or thermal expansion coefficient

It is interesting to consider two special cases where either the elastic moduli or the
thermal expansion coefficient varies, but not both. In the case where α=1 through-
out the hollow sphere, manipulating Eqs.(8) to (14), we get the solution u=rα0∆T .
Combining Eq. (18), αe f f =α0 is found. Further, no thermal stress is induced,
regardless of the variation in the elastic moduli.

Now consider the case of uniform elastic modulus but varied coefficient of thermal
expansion. Then Eq. (8) can be written as:

r
d2u
dr2 +2

du
dr
−2

u
r
+

n(1+υ0)∆T (α0−α1)[
1− (a

/
b)n
]
(1−υ0)

rn = 0 (19)
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Figure 4(a): Evolution of αe f f with different values of E (υ0=υ1=0.25, n=4)

Figure 4(b): Evolution of αe f f with different values of n (υ0=υ1=0.25, E=4)
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Figure 4(c): Evolution of αe f f with different Poisson’s ratio (E=4, n=4)

The general solution of the equation is

u =C1r+C2r−2− (1+υ)(α0−α1)∆T
(n+3)(1−υ)

[
1− (a

/
b)n
]rn+1 (20)

Substituting Eq. (20) into Eq. (18) yields

αe f f = (1−h1)α0 +h1α1 (21)

h1 =
n(a
/

b)n+3− (n+3)(a
/

b)n +3
(n+3)

[
1− (a

/
b)3
][

1− (a
/

b)n
] (22)

This result is precisely equal to the volumetric average of the local thermal expan-
sion coefficient, since

〈α〉= 1
V

∫ b

a
4πr2 ( f0α0 + f1α1)dr = (1−h1)α0 +h1α1 (23)

It concurs with that found by Robert W. Zimmerman and Melanie P. Lutz for a
sphere (1996) and cylinder (1999) in which the thermal expansion coefficient varied
linearly with radius. It is also consistent with Levin’s theorem, in the case in which
the two components have identical elastic modules but different thermal expansion
coefficients.
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More generally, if K0 6= K1, Levin’s theorem (1967) predicts that the effective ther-
mal expansion coefficient is given by

αe f f = α0 +(α1−α0)(K−1
1 −K−1

0 )−1(K−1
∗ −K−1

0 ) (24)

Where K∗ is the effective bulk module of the composite material. For convenience,
take the volumetric mean as effective bulk module, thus we get

αe f f = [(1−h1)K0α0 +h1K1α1]
/
[(1−h1)K0 +h1K1] (25)

A comparison of the results obtained by present method and Levin’s theorem (Eq.
(25)) is shown in Figure 5. It shows that they are close to each other and Levin’s
theorem leads to a larger slope.

Figure 5: Comparison of αe f f obtained with present methods and Levin’s theorem
(K1/K0=10, n=4)

6 Summary and conclusions

Based on the Voigt constant strain approximation, an exact solution has been p-
resented for the problem of the uniform heating of a functionally gradient hollow
sphere made of two phase of different materials both of whose volume fractions
vary with the radius. We found analytical expressions for the stress and displace-
ment fields as well as for the effective thermal expansion coefficient. All of them
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depend on the following factors: the ratio of the elastic moduli and the ratio of the
thermal expansion coefficients of the two constituents E and α , the Poisson ratio
υ0, υ1 and the inhomogeneity parameter n which determines the contents of the
compositions.

If α>1, u(r) curve is concave upward, the radial stress is positive (tensile), the
hoop stress is positive at the inner edge and negative at the outer edge of the hollow
sphere, and vice versa. The effect is strengthened by the increase values of E, α

and υ1, but the decrease of n and υ0.

The effective thermal expansion coefficient is nearly equal to the weighted average
by product of volume fractions and bulk modulus of the local thermal expansion
coefficient. In the special case where the elastic modules are uniform, the effective
thermal expansion coefficient is equal to the volume average of the local thermal
expansion coefficient. It is consistent with Levin’s theorem (1967) and the results
presented by Robert W. Zimmerman and Melanie P. Lutz (1996, 1999).

Due to the linearity of the governing equations, this solution can be used to solve
the effective bulk modulus of a gradient hollow sphere. We have shown the thermal
stress of a functionally gradient hollow sphere uniform heated, that with ununiform
temperature field is an interesting open question.
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