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Low Thrust Minimum Time Orbit Transfer Nonlinear
Optimization Using Impulse Discretization via the

Modified Picard–Chebyshev Method
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Abstract: The Modified Picard-Chebyshev Method (MPCM) is implemented as
an orbit propagation solver for a numerical optimization method that determines
minimum time orbit transfer trajectory of a satellite using a series of multiple
impulses at intermediate waypoints. The waypoints correspond to instantaneous
impulses that are determined using a nonlinear constrained optimization routine,
SNOPT with numerical force models for both Two-Body and J2 perturbations. It is
found that using the MPCM increases run-time performance of the discretized low-
thrust optimization method when compared to other sequential numerical solvers,
such as Adams-Bashforth-Moulton and Gauss-Jackson 8th order methods.
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1 Introduction

Low thrust propulsion systems provide an efficient means of orbit transfer for both
interplanetary trajectories as well as Earth-centric trajectories where mission time is
not significantly important [Keaton (2002)]. Low thrust propulsion systems, how-
ever, operate continuously during the mission and hence depend on having an opti-
mal trajectory defined for the orbit transfer. The optimization of low thrust trajec-
tories using indirect methods encounter highly sensitive two-point boundary value
problems with unknown co-state boundary conditions. In the case of direct meth-
ods the control history is parameterized leading to a high-dimensional nonlinear
programming problem. This results in poor convergence results as the dimension-
ality of the parameter space grows larger. Thus both direct and indirect methods
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typically lead to challenging numerical difficulties. There have been a number of
different approaches proposed to solve the general optimization problem of low
constant thrust trajectories between orbits [Betts (2000); Kechichian (2007); Yang
(2009); Falck and Dankanich (2012); Graham and Rao (2015)]. These approaches
generally fall into either direct or indirect methods. The direct methods typical-
ly convert the low thrust trajectory into a parameter optimization problem which
can be solved using a nonlinear programming method. Indirect methods are de-
veloped around calculus of variations or the maximum principle [Bryson and Ho
(1975)]. Using an indirect method can be difficult as there are typically six (resp.
four) costate variables for three-dimensional (resp. two-dimensional) cases, which
must be determined and they are not only extremely sensitive but difficult to guess
for generic orbit transfer problems [Ulybyshev (2009)]. An extensive review of the
low thrust trajectory optimization based on direct, indirect and stochastic methods
and its application can be found in [Kim (2005)].
The continuous low thrust trajectory optimization problem can be discretized in-
to waypoints or nodes with the solution consisting of impulses computed at each
of the waypoints using an optimization routine over the entire trajectory. Such a
method is described as multi-impulse low thrust trajectory optimization. Similar
to the performance of most well behaved numerical methods, the discretized so-
lution approaches the continuous solution as the number of nodes are increased.
The method of using multiple impulses to approximate a continuous low thrust tra-
jectory has been addressed by several studies [Xiao-yong, Yi-jun, Hong-bo, and
Guo-jian (2013); Polsgrove, Kos, Hopkins, and Crane (2006)].
One of the requirements of the multi-impulse method of low thrust optimization is
a numerical solver to propagate the orbit between the waypoints since an analytical
solution may not exist for most transfer problems utilizing numerical force models.
The choice of this numerical solver plays a significant role in the run-time per-
formance of the multi-impulse method,especially when the number of waypoints
are increased to improve accuracy. This paper presents the implementation of the
Modified Picard–Chebyshev Method as the numerical solver for orbit propagation
within a multi-impulse method of low thrust optimization. The low thrust opti-
mization utilizes the solution from a direct or indirect optimization [Kechichian
(1997a)] method as an initial guess and discretizes this guess into evenly distribut-
ed waypoints. The method then applies a nonlinear optimization routine, the S-
parse Nonlinear OPTimizer (SNOPT)[Gill, Murray, and Saunders (2002)], to de-
termine the instantaneous change in velocity, ∆V , at each of these waypoints while
minimizing the total ∆V over the entire trajectory. It is important to emphasize
here that the novelty in the proposed method is the utilization of the Modified
Picard–Chebyshev Method [Bai (2010)] for both the boundary value and initial
value problem solutions required for the optimization. This implementation im-
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proves the run-time performance as compared to typical numerical solvers, such as
the Adams–Bashforth–Moulton (ODE113) [Bradley (2012)] and Gauss–Jackson
8th (GJ8) [Berry and Healy (2004)] methods.
The rest of the paper is organized as follows: Section 2 addresses some of the
fundamental concepts and background. Section 3 describes the multi-impulse low
thrust optimization method that utilizes the MPCM as a numerical solver for the
initial value and boundary value problems. Section 4 presents the results of uti-
lizing the method on two orbit transfer problems. The results are divided into two
parts. The multi-impulse method is compared to an indirect optimization method
proposed by [Kechichian (1997a)] and a numerical method based on Edelbaum’s
analytical circular transfer problem [Kechichian (1997b)] to show the fidelity of
the discretization strategy with the implementation of the Modified–Picard Cheby-
shev Method. Then, the run-time performance of the method with the Adams-
Bashforth-Moulton and Gauss–Jackson 8th order solvers is compared to that of the
implementation with the MPCM. Section 5 provides a discussion of the results and
the characteristics of the method and is followed by conclusions and future work.

2 Background

This section discusses some of the fundamental concepts that will be utilized in
developing and implementing the multi-impulse low thrust orbit transfer method.

2.1 Optimal Control Problem

Consider the nonlinear system

ẋ = f (x,u, t), t ∈ [t0, t f ]. (1)

The optimal control problem is defined as the process of determining the control
input u∗ such that an associated cost function

J = φ(x(t f ), t f )+
∫ t f

t0
L(x,u, t)dt (2)

is minimized subject to the constraints

Ψ(x(t0),x(t f ), t0, t f ) = 0. (3)

In the case of spacecraft trajectory control, these constraints are generally related to
the maximum thrust available or the total time of the mission. This optimal control
problem can be solved by both direct and indirect methods. In direct methods, the
optimal control problem is converted to a nonlinear programming problem which
can be solved using a variety of methods. While the direct methods tend to be
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highly robust, the solutions obtained are generally not very accurate [Von Stryk
and Bulirsch (1992)].
Indirect methods are based on calculus of variations and Pontryagin’s minimum
principle [Lewis, Vrabie, and Syrmos (2012); Geering (2007)]. These methods
modify the cost function to include the equations of motion and state and control
variable constraints. The Hamiltonian function, H, that results from applying the
calculus of variations to the augmented cost function under the constraints can be
written as

H = L(x,u, t)+λ
T f (x,u, t), (4)

where λ is a vector of costates associated with the equation of motion constraints.
The optimality conditions are obtained by computing the first variation of J result-
ing in

ẋ =
∂H
∂λ

= f (x,u, t), (5)

λ̇ =−∂H
∂x

=−∂L(x,u, t)
∂x

−λ
T ∂ f (x,u, t)

∂x
. (6)

The above equations represent a Boundary Value Problem (BVP) and while the
boundary conditions of the state variables are given, the boundary conditions for the
costates are normally unknown. Optimization does not require minimization of the
costates λ , but their determination is required for satisfying optimality constraints
through Eq. 4. There are several methods that have been discussed for solving such
BVPs, for example, the shooting method; but since the initial values of the costates
are unknown, these methods become extremely cumbersome to implement.

2.2 Orbit Equations of Motion

Equinoctial orbit elements are frequently used in solving low thrust optimization
problems as they help in avoiding singularities involved with using the classical
Keplerian orbital elements [Chobotov (1996); Broucke and Cefola (1972)]. The
mapping to convert classical elements to equinoctial elements is


h
k
p
q
λ

=


esin(ω +Ω)
ecos(ω +Ω)

tan(1
2 i)sinΩ

tan(1
2 i)cosΩ

M+ω +Ω

,


e
i
Ω

ω

M

=


√

h2 + k2

2tan−1
√

p2 +q2

tan−1(p/q)
tan−1(h/k)−Ω

λ − tan−1(h/k)

. (7)



Min Time Orbit Transfer Using Impulse Discretization via MPCM 5

The two-body equations of motion for low thrust based on the equinoctial orbital
elements can then be written as

ȧ =

(
∂a
∂ ṙ

)T

· ûāt , ḣ =

(
∂h
∂ ṙ

)T

· ûāt , k̇ =
(

∂k
∂ ṙ

)T

· ûāt , (8)

ṗ =

(
∂ p
∂ ṙ

)T

· ûāt , q̇ =

(
∂q
∂ ṙ

)T

· ûāt , λ̇ = n+
(

∂λ

∂ ṙ

)T

· ûāt , (9)

where

∂a
∂ ṙ

=
2

n2a
(Ẋ1 f̂ + Ẏ1ĝ),

∂h
∂ ṙ

=

√
1−h2− k2

na2

[(
∂X1

∂k
− hβ

n
Ẋ1

)
f̂+
(

∂Y1

∂k
− hβ

n
Ẏ1

)
ĝ
]
+

k(qY1− pX1)

na2
√

1−h2− k2
ŵ,

∂k
∂ ṙ

=−
√

1−h2− k2

na2

[(
∂X1

∂h
+ kβ

Ẋ1

n

)
f̂+
(

∂Y1

∂h
+kβ

Ẏ1

n

)
ĝ
]
− h(qY1− pX1)

na2
√

1−h2− k2
ŵ,

∂ p
∂ ṙ

=
(1+ p2 +q2)Y1

2na2
√

1−h2− k2
ŵ,

∂q
∂ ṙ

=
(1+ p2 +q2)X1

2na2
√

1−h2− k2
ŵ,

∂λ

∂ ṙ
=

1
na2

[
−2X1 +3Ẋ1t +

√
1−h2− k2

(
hβ

∂X1

∂h
+ kβ

∂X1

∂k

)]
f̂

+
1

na2

[
−2Y1 +3Ẏ1t +

√
1−h2− k2

(
hβ

∂Y1

∂h
+ kβ

∂Y1

∂k

)]
ĝ

+
qY1− pX1

na2
√

1−h2− k2
ŵ,

āt is the magnitude of the acceleration vector due to a constant thrust and û corre-
sponds the direction (unit vector) of the applied constant thrust. The set of equinoc-
tial orbital elements (denoted by z) is provided in matrix form:

M(z,F) =
[

∂a
∂ ṙ

∂h
∂ ṙ

∂k
∂ ṙ

∂ p
∂ ṙ

∂q
∂ ṙ

∂λ

∂ ṙ

]T
(10)

The Euler–Lagrange equations can then be determined through numerical integra-
tion of

λ̇z =−λ
T
z

∂M
∂ z

āt û−λλ

∂n
∂ z

. (11)

Note that the partial matricies, ∂M/∂ z, are provided in the appendicies of [Kechichi-
an (1997a)].
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2.3 Low Thrust Optimal Orbit Transfer Problem

The low thrust orbit transfer method can be described as a mission that continuous-
ly utilizes low thrust to transfer a satellite from an initial position to a final position.
The unique nature of such a mission as compared to an impulse transfer is that the
orbit (orbital elements) continuously changes during the mission. The constant low
thrust optimal control problem involves the determination of the unit vector û along
the spacecraft trajectory that minimizes either transfer time or total ∆V with the as-
sumption that the thrust āt is held constant over the transfer.
This section reviews two methods for constant low thrust transfer optimization
based on Euler–Lagrange multipliers and Edelbaum’s method. These two meth-
ods are also used as a benchmark for the proposed multi-impulse method.

2.3.1 Minimum Time Continuous Thrust Using Euler–Lagrange Multipliers

Under certain assumptions, there exists a function of adjoint variables λ (t) and
a vector function v(t) in which the first order necessary conditions for optimality
are valid; see [Von Stryk and Bulirsch (1992)]. This is known as the Hamiltonian
function of the multi-point boundary value problem defined by Eqs. 12–14 and is
shown generically as

H = λ (t)T f +ν(t)T g. (12)

where f and g are some force functions which describe a dynamic system of non-
linear ODEs (e.g. f (x(t),u(t), t), and g(x(t),u(t), t)). The corresponding coupled
differential equations for t0 ≤ t ≤ t f are defined as

ẋ =
∂H
∂λ

= f , (13)

λ̇ =−∂H
∂x

=−λ
T ∂ f

∂x
−ν

T ∂g
∂x

. (14)

For the low thrust minimum time, Eq. 12 can be expressed as [Kechichian (1997a)]

H(t) = λ
T
z ż = λ

T
z M(z,F) ft û+λλ n, (15)

where z = (a,h,k, p,q,λ ), ż is the derivative of the equinoctial elements, λz de-
scribes all of the Euler–Lagrange Multipliers, F is the eccentric longitude, ft is the
thrusting force and n is the mean motion. The unit acceleration vector, û, is parallel
to λ T

z M(z,F) in order to maximize the Hamiltonian, and is obtained from

û =
(λ T

z M)T

|λ T
z M|

. (16)
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To minimize the total flight time, and indirectly the ∆V , the performance index J
can be minimized:

J =
∫ t f

t0
dt = t f − t0. (17)

For fixed t0, minimization of t f or maximization of−t f and H(t) = λ T
z ż gives rise to

the transversality condition, H(t f ) = 1 [Kechichian (1997a); Kechichian (1997c);
Chobotov (1996)] resulting in time-optimality.

2.3.2 Edelbaum’s Solution For Non-Coplanar Circular Orbit Transfers

Edelbaum (1961) developed an analytical solution for the optimization of low thrust
orbit transfer problems that could be applied to circular trajectories. This section
details a numerical solution based on Edelbaum’s method that is valid for incli-
nation changes of less than 114.6◦ and assumes that the acceleration magnitude
is small enough such that the transfer orbits are circular [Kechichian (1997b); Ea-
gle (2013)]. Much like the acceleration unit vector that can be determined by the
costates in Eq. 11, the acceleration can be found for Edelbaum’s solution as well.
In this case, the acceleration unit vector is determined from

ûT (t) =

 sin(β (t))
cos(β (t))cos(ψ(t))
cos(β (t))sin(ψ(t))

=

UTr

UTt

UTn

, (18)

where [r̂, t̂, n̂] is the spacecraft-centered radial-tangential-normal coordinate system
defined by the following transformation matrices:r̂

t̂
n̂

=
[
Reci

rtn
]T x̂

ŷ
ẑ

,
x̂

ŷ
ẑ

= Reci
rtn

r̂
t̂
n̂

, Reci
rtn =

[
~r
|~r|

(~r×~v)×~r
|~r×~v||~r|

~r×~v
|~r×~v|

]
. (19)

Note that the acceleration unit vector shown in Eq. 16 is in the equinoctial frame[
f̂ , ĝ, ŵ

]
and can be transformed to the inertial frame through the following matrices

[Chobotov (1996)]:x̂
ŷ
ẑ

= Reci
f gw

 f̂
ĝ
ŵ

,
 f̂

ĝ
ŵ

=
[
Reci

f gw
]T x̂

ŷ
ẑ

,
 f̂

ĝ
ŵ

=
[
Reci

f gw
]T Reci

rtn

r̂
t̂
n̂

, (20)

where

Reci
f gw =

 c2
Ω
+ cis2

Ω
cΩsΩ− sΩcicΩ sΩsi

sΩcΩ− sΩcΩci s2
Ω
+ cic2

Ω
−cΩsi

−sΩsi sicΩ ci

. (21)
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Note that the Keplerian orbital elements Ω and i can be found from equinoctial
elements as shown in Eq. 7: Ω = tan−1 (p/q), and i = 2tan−1

(√
p2 +q2

)
.

The initial yaw angle of the acceleration vector β0 is defined by

β0 = tan−1
(

sin
(

π

2 ∆i
)

V0/Vf − cos
(

π

2 ∆i
)), (22)

where V0 is the magnitude of velocity in the initial circular orbit, and Vf is the
velocity in the desired circular orbit (e.g., final orbit after the maneuver). The yaw
angle and inclination with respect to time can be found by

β (t) = tan−1
(

V0 sinβ0

V0 cosβ0− ātt

)
. (23)

The total change in velocity required for the transfer, ∆V , is given by

∆V =

√
V 2

0 −2V0Vf cos
(

π

2
∆i
)
+V 2

f . (24)

The change in inclination with respect to time is

∆i(t) =
2
π

[
tan−1

(
ātt−V0 cosβ0

V0 sinβ0

)
+

π

2
−β0

]
. (25)

The instantaneous velocity can be computed at anytime during the orbital transfer

V (t) =V0 sinβ0

√
1+ tan2(β (t))
tan(β (t))

. (26)

Using the orbital-energy-invariance law (vis-viva equation), the semi-major axis
with respect to time can be determined from the velocity magnitude

a(t) =
µ

V (t)2 , (27)

where µ is the standard gravitational parameter of the central body.
The out of plane yaw-angle, β , and the in-plane pitch angle, ψ are related to the
equinoctial frame in the following way:

β = sin−1 (UTr) (28)

ψ = tan−1 (UTn ,UTt ) (29)
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2.4 Overview of Numerical Force Models for Orbit Propagation

One benefit of using numerical techniques when modeling satellite orbit dynamics
is that it is easy to incorporate additional acceleration components into the equation-
s of motion. Cowell’s formulation for the two-body equation of motion [Vallado
and McClain (2001)] is

~̈r =− µ

r3~r+~aperturbed , (30)

where~aperturbed is the acceleration caused by additional forces acting on the objec-
t. These forces can be due to gravitational perturbations, a low thrust propulsion
system, atmospheric drag, solar radiation pressure, etc. In this paper, the low thrust
optimization problem is solved for the case of the non-spherical Earth modeled by
J2 perturbations.

2.4.1 Modeling J2 Perturbations

The second zonal harmonic, J2, is among the most dominant of the harmonics and
the perturbation acceleration due to J2 is significant for orbits at and below GEO
altitude [Larson and Wertz (1999)]. Eq. 31 shows the magnitude of this term when
other zonal harmonics are three orders of magnitude smaller (e.g., 10−6 or less):

J2 = 1.082629×10−3. (31)

The acceleration acting on the satellite due to J2 effects used in this study is pro-
vided with respect to the inertial reference frame in Cartesian coordinates [Schaub
and Junkins (2003)]

aJ2 =−
3
2

µJ2R2
e

r4



(
1−5 z2

r2

)
x
r(

1−5 z2

r2

)
y
r(

3−5 z2

r2

)
z
r

 . (32)

2.5 Lambert Two-Body Problem

Lambert’s problem involves the solution of the orbit between two position vectors
and the time of flight required to propagate a satellite from one position to another.
The problem can be formulated in the following way: Given~r1,~r2, t1, and t2, find
~v(t1) and ~v(t2). Note that ~v(t1) is the required velocity for the satellite at ~r1 to
intercept~r2 at t2. The velocity required to rendezvous with~r2 is described as~v2 and
the
−→
∆V required is shown as

−→
∆V 1 =~v(t1)−~v1 and

−→
∆V 2 =~v2−~v(t2), respectively.
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See Fig. 1 for an illustration. ~v1 is the velocity of the satellite at position~r1 before
the maneuver and~v2 is the velocity of the satellite at position~r2 after the maneuver.

Figure 1: Illustration of a Two-Impulse Orbit Transfer Using a Two-Body Lambert
Solver

There are many different methods to solve a Lambert Problem: Gauss’ Method
[Gauss (1857)], Thorne’s Solution [Thorne (1990)], Battin’s Solution [Battin (1999)],
Godal’s Method [Godal (1961)], Lancaster’s Method [Lancaster and Blanchard
(1969)], and Sun’s Method [Sun (1979)]. The Superior Lambert Solver [Der (2011)]
is used in this analysis to obtain the initial thrust vector direction and magnitude.

2.6 Modified Picard–Chebyshev Method

The vectorized matrix formulation of the Picard–Chebyshev Method is a modern
concept. It was originally conceived in Feagin and Nacozy (1983); and later it was
adapted by Fukushima to run on a vector computer to solve astrodynamical IVP-
s and BVPs of first order ODEs [Fukushima (1997); Fukushima (1999)]. Since
his findings, it has been evaluated as a viable candidate for parallel orbit propaga-
tion [Neta (1998)] and further enhanced through the work of [Bai (2010)]. In this
section we provide a brief background on the MPCM, which has been vectorized
and parallelized for IVPs on multiple processors in our previous studies [Koblick
(2012); Koblick, Poole, and Shankar (2012); Koblick and Shankar (2014)].

The formulation for the Modified Picard–Chebyshev Method presented in this sec-
tion is applicable to certain types of first order BVPs and IVPs, based on that of



Min Time Orbit Transfer Using Impulse Discretization via MPCM 11

Bai (2010), Bai and Junkins (2011a) and Bai and Junkins (2012a). The MPCM can
be used to augment the Lambert solution in solving a two-impulse transfer under
additional perturbations, as well as to replace the numerical ODE solver which is
needed for propagating the solution from one node to the next.

Consider a system of coupled nonlinear first order differential equations which may
represent either an IVP or a BVP:

dx
dt

= f (t,x), t ∈ [t0, t f ]. (33)

It is desired to obtain a solution x(t) to Eq. 33. Let N be the number of data
points within the interval [t0, t f ] at which the solution is calculated. The independent
variable, time t, can be transformed to another domain, τ , where τ ∈ [−1,1] via

τ j =−cos
jπ
N

, j = 0,1, . . . ,N. (34)

The simple relationship between the two domains is t j = ω2τ j +ω1, where ω2 =
1
2(t f − t0) and ω1 =

1
2(t f + t0). After substitution, Eq. 33 can be written as

dx
dτ

= ω2 f (ω2τ +ω1,x) = g(τ,x). (35)

For the IVP, the initial conditions f (t0,x) are related to g(τ0,x) through

g(τ0,x) = ω2 f (t0,x). (36)

The Picard iteration which serves to update the initial approximation can be com-
puted through

xi(τ) =
N

∑
k=0

′
β

i
kTk(τ), (37)

where Tk(τ) = cos
(
k cos−1 (τ)

)
is the Chebyshev polynomial of degree k, and ′

indicates that the first term in the summation is divided by two. For the IVP, the
coefficients needed for the Picard iteration approximation outlined in Eq. 37 are

βr =
1
2r

(Fk−1−Fk+1), r = 1, . . . ,N−1, βN =
FN−1

2N
, (38)

β0 = 2x0 +2
k=N

∑
k=1

(−1)k+1
βk, (39)

where

Fk =
2
N

j=N

∑
j=0

′′g(τ j,xi(τ j))Tk(τ j). (40)
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Here ′′ denotes that the first and last terms of the summation are divided by two.
For the BVP where the initial and final positions are known, the coefficients needed
to find the updated positions with respect to time can be computed from

βr =
1
2r

(Fk−1−Fk+1), r = 2, . . . ,N−1, βN =
FN−1

2N
, (41)

β0 = x0 + x f −2
k=N

∑
k=1

β2k, β1 =
x f − x0

2
−

k=N

∑
k=1

β2k+1. (42)

To compute the updated velocity components (the first derivative of position with
respect to time), different coefficients are needed to approximate the Picard itera-
tion:

ẋi(τ) =
k=N

∑
k=0

′
α

i
kTk(τ), (43)

where

αr =
1
2r

(Fk−1−Fk+1), r = 1,2, . . . ,N−1, αN =
FN−1

2N
, (44)

α0 =
2

ω1 +ω2

k=N

∑
k=1

βkk2(−1)(k+1)+2
k=N

∑
k=1

(−1)k+1
αk. (45)

The Picard iteration is performed for j iterations until the relative difference be-
tween solutions is less than some desired error tolerance ε , i.e.,

|x j(τ)− x j−1(τ)| ≤ ε. (46)

3 Optimal Multi-Impulse Constant Low Thrust Orbit Transfer Method

Like any unperturbed trajectory, a continuous low thrust trajectory can be approx-
imated by discretization. For higher continuous acceleration levels, the discretiza-
tion can be chosen with respect to the true anomaly while for lower continuous
acceleration levels, the discretization can be chosen with respect to time. The
multi-impulse discretization approach can be simply described as approximating a
continuous thrust trajectory with multiple impulses. Similar techniques have been
described and suggested by Xiao-yong, Yi-jun, Hong-bo, and Guo-jian (2013) and
Polsgrove, Kos, Hopkins, and Crane (2006). The novelty in this proposed method is
to use the Modified Picard–Chebyshev Method not only as a BVP solver, but also
an IVP solver within the nonlinear constraint function to support multiple gravi-
tational bodies and complicated numerical force models. The steps necessary in
the optimization of a continuous low thrust problem when using the multi-impulse
method are described below:
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• Step One: Low-Thrust Orbit Transfer Approximation Edelbaum’s so-
lution for Non-Coplanar Circular Orbit Transfers is used as a good initial
approximation for solving continuous low thrust trajectories. It is important
to note that there are limitations on the magnitude of the acceleration since
the analytic solution starts to break down as the orbit transfer becomes more
and more elliptic. In certain cases better initial solutions available through
indirect methods such as Kechichian’s Euler–Lagrange Multipliers are used.

• Step Two: Discretization of Orbit Transfer Approximation The orbit
transfer trajectory developed in step one is discretized into N nodes. Either a
two-body boundary value problem solver, such as Lambert’s solution, or an-
other numerical boundary value problem solver such as the Modified Picard–
Chebyshev Method is used to compute the instantaneous impulse required to
travel from point rN−1 to point rN . If the MPCM is used, the Lambert solver
is used as an initial guess for the MPCM.

• Step Three: Nonlinear Optimization Given the desired constraints devel-
oped in the Constraints function, a nonlinear optimization routine, such as
SNOPT [Gill, Murray, and Saunders (2002)], fmincon [Waltz, Morales, No-
cedal, and Orban (2006)], or IPOPT [Wächter and Biegler (2006)], is used to
determine the ∆V necessary for each impulse, as well as the time of flight in
order to minimize the objective function (which can be either time of flight
or total ∆V ). A numerical solver (MPCM, Adams–Bashforth–Moulton or
Gauss-Jackson 8th order) is utilized to propagate the orbit between waypoints
within the optimization process.

• Step Four: Solution Refinement Once a coarse solution is obtained from
step three, this sequence can be repeated using the coarse solution as the
initial guess.

Since this approach takes a continuous trajectory and discretizes it into multi-
ple segments, it creates a perfect application for the Modified Picard–Chebyshev
Method (the MPCM performs best on partial orbital segments as opposed to many
revolutions [Koblick and Shankar (2014)]). The primary result was that the run-
time performance of SNOPT could be significantly improved when using the M-
PCM for numerical propagation as compared to other solvers.

3.1 Initial Set-up

The time of flight, t f , is discretized into N intervals. The impulse vector for each
interval ∆Vi is represented as ∆Vi = [ηi,φi,δi], where φ and δ are spherical azimuth
and elevation angles with respect to the ECI coordinate frame and ∆Vi = ηit f āt/N.
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ηi is a multiplier which should approach one when the acceleration is evenly dis-
tributed around the orbit transfer. The optimization variables are

Z = [∆V1,∆V2,∆V3, . . . ,∆VN , t f ]
T . (47)

Using a spherical coordinate system allows the search space to be within the range
of 0–π radians in elevation and 0–2π radians in azimuth. Upper and lower bounds
on ηi can be provided to remove very large impulses out of the feasible region.

3.2 Objective Function

This method can be utilized to minimize either the total ∆V or the time of flight
t f (but not both as the maximal ∆V corresponds to the minimal t f for the multiple
impulse approximation). The performance index for the minimum ∆V objective is

J =
∫ t f

0
|∆V (t)|dt ≈

N

∑
i=1

∆Vi. (48)

Subsequently, the minimum time of flight performance index is described in Eq. 17.
For the optimization performed in the following examples, the minimum time of
flight was chosen as the objective function with a penalty for ∆Vi when larger than
the maximum ∆Vi for the segment, i.e., when ηi > 1.

3.3 Constraints

The constraints associated with an orbital maneuver depend on which objectives are
important to the designer. The initial conditions will remain the same regardless of
which optimization objectives one has in mind:[

r(t0)
v(t0)

]
=

[
r0
v0

]
. (49)

For full orbital rendezvous optimization, it may be necessary to fix the final state
vector such that the position and velocity at the end of the transfer match the target
spacecraft,[

r(t f )
v(t f )

]
=

[
r f

v f

]
. (50)

For orbit transfers similar to those described by Kechichian, it may be desirable to
fix only five of the six orbital elements as show in Eq. 51 (this can also be written
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in equinoctial elements to avoid singularities):
a(t f )
e(t f )
i(t f )
Ω(t f )
ω(t f )

=


a f

e f

i f

Ω f

ω f

,


a(t f )
h(t f )
k(t f )
p(t f )
q(t f )

=


a f

h f

k f

p f

q f

. (51)

For both the minimum ∆V and minimum t f optimization problems, the low thrust
constraint is satisfied by

∆Vi ≤ ηiāt
t f

N
, (52)

where ηi is the maximum ratio (typically around 1) where ηi = N∆Vi/∆Vtot .

3.4 Optimization Routine

A 64-bit MATLAB executable of SNOPT, was used for the minimum time of
flight optimization shown in the results section. While both SNOPT and fmincon
were used to solve the same constrained nonlinear optimization problems, SNOPT
showed better convergence characteristics for this specific implementation.

4 Results

The optimal method developed in this paper is used to perform low thrust orbit
maneuvers for two cases:

Case 1 Minimum Time Non-Coplanar Circular Transfer

Case 2 Minimum Time LEO to GEO Transfer

4.1 Non-Coplanar Circular Transfer

For this example, the constant low thrust transfer of a satellite from inclined circular
GEO to equatorial circular GEO is optimized. Initial conditions are a0 = 42000 k-
m, e0 = 0.00, i0 = 10.00◦, Ω0 = 0.00◦, ω0 = 0.00◦, M0 = −220◦, with a con-
stant acceleration āt = 1×10−5 km/s2. The final conditions of the target orbit are
a f = 42000 km, e f = 0.00, i f = 0.00◦; Ω f , ω f , and M f are determined by the initial
approximation; t f is to be minimized. Using Eq. 24, the analytical solution to this
problem corresponds to a ∆V of 0.8419 km/s and a time of flight of 84193.88 sec-
onds. The effects on optimization when a different number of impulses are chosen
with respect to each orbit revolution are shown in Table 1. It is interesting to note
that there is an optimal setting to achieve high feasibility and the most realistic low
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thrust segmentation (η ≤ 1.000); this occurs around eight impulses/revolutions. It
should be noted that this paper uses the same definitions for optimality and feasi-
bility as outlined in the SNOPT User’s Guide [Gill, Murray, and Saunders (2006)].

Table 1: Number of Impulses vs Total ∆V , Time of Flight, and Feasibility.
Impulses Total ∆V Time of Flight Feasibility Optimality Maximum ηi

4 0.93086 km/s 93085.5503 sec 1.40E-09 7.50E-10 1.0000
5 0.87948 km/s 87122.3347 sec 2.30E-04 1.50E-01 1.0474
6 0.85429 km/s 85428.8107 sec 1.20E-06 2.40E-05 1.1696
7 0.83944 km/s 83943.5045 sec 1.60E-04 3.40E-03 1.00000
8 0.84183 km/s 84183.1071 sec 2.70E-07 9.10E-07 1.0000
9 0.86207 km/s 86207.3741 sec 2.80E-09 1.30E-06 1.0000
10 0.84288 km/s 84288.3501 sec 3.30E-05 4.20E-03 1.0000
11 0.85478 km/s 85477.876 sec 2.20E-04 8.30E-03 1.0000
12 0.89109 km/s 89108.6533 sec 3.20E-07 1.70E-06 1.0634

A top view of the noncoplanar orbit transfer is shown in Fig. 2; Spline interpolated
thrust vectors are overlaid in Fig. 3.

Figure 2: Birds Eye View of Transfer Figure 3: Acceleration Vectors

4.1.1 Comparison to Numerical Solution Based on Edelbaum’s Method

The solution obtained by the multi-impulse optimization method is compared to
an implementation of Edelbaum’s method and a trial copy of GPOPS-II MAT-
LAB software. GPOPS-II is general-purpose software designed to solve multiple-
phase optimal control problems using variable-order Gaussian quadrature colloca-
tion methods [Patterson and Rao (2014)]. The low-thrust orbit transfer example that
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was provided with a copy of GPOPS-II (developed from a published optimization
example [Betts (2001)]) was modified to minimize time of flight instead of fuel.
Table 2 shows the results for the Edelbaum Transfer, the Multi-Impulse Transfer,
and the GPOPS-II transfer case. In this case, the optimization routine minimizes

Table 2: Final Orbital Elements and Flight Times for GEO-GEO Transfer.

Final Conditions Edelbaum Multi-Impulse Transfer GPOPS-II
a f 42014.065 42000.000 42000.000
e f 0.0260 0.00 0.000
i f 0.667◦ 0.000◦ 0.000◦

Ω f 0.000◦ 0.000◦ 0.000◦

ω f 0.000◦ 0.000◦ 0.000◦

M f 124.390◦ 124.390◦ 356.036◦

∆Vtot 841.94 m/s 841.83 m/s 848.25 m/s
t f 84193.883 sec 84183.1071 sec 84824.731 sec

the total time of flight required for the transfer instead of the ∆V . Theoretically,
the minimum transfer time should correspond to the minimum ∆V for the low con-
tinuous thrust case. Multiplying the total transfer time by the acceleration should
produce the ∆V associated with the transfer. As observed from the table, the so-
lution will approach that of the constant acceleration case as the total number of
impulses increase.

4.1.2 Numerical Solution Using Additional Perturbations

For the J2 perturbation force model as described in Eq. 32, the Multi-Impulse Trans-
fer solution is obtained by running SNOPT, shown in Table 3. Table 4 shows the
run-time performance results associated with different numerical propagation tech-
niques within the nonlinear constraint routine. It can be seen that the implementa-
tion with MPCM results in a significant improvement in performance for both the
two-body and J2 perturbations as compared to the implementations with Adams-
Bashforth-Moulton and Gauss-Jackson 8th order methods. In Figs. 4–6, the thrust
vectors associated with the transfer for the two-body solution are shown. Note
that with a minor perturbation such as J2, these vectors may show large changes in
direction, suggesting that this optimization problem is not well posed.

4.2 LEO to GEO Minimum Time Low Thrust Transfer

This section addresses the solution of a LEO to GEO transfer scenario based on
Kechichian [1997a]. The initial conditions for this scenario are a0 = 7000 km,
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Table 3: Final Orbital Elements and Flight Times for GEO-GEO Transfer with J2
Effects.

Final Conditions Two-Body Multi-Impulse (J2)
a f 42000.000 km 42000.000 km
e f 0.000 0.000
i f 0.000◦ 0.000◦

Ω f 0.000◦ 0.000◦

ω f 0.000◦ 0.000◦

M f 124.390◦ 124.390◦

∆Vtot 841.83 m/s 840.35 m/s
t f 84183.1071 sec 84035.0476 sec

Table 4: SNOPT Run Time Performance of GJ8, ODE113, and MPCM (GEO-
GEO).

SNOPT Run Time Performance GJ8 ODE113 MPCM Analytical
Two-Body Force Model 275 sec 255 sec 53 sec 14 sec

J2 Force Model 602 sec 246 sec 65 sec N/A

e0 = 0.00, i0 = 28.5◦, Ω0 = 0.00◦, ω0 = 0.00◦, M0 =−220◦, with a constant accel-
eration āt = 9.8×10−5 km/s2. And the final conditions of the target GEO are a f =
42000 km, e f = 0.001, i f = 1.00◦, Ω f = 0.00◦, ω f = 0.00◦, M f = −43.779715◦,
and t f = 58624.094 sec. This equates to ∆Vtot = ātt f = 5.745161 km/s. Note that
Kechichian allowed the final mean anomaly to be free in order to optimize where
in the GEO orbit the satellite may enter. In this paper, it was chosen to fix this
entry point at his optimal two-body solution of 43.7797◦. This allows for a full
rendezvous from one fixed inertial position to another while minimizing time of
flight and subsequently ∆V , assuming that the final implementation of thrust will
be constant and continuous. A comparison of convergence performance versus to-
tal number of impulses is provided in Table 5. While fewer impulses may appear

Table 5: Number of Impulses vs Total ∆V , Time of Flight, and Feasibility.
Impulses Total ∆V Time of Flight Feasiblity Optimality Maximum ηi

24 5.7445 km/s 58617.85 sec 2.20E-11 3.00E-07 1.0000
25 5.7431 km/s 58603.21 sec 4.60E-10 1.60E-06 1.0000
30 5.7346 km/s 58516.19 sec 1.70E-09 1.20E-06 1.0000
34 5.7353 km/s 58523.61 sec 8.00E-10 1.30E-06 1.0000
38 5.7369 km/s 58540.17 sec 1.70E-09 8.70E-07 1.0000
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Figure 4: X-axis Figure 5: Y -axis Figure 6: Z-axis

to be attractive for this optimization procedure, the resulting trajectory is highly
eccentric and is not easily converted to a continuous thrust solution. 30 impulses
were chosen for the optimization process as it meets the required feasibility and
accuracy.

4.2.1 Comparison to Kechichian Solution

With the Lagrange multipliers specified by Kechichian as input into the low thrust
orbit propagation IVP (see Table 6), this trajectory was discretized into 30 nodes
which were then optimized through SNOPT. The ∆V was computed as 5.743 km/s.
The minimized flight time was reported as 58624.093 seconds. Table 7 compares
the final position of the satellite after the low thrust transfer. Fig. 7 depicts a three
dimensional view of the full orbit transfer.

Table 6: Initial Costate Values Corresponding to the LEO-GEO Transfer Problem
Outlined by Kechichian [1997a] and reprinted in Chobotov [1996].

Costate Initial Guess
(λa)0 1.260484756 s/km
(λh)0 3.865626962×102 s
(λk)0 −9.388262635×103 s
(λp)0 −2.277132367×103 s
(λq)0 −1.743027218×104 s
(λλ )0 5.155487187×102 s/rad
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Table 7: Comparison of Final Orbital Elements.

Orbital Element Kechichian Multi-Impulse GPOPS-II
a f 42,000.007 km 42000.000 km 42000.000 km
e f 1.00022 ×10−3 1.000000×10−3 1.000000×10−3

i f 1.000012◦ 1.00000◦ 1.00000◦

Ω f 359.999963◦ 359.999994◦ 359.999863◦

ω f 1.966524◦×10−2 1.67◦×10−4 4.445109◦

M f 43.779715◦ 43.858910◦ 39.5072109◦

∆Vtot 5.75 km/s 5.74 km/s 5.75 km/s
t f 58624.09 sec 58624.09 sec 58622.90 sec

Figure 7: 30-Node ECI Thrust Vector Comparison Multiple Impulse vs Costates
(Blue: Multi-Impulse Method; Black: Costate Method)

The unit vectors of the acceleration in the ECI reference frame are compared at each
node along the transfer trajectory in Figs. 8–10. Note that the black dot represents
the solution found from optimizing the costates while the blue line is the thrust
vector at each discrete point as found from running the multiple impulse method.
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Figure 8: x-axis Figure 9: y-axis Figure 10: z-axis

4.2.2 Numerical Solution Using Additional Perturbations

For the J2 perturbation force model as described in Eq. 32, Table 8 shows the Multi-
Impulse Transfer solution obtained by running SNOPT.

Table 8: Final Orbital Elements and Flight Times for LEO-GEO Transfer with J2
Effects.

Final Conditions Two-Body Multi-Impulse (J2)
a f 42000.000 km 42000.00 km
e f 0.001 0.001
i f 1.000◦ 1.000◦

Ω f 0.000◦ 0.000◦

ω f 0.000◦ 0.000◦

M f 43.859◦ 43.859◦

∆Vtot 5.74 km/s 5.73 km/s
t f 58624.093 sec 58519.690 sec

Table 9: SNOPT Run Time Performance of GJ8, ODE113, and MPCM (LEO-
GEO).

SNOPT Run Time Performance GJ8 ODE113 MPCM Analytical
Two-Body Force Model 5460 sec 3633 sec 777 sec 557 sec

J2 Force Model 10214 sec 6986 sec 1677 sec N/A

Table 9 shows the comparison of the run times of the multi-impulse low thrust
optimizations with implementation of MPCM, ODE113 and GJ8. The results show
a significant improvement in the performance of the MPCM as compared to the
other two solvers.
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5 Discussion

This study presents the computational run-time performance gain of using the M-
PCM to solve discretized constant low thrust orbit transfer optimization problems
in conjunction with a sparse sequential quadratic programming (SQP). Previous
work in relation to the MPCM has shown applications for Lambert targeting prob-
lems, two-body coplanar low thrust trajectory optimization, and Station-Keeping
of Translunar Halo Orbits [Bai and Junkins (2011b); Bai and Junkins (2012b)].
In regard to performance on numerical orbit propagation problems, previous re-
search has shown that when distributed over many GPUs, the MPCM can reduce
the computational time between one and two orders of magnitude over other con-
ventional sequential ODE solvers such as Runge–Kutta 4(5) and Runge–Kutta–
Nystrom 12(10) [Bai and Junkins (2012a)]. Additionally, the work by Koblick
and Shankar (2014) has shown that a parallel MPCM implementation across just
five CPU cores can reduce the computational time of orbit propagation to below
the performance of the fastest sequential numerical ODE solvers (e.g., Runge Kut-
ta 4(5), Gauss Jackson 8, and Dormand and Prince (8,7)) [Koblick and Shankar
(2014)]. Fukushima, after testing a vectorized version of the Picard–Chebyshev
method on a vectorized computer, theorized that the performance improvement of
solving perturbed orbit propagation problems can be between two and three order-
s of magnitude [Fukushima (1999)]. This suggests it is likely that the run-time
performance of this low thrust discretization method, when using the MPCM, can
benefit significantly when switching to a parallel implementation (especially when
the force model is increased in its complexity).
Direct optimization, for moderate dimensional parametric representation of the un-
known control function, is widely known to efficiently lead to good sub-optimal
results, and the dimensionality can be frequently increased to refine the solution
without becoming numerically intractable. Excellent approximations of the opti-
mal trajectory can be obtained by using a direct approach, and this approximate
truth is confirmed by the results obtained in this paper.
If we upgrade our numerical force models to include multi-body perturbations,
this will allow the multi-impulse method to be extended to interplanetary missions
where, traditionally, patched conics and multi-segmented optimization would need
to be performed. There are some unique characteristics to consider when using a
direct optimization method which discretizes the problem in order to optimize an
orbit transfer:

• Very good initial guess of trajectory required — because there are many seg-
ments, it may take a large number of function evaluations (if feasible) for
a nonlinear solver to converge to an optimal transfer as the search space is
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significantly large (N×3+1) dimensions.

• Segments must be a fraction of each orbit revolution — as shown in the thrust
restriction identified in Eq. 52, the fewer number of segments used, the faster
the optimization (less optimization variables reduce the dimensionality of
the problem), but the solution will approach a high thrust transfer and will no
longer be similar to that of a low thrust trajectory.

• Real time trajectory controller extension — with a finite number of impulses,
the solution is not directly translatable to instantaneous thrust vectors with
respect to time. The trajectory must be modeled with some type of trajectory
controller, such as a predictive method.

6 Conclusions and Future Work

This paper presents a multi-impulse low thrust trajectory optimization method that
utilizes the Modified Picard–Chebyshev Method to improve the run-time perfor-
mance of the nonlinear optimization routine even with the inclusion of perturbation
terms in the gravitation force model. The method shows a significant improvement
in the run-time performance as compared to ODE113 and GJ8. The multi-impulse
method with the implementation of MPCM was also compared to well known solu-
tions and tools indicating similar accuracies. Future efforts will be directed towards
parallelizing the Modified Picard–Chebyshev Method when called from a nonlinear
optimization solver in order to further increase the performance benefits of using
a perturbative approach to solving numerical propagation problems. This will be
followed by an evaluation of existing approaches to convert a multi-segmented so-
lution into a trajectory control algorithm which may be used on-board a spacecraft
once an optimal transfer has been found. This multi-impulse discretization method
could also be applied to the N-body problem, specifically for interplanetary low
thrust rendezvous, low thrust gravity assists (LTGA), or multiple-LTGA problems.
One approach used to solve the rendezvous and LTGA problems exploits the natural
dynamics of N-body models in the formation of an initial guess trajectory. LTGA
consist of a set of patched controlled planar Circularly Restricted N-Body Prob-
lems (CRNBP) which analytically generate low energy initial guess formulations
(e.g., invariant manifolds). This initial guess is then fed to a traditional N-body
optimizer to compute a complete trajectory, inclusive of planetary inclinations and
eccentricities. This approach could extend the multi-impulse discretization method
by using the CRNBP as an initial approximation in place of the Edelbaum or the
Euler–Lagrange indirect method. Combining systems of CRNBPs as the initial
guess to the multi-impulse discretization method could yield a robust strategy for
computing complex interplanetary transfer trajectories.
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