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Multidirectional Gaussian Mixture Models for Nonlinear
Uncertainty Propagation
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Abstract: Monte Carlo simulations are an accurate but computationally expen-
sive procedure for approximating the resultant non-Gaussian probability density
function (PDF) after propagation of an initial Gaussian PDF through a nonlinear
function. Univariate splitting libraries for Gaussian Mixture Models (GMMs) exist
with up to five elements in the literature. The number of splits are extended in the
present work by generating three homoscedastic univariate splitting libraries with
up to 39 elements. Mulitvariate GMMs are typically handled with splits along a
single direction. Instead, we generate a regular multidirectional grid over the ini-
tial multivariate Gaussian distribution by recursively applying the splitting library
along multiple directions. The splitting direction is arbitrary and no longer limited
to directions parallel to the columns of the square-root of the covariance matrix. A
second order Stirling’s interpolation of the nonlinear function evaluated at the mean
of the initial Gaussian distribution is used to quantify nonlinearity along candidate
splitting directions. The directions with the highest nonlinearity benefit most from
splitting. The Multidirectional GMM (MGMM) has applications for uncertain-
ty quantification with computationally intensive nonlinear functions. The variable
number of splits in each direction allows for a spectrum of models in the accuracy
versus compute time design space, filling the gap between expensive Monte Carlos
and fast linearized models. The multidirectional method is demonstrated with four
test cases, including an orbit uncertainty propagation case, to illustrate the benefit
of splitting along multiple directions and of ranking the splitting directions.
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1 Introduction

A Gaussian distribution is a good assumption for the initial uncertainty in parame-
ters for a large number of problems due to the central limit theorem [Feller (1945)].
Since a Gaussian distribution can completely be characterized by the first two sta-
tistical moments, the size of the uncertainty is encapsulated in the covariance. A
nonlinear function maps the probability density function (PDF) of the uncertainty
of the input parameters onto the uncertainty PDF of the output parameters. The
resulting distribution is no longer Gaussian even if the initial distribution is com-
pletely Gaussian. Only for a linear function of the parameters will the output un-
certainty distribution remain Gaussian. A Gaussian assumption may still be a good
approximation for some cases but more information about the PDF is required for
other cases.

An infinite number of statistical moments of the initial distribution would have to be
propagated through the function to accurately represent the final PDF. In practice,
an arbitrary number of moments can be captured, by using quadrature methods for
example [Stroud and Secrest (1966)]. An approximation of the final non-Gaussian
PDF can be found by using the principle of maximum entropy [Abramov (2007)].
For nonlinear dynamic systems the exact evolution of the PDF is the solution of the
Fokker-Planck Equation (FPE) [Fuller (1969)]. Unfortunately, the FPE is a partial
differential equation that is difficult to implement and computationally intensive to
solve. There have been, however, recent efforts to solve the FPE in a computa-
tionally tractable manner [Sun and Kumar (2014); Kumar and Chakravorty (2012);
Kumar, Chakravorty, Singla, and Junkins (2009); Terejanu, Singla, Singh, and S-
cott (2008, 2011); Vishwajeet, Singla, and Jah (2014)].

The easiest approach of approximating the resulting non-Gaussian distribution is
Monte Carlo (MC) simulation. Random initial conditions are sampled from the
distribution of the input parameters. The function is evaluated at the initial condi-
tions to create a sample of the output. Information about the PDF of the output, such
as the shape and statistical moments can then be extracted from the sample. With
increasing dimension, MC simulation becomes computationally expensive because
a large number of function evaluations are required due to the slow convergence
rate [Cowles and Carlin (1996)]. Function evaluations can also be parallelized on
multi-core processors or on Graphics Processing Units (GPUs) to reduce overall
computation time. A reduction in the required number of MC samples can be
achieved by importance sampling in cases when certain input parameters have a
large impact on the function output [Siegmund (1976)]. Most importance sampling
algorithms can unfortunately not be easily parallelized, but their parallelization is
an active topic of research [Calderhead (2014)].
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Surrogate models are an active area of research that seek to approximate the nonlin-
ear function by a simpler and computationally less expensive model [Butler, Daw-
son, and Wildey (2013)]. The surrogate model can be evaluated in lieu of the full
nonlinear function to sample the final distribution of the output parameters. There
are many choices for the basis functions used for the surrogate model. One sur-
rogate model approach for uncertainty propagation uses multivariate orthogonal
polynomials i.e. Polynomial Chaos (PC) [(Jones, Doostan, and Born, 2013)]. The
polynomial basis functions can be chosen based on the initial uncertainty according
to the Weiner-Askey scheme [Wan and Karniadakis (2006)]. For an initial Gaus-
sian distribution, the optimal choice is Hermite polynomials [Wiener (1938)]. The
surrogate model forms a response surface and determining the coefficients of the
polynomials is computationally less expensive than running a full MC simulation.
PC methods can, however, be more computationally expensive than MC methods
for some cases. The growth of the basis function is combinatorial in nature as
the state dimension or the order of the polynomial is increased [Wiener (1938)].
Computation of the coefficients typically requires quadrature methods, which grow
exponentially with state dimension. The computational load due to a quadrature
can be reduced in some cases by using sparse grids [Jones, Parrish, and Doostan
(2015)].

Assuming the uncertainty in the output parameters is a Gaussian distribution en-
ables the use of analytical approximations because only the first two statistical mo-
ments of the initial PDF have to be propagated through the function. This Gaussian
assumption is the basis for many filtering and state estimation applications. The
initial covariance can be propagated using a Taylor series approximation of the
function [Gelb (1974)], or by evaluating the function at deterministically chosen
sigma points [Julier and Uhlmann (2004); Norgaard, Poulsen, and Ravn (2000);
Adurthi, Singla, and Singh (2012)]. If these Gaussian propagation techniques are
used, the maximum information from the resulting non-Gaussian distribution is an
approximation of the first two statistical moments. Even if the mean and covari-
ance are accurately captured by the Gaussian propagation techniques, there is no
guarantee that the shape of the PDF is accurate since the isoprobability contours
are assumed to be ellipsoids. Higher order sigma point methods such as the Conju-
gate Unscented Transform (CUT) [Adurthi, Singla, and Singh (2012); Adurthi and
Singla (2015)] provide the mechanisms to capture higher order moments, and the
isoprobability contours are no longer ellipsoids.

A Gaussian Mixture Model (GMM) works under the proposition that any PDF can
be approximated in terms of the L1-distance by using a weighted sum of Gaussian
probability distribution functions [Alspach and Sorenson (1972)], where the sum
of the weights is unity. GMMs are used to discretize the initial Gaussian PDF into
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weighted Gaussian PDFs with a smaller covariance. Each element is propagated
through the function using simplified methods such as the sigma point methods to
enforce the Gaussian condition on the post-propagation PDF. The weighted sum
of the individual propagated Gaussian elements better approximates the final non-
Gaussian PDF as the number of elements is increased, while requiring fewer func-
tion evaluations than MC. Therefore, Gaussian Mixture Models form a compro-
mise between the analytical approximations of the Gaussian propagation methods
and the computationally intensive MC technique. An added benefit of GMMs is
the availability of an analytical PDF for the GMM approximation, which is not the
case for surrogate models such as PC.

Converting the initial Gaussian distribution into a GMM is typically achieved by
using a univariate splitting library. The univariate splitting library is a GMM that
approximates the standard normal distribution. The library is then applied along
a column of the square-root (Spectral or Cholesky decomposition) of the initial
covariance matrix to generate a multivariate GMM approximation of the original
Gaussian distribution. The multivariate GMM elements are located on, and have a
reduced variance along, the splitting direction. It is noted that the size of a univari-
ate splitting library available in literature is limited to five [DeMars, Bishop, and
Jah (2013)]. For multivariate cases, the univariate libraries are applied along all
the n directions of freedom for an n-dimensional problem [Horwood, Aragon, and
Poore (2011)]. Therein lies the motivation of the current work. Firstly, to increase
the number of splits for the univariate case. Secondly to identify the directions that
have the greatest effect on the non-Gaussianity of the propagated distribution and
to split only along those directions.

Much of the active research in GMMs is in the applied fields of machine learning
[Li, Prasad, and Fowler (2014); Baspinar, Varol, and Senyurek (2013)] where a G-
MM is fitted to a given sample from a non-Gaussian distribution using Expectation
Maximization (EM) [Dempster, Laird, and Rubin (1977)]. The work in the current
paper, however, deals with the more basic question of how to generalize the number
and directions of the splits of the initial Gaussian distribution into a GMM. Split-
ting and merging of Gaussian elements for the approximation and propagation of
an initial Gaussian distribution has also been the focus of some recent work. Gaus-
sian distributions have been used as Radial Basis Functions in a Neural Network
for nonlinear system identification in Li, Sundaragan, and Saratchandran (2000).
GMMs have been used for nonlinear state estimation in Hanebeck, Briechle, and
Rauh (2003). A four element univariate splitting library is provided by Huber, Bai-
ley, Durrant-Whyte, and Hanebeck (2008). A procedure for approximating a GMM
with another GMM using fewer elements is shown in Huber and Hanebeck (2008).
An uncertainty propagation scheme utilizing both splitting and merging of GMM
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elements for a dynamic system has been shown by Terejanu (2011). GMMs have
been used for uncertainty propagation through dynamical systems with the number
of elements adapted to minimize the FPE by Vishwajeet and Singla (2013, 2014).

The nonlinear orbital equations of motion cause an initial Gaussian state uncertain-
ty distribution of space objects to become non-Gaussian with increasing flight time
and perturbations. Capturing the evolution of the state uncertainty is an essential
part of operations including orbit determination (OD) and conjunction assessment
(CA). There exists a framework that efficiently, with varying degrees of accuracy,
handles uncertainties that are assumed to remain Gaussian in OD [Tapley, Schutz,
and Born (2004)] and in CA [Chan (2008)]. The same framework is readily extend-
ed to GMMs since each element remains Gaussian. A Gaussian Sum Filter (GSF)
has been used to improve the performance of Gaussian filtering algorithms such as
the EKF for nonlinear non-Gaussian problems [Alspach and Sorenson (1972)]. G-
MMs have also been used to propagate state uncertainties through nonlinear ODEs
[Terejanu, Singla, Singh, and Scott (2008); Horwood, Aragon, and Poore (2011);
DeMars, Bishop, and Jah (2013); Vishwajeet, Singla, and Jah (2014)]. Psiaki,
Schoenberg, and Miller (2015) show a resampling strategy for GMMs to efficiently
approximate one GMM with another so that the particles in a Particle Filter (PF) are
replaced with a GMM. Most recently, GMMs have also been used to improve colli-
sion probability computations [Vittaldev and Russell (2013); Vittaldev and Russell
(2016); DeMars and Jah (2014)]. Fujimoto and Scheeres (2015) use state transition
tensors (STTs) as a computationally efficient surrogate model to the real dynamics
to propagate the GMMs for a CA problem.

In Section 2, a univariate library for splitting the standard normal distribution in-
to a GMM by minimizing the L2 norm is presented. Solutions for predetermined
multiple splitting rules are found via nonlinear optimization and archived for up to
39 univariate splits. The new solutions are the largest libraries in the literature to
date. The same optimization procedure can also be used to compute more libraries
by changing the constraints on the standard deviations of the elements. The split-
ting library is then applied along multiple directions of the covariance matrix to
extend the theory to multivariate Gaussian distributions in Section 3. A second or-
der Stirling’s interpolation formula evaluated at the mean of the original Gaussian
distribution is used to rank the candidate directions with respect to the nonlinearity.
Also in Section 3, the number of splits along a given direction is chosen based on
the relative degree of nonlinearity. The performance of the MGMMs is shown with
some numerical test cases, including the uncertainty propagation of an object in
Geostationary orbit (GEO), in Section 4.
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2 Univariate Splitting Library

Before tackling multivariate scenarios, the univariate case is considered. To in-
crease the applicability of the univariate GMM, the goal of this section is to develop
splitting libraries. The libraries are carefully fit in advance and also have a larger
number of elements than are currently available in the literature. A tool is created
that generates a univariate splitting library based on the standard normal distribu-
tion. The library consists of the weights αi, means µi, and the standard deviations
σi for a desired number of elements that approximate the standard normal distribu-
tion. A GMM generated from the standard normal distribution can be shifted and
scaled to fit any univariate Gaussian distribution with an arbitrary mean and stan-
dard deviation. The univariate splitting library is applied along a desired direction
to approximate any multivariate Gaussian distribution as shown in more detail in
Section 3.

2.1 Generating a Univariate Split

In developing the univariate library, a performance index is necessary to measure
the difference between the exact Gaussian distribution and the approximated GM-
M. The weights, and location and magnitude of the means are optimization vari-
ables in a nonlinear programming problem. The performance index ideally should
result in a value of zero if and only if the two distributions are identical. The
result should be greater than or equal to zero for any two distributions [Hershey
and Olsen (2007)]. There are many divergences that could be used to quantify the
dissimilarity between two distributions such as the Kullback-Leibler [Kullback and
Leibler (1951)] divergence, the Jensen-Shannon divergence [Endres and Schindelin
(2003)]. A distance metric is the Lp distance [Horwood, Aragon, and Poore (2011)]
between 2 distributions p1 and p2 is:

L1(p1, p2) =
∫
Ω

|p1 (x)− p1 (x)|p dx (1)

2.2 Optimization

Although the GMMs approximate PDFs better with respect to the L1 distance
[Alspach and Sorenson (1972)], the L2 distance is chosen as the dissimilarity metric
because the solution is analytical and does not require solving a quadrature in the
case of a GMM and a Gaussian distribution. The L2 distance between a GMM PDF
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p and a Gaussian distribution pg(x; µµµg,Pg) is [DeMars, Bishop, and Jah (2013)]:

L2(p, pg) = |4πPg|−1/2 +
N

∑
i=1

N

∑
j=1

αiα jK
(
µµµ i,µµµ j,Pi,P j

)
−2

N

∑
i=1

αiK
(
µµµ i,µµµg,Pi,Pg

) (2)

where the operation defined by K is

K (µµµ1,µµµ2,P1,P2) = |2π (P1 +P2)|−1/2

× exp
(
−1

2
(µµµ1−µµµ2)

T (P1 +P2)
−1 (µµµ1−µµµ2)

) (3)

α is a weight, µµµ is a mean, and P is a covariance matrix. The weights are com-
puted by minimizing the L2 distance between p and pg [Horwood, Aragon, and
Poore (2011); DeMars, Bishop, and Jah (2013); Huber, Bailey, Durrant-Whyte,
and Hanebeck (2008)]. Minimizing the L2 distance becomes a constrained non-
linear optimization problem, with the cost function from Eq. 2 and the constraints
from Eq. 5 and Eq. 6. In the existing literature, univariate libraries have been pre-
computed for N = 4 [Huber, Bailey, Durrant-Whyte, and Hanebeck (2008)] and
N = 3,4,5 [DeMars, Bishop, and Jah (2013)]. To compute libraries with a higher
N, a trust-region optimization [Conn, Gould, and Toint (1987)] algorithm is cur-
rently implemented, and solutions are found with odd N up to 39. There are N σi,
N αi, and N µi, totaling 3N variables to ultimately choose, where N is the desired
number of splits.

Simplifications are made to reduce the number of free parameters in the optimiza-
tion problem from 3N to N−1. All the components of the GMM are given the same
standard deviation by specifying a rule for σ as a function of N. The homoscedas-
tic assumption may seem restrictive, but assumptions are required to generate the
univariate splitting libraries. Without any assumption, the optimization problem
has an undesired trivial solution. The central element will have a weight of 1 and a
standard deviation of 0. All the other elements will have a weight of 0 and the L2
distance will also be 0. With the assumption of homoscedasticity, the cost function
for minimization is a simplified version of the L2 distance from Eq. 2:

J =
1

2
√

π
+

N

∑
i=1

N

∑
j=1

αiα j

2
√

πσ2
exp
(
−(µi−µ j)

2

4σ2

)

−2
N

∑
i=1

αi√
2π (σ2 +1)

exp
(
−µ2

i

2(σ2 +1)

) (4)
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After choosing a rule for σ , the remaining 2N free parameters are the weights αi

and the means µi. It should be noted that homoscedasticity assumption is only for
the initial GMM. The variance of each element changes due to propagation through
a nonlinear function. Assuming that the location and the weights of the elements
are symmetric further reduces the number of free parameters to N− 1. Details on
the constraints and the remaining free parameters for odd N are presented here.
The setup of the optimization for even N is similar but only odd N are computed
to ensure that the location of the element with the largest weight coincides with the
actual mean of the normal distribution. The N +1 equality constraints are:

0 = µ0 (5a)

0 = µi−µ−i i = 1, . . . ,(N−1)/2 (5b)

0 = αi−α−i i = 1, . . . ,(N−1)/2 (5c)

0 = 1−α0−2
(N−1)/2

∑
i=1

αi (5d)

Inequality constraints are imposed to enforce a monotonic increase in the location
of the elements and a monotonic decrease in the weights away from the center. The
weights decrease monotonically as the distance from the center increases so that
elements closer to the mean of the initial Gaussian distribution, i.e. areas with a
high PDF value, have a higher importance, because the goal is to approximate the
bell curve shown in Fig. 1.

µi−1−µi < 0 i = 1, . . . ,(N−1)/2 (6a)

αi−1−αi < 0 i = 1, . . . ,(N−1)/2 (6b)

Fig. 1 illustrates the effect of the optimization equality and inequality constraints
on the PDFs of the individual elements for N = 7.

A trust-region optimizer is used due to its robustness in solving nonlinear opti-
mization problems [Byrd, Schnabel, and Schultz (1987)]. Like a line search, the
trust-region method enforces that each new iteration reduces the objective function.
However, a maximum step distance (the trust-region) is first chosen, followed by
the direction of the step. The trust-region is centered on the present iterate and the
complicated nonlinear function is replaced by a simpler, quadratic approximation.
Choosing the step direction translates to finding the minimum of the quadratic ap-
proximation. If the Hessian of the objective function is positive definite and the
trust-region is large enough, then the step is identical to the Newton-Rhapson up-
date. The details of computing the update step and the size of the regularly updated
trust-region are beyond the scope of this paper. Trust-region optimization is an
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Figure 1: PDFs of the individual elements subject to the equality and inequality
constraints for N = 7

active area of research and many variations can be found in literature [Moré and
Sorensen (1983)].

The trust-region optimization algorithm requires the first and second derivatives of
the objective function and the constraints with respect to the state variables. Ana-
lytical expressions for the Jacobians and Hessians are computed using the symbolic
manipulator, Maple. The optimization routine is coded in Fortran due to the com-
putational speed and the ability to use quadruple precision arithmetic, which is
required for convergence when the number of splits, N is high. During the opti-
mization, the GMM weights and means from the converged solution of the N− 2
case are used as an initial guess for the current N case. Furthermore, a heuristic
predictor step is employed to modestly increase the spread on the means, and lower
the weight values. An extra element is added to the tail and all the weights are
lowered so that the sum remains unity for the initial guess. The problem is highly
nonlinear and convergence is increasingly difficult as N increases.

The computation of the trust-region optimization, takes approximately 3 minutes
for N up to 39 on a 3.07 GHz Intel Xeon CPU. The trust-region and function rou-
tines are compiled using Intel Visual Fortran Composer XE 2011 and optimization
settings -O3.

2.3 Resulting Univariate Libraries

Solutions for three different σ rules are found and archived online 1:

1 http://russell.ae.utexas.edu/code/GMMsplittingLibrary.txt/
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1. σ2 = (1/N) for odd-valued N ≤ 39

2. σ2 = (1/N)3/4 for odd-valued N ≤ 25

3. σ2 = (1/N)1/2 for odd-valued N ≤ 15

The rules for σ are selected arbitrarily and the optimization process can easily be
repeated to generate libraries with different σ rules. An example of a 7 component
univariate library is presented in Tab. 1. The L1 and L2 distances between the opti-
mized solutions and the standard normal distribution, as a function of the number of
the elements are found in Fig. 2b. Libraries with up to 39 elements have been cre-
ated using an intensive optimization process that solves the highly nonlinear cost
function with many local minima. The issue with increasing the number of ele-
ments in the library is mainly numeric sensitivity because the problem becomes too
large and sensitive. It could be tackled with new formulations for the optimization
problem that use better heuristics for initial guesses and decompose the problem
into smaller, less sensitive, subproblems. A brute force approach is to solve the
optimization using higher precision than quadruple. As the problem stands, how-
ever, the upper limit on the number of elements has been achieved using the current
optimization strategy and quadruple precision.

It is difficult to view the splits when N is large because the size of individual PDFs
in the tails becomes too small. Therefore, a good way to visualize the split is to
plot the maximum and minimum weight, and the maximum value of the mean as
in Fig. 2a. Since only an odd number of elements are used, the weights are sym-
metric about 0 and the means are antisymmetric. Also, the weights monotonically
decrease from the center to the tails, and the absolute values of the means increase.
The maximum mean value shows how far the furthest split is from the center, indi-
cating how spread out the elements are. The maximum and minimum weights show
the difference between the weight of the central element compared to the weight
of the element at the tail end, which indicates the importance given to the central
elements compared to the ends. For the various rules, Rule 1 with σ2 = (1/N) re-
sults in the smallest σ and Rule 3 with σ2 = (1/N)1/2 results in the largest σ for a
given N. Fig. 2 shows that Rule 1 has the lowest weight of the different rules for the
central mean compared to the other rules. The element with the lowest weight, i.e.
the element that is furthest from the center, is closer to the center than for the other
rules. For a given N, as the exponent on (1/N) decreases for the various rules, the
L1 distance decreases. However, the distribution of the weights is sharper since the
standard deviation of the computed weights for a given N increases.

The benefit of generating a complete high dimensional split is seen in Fig. 3, where
a complete 9 element split is compared to a 9 element GMM created by recursively
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(a) Maximum and minimum weights, and the maximum mean as a function of
the number of elements used in the GMM.

(b) L1 and L2 distances as a function of the number of elements used in the
GMM.

Figure 2: Properties of the univariate splitting libraries for various rules for σ

splitting all the elements of a 3 element split [DeMars, Bishop, and Jah (2013)].
The standard normal distribution is better approximated, i.e. the L2 distance is two
orders of magnitude lower, and the weights and means are distributed more evenly.
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(a) Complete 9 element split
L2 = 5.3×10−6

(b) Recursive 3×3 split
L2 = 5.4×10−4

Figure 3: PDFs of the univariate 9 element GMM of the standard normal distribu-
tion using a complete and a recursive splitting technique for σ2 = (1/N), and their
L2 distances from the standard normal distribution.

3 Multivariate GMMs

Uncertainty analysis typically requires a multivariate state. Therefore, it is neces-
sary to split an initial multivariate Gaussian distribution. A univariate library can
be applied along a specified direction in order to split a multivariate distribution.
The direction choice is along a column of the square-root matrix, which is typically
found using Cholesky or spectral decomposition (Huber, Bailey, Durrant-Whyte,
and Hanebeck, 2008). The following subsection outlines the method for splitting
along an arbitrary direction.

3.1 Splitting along an Arbitrary Direction

Spectral and Cholesky decomposition are two of the most common methods of
computing the square-root S of the covariance matrix P = SST . S enables a coor-
dinate transformation to a new reference frame where the individual variables of
the initial multivariate random variable are independent and identically distributed
(i.i.d.) described by the standard normal distribution. The initial reference fame of
the multivariate state and the square-root frame where the variables are i.i.d. are
represented by FI and FS, respectively. The transformation matrix from FS to FI

is:

RI
S = S (7)

This transformation matrix includes rotation and scaling.
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Table 1: The 7-component univariate splitting library with σ2 =
( 1

N

)
Component w µ

1 0.028799777829539 −2.107361692265483
2 0.109875486136781 −1.329872113204359
3 0.222379075167735 −0.648762460764688
4 0.277891321731891 0
5 0.222379075167735 0.648762460764688
6 0.109875486136781 1.329872113204359
7 0.028799777829539 2.107361692265483

Let a be the direction along which the univariate splitting library is applied in FI .
When a is parallel to the kth column of S (a ‖ S(:,k)), and given a univariate split-
ting library mean µi and standard deviation σi, the multivariate mean and covari-
ance are provided by Huber, Bailey, Durrant-Whyte, and Hanebeck (2008):

µµµ i = µµµ +µiS(:,k) (8a)

Sk = S Sk(:,k) = σiS(:,k) (8b)

Pi = SkST
k (8c)

where Sk is a copy of S, but with the kth column multiplied by σi.

In case a is not parallel to any of the columns of the Cholesky or spectrally de-
composed square-root matrix, a square-root matrix is constructed where S?(:,1) ‖
a (Aristoff, Horwood, Singh, and Poore, 2014). A new reference frame FA is de-
fined such that the difference between FA and FS is a pure rotation and the first
axis of FA is parallel to a. Therefore, the variables in FA are also i.i.d. Finally, the
new square-root matrix and the mean and covariance matrix are:

S? = RI
SRS

A (9a)

µµµ i = µµµ +µiS?(:,1) (9b)

Pi = S?ST
? (9c)

The rotation matrix RA
S from FS to FA is found using Gram-Schmidt orthogonal-

ization. The three reference frames with the confidence bounds for the covariance
matrix and reduced variance along a are shown in Fig. 4 for a bivariate case.

A newly derived alternative method of computing the new covariance matrix is
now shown where Gram-Schmidt orthogonalization is not required. The mean and
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(a) FI: Original frame (b) FS: Intermediate
Cholesky frame

(c) FA: Desired
square-root frame

Figure 4: The unit axes of FI , x and y, and the desired splitting direction, a, in the
three relevant reference frames for a 2-dimensional case.

covariance of the GMM elements are simple analytical equations. In FS, the state
is i.i.d. Applying a univariate split along a in FI is analogous to changing the
standard deviation of the i.i.d. distribution in the â? direction from 1 to σ in Fig. 4b.
The unit vector â? is simply the direction of a expressed in FS:

â? =
S−1a
‖S−1a‖2

(10)

Reducing the standard deviation along â? is a linear transformation:

y = x−
(
xT â?

)
â?+σ

(
xT â?

)
â? = ΦΦΦx =

(
I+(σ −1)â?â?T )x (11)

where y is the variable with a standard deviation of σ in the â? direction and x is
the i.i.d. state in FS with the covariance matrix Pxx = I. The covariance matrix of
y expressed in FS is then:

Pyy = ΦΦΦPxxΦΦΦ
T =

(
I+(σ2−1)â?â?T ) (12)

Pyy expressed in FI is the covariance matrix of the ith element of the multivariate
GMM due to applying the univariate splitting library mean µi and standard devia-
tion σi along the splitting direction a. The multivariate mean and covariance matrix
are:

µµµ i = µµµ +µiSâ? (13a)

Pi = S
(
I+(σ2

i −1)â?â?T )ST (13b)

where â? is computed from Eq. 10.
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3.2 Importance of Splitting Direction using a 2D Example

It is possible to apply the univariate splitting library along any direction to generate
a multivariate GMM. However, the benefit of splitting is highly sensitive to the
choice of the direction. Using an example for visualization purposes, the sensitivity
of choosing a splitting direction is investigated on a nonlinear transformation of a
bivariate Gaussian distribution from [Haario, Laine, Mira, and Saksman (2006)]:

y1 = ax1 (14a)

y2 = x2/a−b(a2x2
1 +a2) (14b)

In Eq. 14, a and b are parameters that control the nonlinearity of the target. The
mean and initial covariance for (x1,x2) are chosen to be:[

x1
x2

]
=

[
0
0

]
Px =

[
1 0.3

0.3 1

]
(15)

To limit the number of direction choices, spectral decomposition is used to create
the splits along the two eigenvectors of the covariance matrix found in Eq. 15. Sam-
ples generated from the GMMs with splitting along the minor and major axes of
the covariance matrix are seen in the point clouds found in Fig. 5a and Fig. 5c. The
distributions are plotted as ellipses, as normal 2-dimensional covariance matrices
are usually visualized, in Fig. 5b. To visualize a GMM as a set of ellipses, the co-
variance matrix of each ellipse element is scaled by its associated weight. Reducing
the size of each element’s covariance matrix is only a visualization technique. It is
emphasized that mathematically, the weight is the probability that a random state
is generated by that particular mixture element. Multiplying the weight, αi, with
the covariance matrix, Pi has the effect of reducing the standard deviations by a
factor of

√
αi and changing the correlation, which results in a different probability

distribution.

The resulting distributions from the function in Eq. 14 are seen in Fig. 6. There
is a discrepancy between the performance of splitting along the different spectral
directions. By visual inspection of the covariance ellipses of the individual GMM
elements, better accuracy is seen for this case, by splitting along the major-axis of
the covariance ellipse.

3.3 Choosing the Splitting Direction

A Taylor series approximation improves as the interval (x− x0) reduces. The un-
certainty of the state is a measure of the spread, so applying a GMM split decreases
the size of the covariance matrix along the split direction and thus, each element
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Figure 5: Sample point cloud from the covariance ellipses of the multivariate GMM
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Figure 6: Point clouds of the resulting non-Gaussian distribution using MC and an
11 element GMM

covers a smaller domain (x− x0). However, the splits only decrease the domain
along a single direction. The choice of which direction should consider the degree
of nonlinearity each direction exhibits. However, the variance should also play a
role in the direction choice, as it is a measure of the uncertainty along a splitting
direction. Nonlinearity up to approximately the second order at the standard devi-
ation locations can be quantified using the second-order divided difference form of
Stirling’s interpolation formula [Froberg (1969)]. Stirling’s interpolation formula is
used instead of Taylor series because the Taylor series approximation is less accu-
rate further from the expansion location [Norgaard, Poulsen, and Ravn (2000)], i.e.
the mean of the original Gaussian distribution. The second-order approximation of
a univariate function f (x) about x̄ is:

f (x)≈ f (x̄)+
f (x̄+h)− f (x̄−h)

2h
(x− x̄)+

f (x̄+h)+ f (x̄−h)−2 f (x̄)
2h2 (x− x̄)2

(16)
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where h is the step size used for the interpolation. The nonlinearity along any
direction a of the multivariate function is quantified using the second term:

φφφ =
f
(
x̄+ h̃σ‖ââ

)
+ f

(
x̄− h̃σ‖ââ

)
−2 f (x̄)

2h̃2
(17)

where h̃=
√

3 is recommended so that the function evaluations are the sigma points
for the DD2. The standard deviation of the cut along the arbitrary direction a
passing through the mean is:

σ‖â =
∥∥S−1â

∥∥−1
2 (18)

where S is the square-root factor (Cholesky or Spectral decomposition) of the co-
variance matrix P.

After evaluating φφφ for all the desired directions, the maximum of some measure,
such as the p−norm, is used to rank the directions in order of nonlinearity. The
optimal direction of splitting is the direction which, considering the uncertainty
in that direction, undergoes the most nonlinearity for a desired objective. Higher
order divided differences of the function can also be used, at a higher computation
cost, to include more information about the nonlinearity of the function and its
sensitivity to the spectral directions. If the difference between two φφφ i is not large,
both directions undergo similar amounts of nonlinearity up to the second order.

For the orbit propagation problem, the function of interest is a discrete function,
which is the integration of the orbit dynamics for the desired time of flight. The
different state vector elements have different units and therefore, normalized coor-
dinates should be used such that the standard gravitational parameter of the central
body is unity. The nonlinearity measure is a relative measure and allows the user
to rank the splitting directions. Therefore, picking the number of splits and the
number of directions to split along depends on the computational budget available.

The nonlinearity measure is illustrated on the test case from Section 3.2. The accu-
racy of the GMM approximated non-Gaussian distribution is quantified using the
log-likelihood (LL) of the MC sample:

LL =
M

∑
i=1

log

(
N

∑
j=1

α j pg
(
xi; µµµ j,P j

))
(19)

where M is the total number of MC runs and xi is the ith MC sample point. The
LL of the MC sample is a holistic measure of accuracy for the propagated PDF and
has been used previously for demonstrating the accuracy of GMMs for propaga-
tion [Terejanu, Singla, Singh, and Scott (2008)]. Therefore, LL is used throughout
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the work. The covariance matrix from Eq. 15 is first transformed into a new co-
ordinate frame by using a two-dimensional rotation matrix with the angle θ . The
intial state and uncertainty are then propagated through Eq. 14. The splitting di-
rections are, however, the spectral directions of the original non-rotated covariance
matrix. Fig. 7b shows the nonlinearity measure |φφφ i|2, as a function of the chang-
ing θ . Comparing Fig. 7a and Fig. 7b shows the importance of splitting along the
spectral direction with the higher nonlinearity.
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Figure 7: The loglikelihood of the MC simulation and the nonlinearity measure of
the function with 5×105 sample points and 5 splits along ννν1 or ννν2 and increasing
rotation angle θ

3.4 Sensitivity to Univariate Splitting Library

Three different splitting libraries are generated in Section 2. Since the three li-
braries produce different means and weights, the resulting accuracy after the prop-
agation through the nonlinear function differs with the rule.

The test case from Eq. 14 in Section 3.2 is run with GMMs generated using the
different univariate libraries. The accuracy with which the GMMs capture the non-
Gaussian distribution is found in Fig. 8. The rule with σ2 = 1/N performs the best
by consistently having a higher LL than the other splitting rules. A similar behavior
is found for the test cases presented in Section 4. The rule with σ2 = 1/N gives
each element more authority due to a more uniform weight distribution across all
elements, and this leads to stronger performance for the highly nonlinear examples
considered. The higher accuracy of the library with the smallest standard deviations
per element is likely to be problem dependent, however, the rule with σ2 = 1/N
is used exclusively in the following sections, and is recommended for future use.
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Fig. 8 shows the expected trade-off between the accuracy and the number of re-
quired elements. Future work includes exploring other sigma rules not considered
currently, which can be generated using the same optimization procedure outlined
in Section 2.

(a) Split along ν1 (b) Split along ν2

Figure 8: Performance of the various univariate splitting libraries for a nonlinear
test case. Higher LL indicates a closer fit.

3.5 Multidirectional Gaussian Mixture Models

Splitting along only one direction cannot fully describe the resulting non-Gaussianity
in the propagated distribution after a nonlinear transformation. Therefore, in cases
where one direction is not sufficient, the natural extension is to apply the univariate
split along multiple spectral directions. However, it is imperative to only apply the
splits along directions that have been identified using the nonlinearity measure, and
not along all degrees of freedom. The number of splits and the number of directions
depends on the computational budget available. The resulting Multidirectional G-
MMs (MGMMs) are presented in this section.

Splitting along multiple directions is carried out in a recursive manner. After the
initial multivariate Gaussian distribution is split along the first direction, each of the
resulting multivariate mixture elements is split along the next specified direction.
The elements are again all split as a full tensor product until all specified directions
have been covered. For orthogonal directions, the order of the directions to be
split along is not important and applying the univariate library only reduces the
eigenvalue of the covariance matrix along the specified eigenvector direction.
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(a) (Nννν1 ,Nννν2) = (5,5),
ε = 0, Ntotal = 25

(b) (Nννν1 ,Nννν2) = (5,5),
ε = 0.05, Ntotal = 11

(c) (Nννν2 ,Nννν1) = (5,5),
ε = 0.05, Ntotal = 11

Figure 9: Splitting a bivariate i.i.d. Gaussian into an MGMM with and without a
minimum weight threshold and 5 elements along ννν1 and ννν2. Note that the covari-
ance matrices are multiplied by their weights for ease of visualization

The multidirectional multivariate splitting technique essentially forms a regular
grid in probabilistic space. Since the initial conditions are stochastic, there is a
probability associated with an initial condition. A nonlinear function increases the
non-Gaussianity of the initial distribution based on the nonlinearity of the function
and the size of the covariance matrix. By using the MGMM grid, the variance
along the splitting directions is reduced. As illustrated in Fig. 9a, this grid is uni-
form since there is a symmetry about the mean of the initial multivariate Gaussian
distribution.

The elements near the tails may have a very low weight when the number of el-
ements is large along a certain direction, or due to the tensor product in multiple
dimensions. Therefore, it may be beneficial to specify a minimum weight thresh-
old ε such that the weights of all the elements in the MGMM are greater than ε .
Since the computational burden of propagating an element through the nonlinear
function is not dependent on the weight, increasing ε can reduce the total computa-
tion cost with only a slight degradation in accuracy. The multidirectional splitting
with a threshold is illustrated for a bivariate case in Fig. 9b and Fig. 9c. The order
of splitting is important when the threshold is specified because the weight budget
decreases with each recursive split.

4 Numerical Test Cases

The MGMM splitting technique is now applied to two two-dimensional test prob-
lems, one six-dimensional orbit uncertainty propagation, and one ten-dimensional
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problem. The two-dimensional problems are chosen in order to visualize the re-
sults. An initial bidirectional MGMM is expressed as (N1,N2), where N1 and N2
are the number of splits along the eigenvectors ννν1 and ννν2, respectively. For the
bivariate cases, a GMM is simply an MGMM where either N1 or N2 are 1. The
univariate library used to generate the MGMMs for all test cases in this section is
Rule 1, σ2 = (1/N). The methodology and conclusions are applicable to higher di-
mensions as demonstrated by the orbit propagation and ten-dimensional problems.

The Gaussian distribution of the initial state is converted into an MGMM. Each el-
ement is then propagated through the nonlinear function. For the orbit uncertainty
propagation case, the nonlinear function is the numerical integration of two-body
dynamics over a given time period. The true final non-Gaussian distribution after
the nonlinear transformation is assumed to be the same as the result of using MC
runs. The log-likelihood of the MC samples generated by MGMMs from Eq. (19)
is used as a holistic measure of accuracy. Each of the Gaussian elements is propa-
gated through the nonlinear function using the DD2 sigma point method [Norgaard,
Poulsen, and Ravn (2000)]. However, any other technique for propagating a Gaus-
sian distribution, such as the UT or a Taylor series based method can be used. The
weights of the GMM elements are not updated after propagating. Updating weights
improves performance at the cost of decreasing ease of implementation when a first
order Taylor series approximation is used for propagating the elements [Terejanu,
Singla, Singh, and Scott (2008)]. However, no improvement is seen when higher
order propagation methods such as the UT and DD2 are used [Horwood, Aragon,
and Poore (2011)].

4.1 Conversion from Polar Coordinates to Cartesian Coordinates

The first test case is the conversion from Polar coordinates to Cartesian coordi-
nates[Julier and Uhlmann (2004)]. The initial state, covariance of the uncertainty,
and the eigenvalues and vectors of the covariance matrix are:[

r
θ

]
=

[
70

π/3

]
Px =

[
16 1.3
1.3 (π/6)2

]
λ1 = 0.1674 ννν1 =

[
0.0818 −0.9966

]T
λ2 = 16.1067 ννν2 =

[
−0.9963 −0.0818

]T
(20)

The initial conditions are chosen arbitrarily so that an MGMM is required. The
resulting non-Gaussian distribution is illustrated in Fig. 10. When Eq. 17, is used
along with the 2−norm of φφφ , the values along the 2 spectral directions are: |φφφ 1|2 =
5.5823, |φφφ 2|2 = 3.8793. Since the nonlinearity is higher along ννν1 than along ννν2, a
higher improvement is expected to be seen for splits along ννν2. However, since they
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are still similar in value, splitting along both spectral directions is likely beneficial.

Distributions sampled from the propagated MGMMs are seen in Fig. 12. The like-
lihood of an MC run with respect to an MGMM is always smaller than 1 and there-
fore, the log-likelihood from Eq. 19 is a negative quantity. A new quantity is now
defined as:

∆LL(n1,n2) = LL(n1max,n2max)−LL(n1,n2) (21)

∆LL is the difference between the LL of the most accurate GMM case (39,39), and
the LL of an arbitrary case, and should always be positive. Figure 11 shows the ∆LL
as a function of the number of splits per direction in the MGMM. As predicted by
the nonlinearity metric, splitting along ννν1 is more effective than splitting along ννν2.
However, the increase in performance due to the splitting along multiple spectral
directions is clearly seen in Figure 11. Note that the performance of an MGMM
(2,2) split, requiring 4 elements, is better than either the (1,39) or (39,1) GMMs
that each require 39 elements.

y
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−100

−50

0

50

100

Figure 10: An MC run with 5×105 points for the conversion from Polar to Carte-
sian coordinates

4.2 Non-Linear ODE

A more complicated test function is now presented, where increasing the number
of splits along only one direction does not suffice. The nonlinear function is the
solution to the following differential equation:

ẋ1 =cos(x2)sin(x1)

ẋ2 =− cos(x1)sin(x2)
(22)
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Figure 11: ∆LL of a 105 point MC distribution with respect to the MGMM with
increasing number of elements and LL(39,39) =−7.5789×105 for the conversion
from Polar to Cartesian coordinates

Eq. 22 is numerically integrated from t = 0 to t = 3 and the resulting values of x1
and x2 are used as the final values after the nonlinear transformation. The integrated
ODE solution is considered to be a discrete black box function. The initial state and
covariance matrix are:[

x1
x2

]
=

[
0
0

]
Px =

[
1 0.1

0.1 1

]
(23)

The eigenvalues and eigenvectors of the covariance matrix are:

λ1 = 0.9 ννν1 =
[
−1 1

]T
λ2 = 1.1 ννν2 =

[
1 1

]T (24)

The initial conditions are again chosen arbitrarily so that an MGMM is required.
The result of an MC run with 104 sample points is shown in Fig. 13. The resulting
distribution is highly non-Gaussian and bimodal, which favors the MGMM tech-
nique.

The nonlinearity metric using Eq. 17 results in |φφφ 1|2 = |φφφ 2|2 = 0. A 0-valued result
using the second-order divided difference implies that the function is either linear,
or it has higher-order nonlinearity at the mean of the initial Gaussian distribution.
A conservative approach in this case is to split along both spectral directions.
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Figure 12: 5× 105 points sampled from the resulting MGMMs with N1 splits a-
long ννν1 and N2 splits along ννν2, (N1,N2) for the conversion from Polar to Cartesian
coordinates

The samples from the propagated MGMMs are shown in Fig. 15. The ∆LL values
for 105 MC sample points with respect to the MGMMs are seen in Fig. 14. The
benefit of multiple splitting directions arises due to nonlinearity existing along both
eigenvectors. Fig. 15 and Fig. 14 show that an MGMM with an equal number of
splits in both directions performs better than a GMM with the total number of splits
applied along only one spectral direction.

4.3 Orbit Uncertainty Propagation

The state uncertainty for a space object in GEO is propagated using two-body dy-
namics for a flight time of three days. The initial state and Gaussian uncertainty
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Figure 13: An MC run with 104 points for the bivariate ODE
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Figure 14: ∆LL of a 105 point MC distribution generated with respect to the MG-
MM with increasing number of elements and LL(39,39) = −2.9264×105 for the
bivariate ODE

are shown in Tab. 2. The orbit is assumed to be derived from optical observations,
right ascension (RA) and declination (DEC), which in general create larger errors
in the range direction for GEO objects. The nonlinear function considered here
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Figure 15: 104 points sampled from the resulting MGMMs with N1 splits along ννν1
and N2 splits along ννν2, (N1,N2) for the bivariate ODE

is the black box integration of the two-body orbit dynamics from epoch for the
entire time of flight of three days, i.e. a discrete function. Therefore, the initial
Gaussian distribution is first converted to an MGMM and all the elements are prop-
agated for the entire time of flight. Cartesian coordinates are used to exacerbate the
non-Gaussian behavior of the post propagation PDF.

The largest nonlinearity directions (expressed in normalized coordinates), found in
Tab. 2, are along x and vy, which are the radial and tangential directions, respective-
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ly. The remaining directions have nonlinearity values that are at least three orders
of magnitude lower and therefore, do not benefit from splitting. The number of
splits along these two directions depends on the computational budget available.

Table 2: Initial state, Gussian uncorrelated uncertainty, and the nonlinearity mea-
sure in normalized coordinates for a space object in GEO

Variable Mean σ ‖φφφ‖2

x [km] 42057.9 10.0 6.1×10−4

y [km] 0 0.1 1.1×10−9

z [km] 0 0.1 1.1×10−9

vx [km/s] 0 1.2×10−4 2.8×10−7

vy [km/s] 3.0800809759824 0.6×10−4 4.1×10−4

vz [km/s] 0 0.25×10−4 1.2×10−8

The ∆LL values for 105 MC sample points with respect to the MGMMs are seen in
Fig. 16. As predicted by the nonlinearity measure, splitting along the x direction is
more beneficial than splitting along the vy direction. However, an MGMM along
both x and vy directions provides a more accurate result than a GMM along only
one of the directions.

4.4 High Dimensional Problem

The MGMM splitting technique is now applied to the ten-dimensional Extended
Freudenstein & Roth function [Andrei (2008)] to demonstrate the benefit of using
MGMMs and the nonlinearity test from Eq. 17.

f (x) =
5

∑
i=1

(−13+ x2i−1 +((5− x2i)x2i−2)x2i)
2

+(−29+ x2i−1 +((x2i +1)x2i−14)x2i)
2

(25)

The ten-dimensional state x has an initial mean and a diagonal covariance matrix
for the uncertainty with the exact values found in Tab. 3. The initial means and
variances are generated using a random number generator and then rounded to two
decimal places. The absolute value of the nonlinearity measure, Eq. 17, along the
various spectral directions is also found, and computed values are given in the last
row of Tab. 3.
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Figure 16: ∆LL of a 105 point MC distribution generated with respect to the MG-
MM with increasing number of elements and LL(39,39) = 4.8209× 106 for the
space object in GEO

Table 3: Initial mean, variance, and nonlinearity measure for the Extended Freuden-
stein & Roth function

Variable Mean σ2 φ

x1 6.19 1.67 3.34
x2 3.76 1.81 4.80×103

x3 1.94 1.27 2.54
x4 0.21 1.01 12.42
x5 1.53 1.67 3.34
x6 3.36 1.08 904.84
x7 6.67 2.40 4.80
x8 4.93 1.67 1.68×104

x9 2.33 1.35 2.70
x10 5.73 1.06 1.99×104

Spectral decomposition of the covariance matrix results in the eigenvectors being
the unit vectors of the individual univariate variables and λi = σ2

i . The last row of
Tab. 3 shows the largest nonlinearity directions are 10, 8, 2, and 6, in descending



Multidirectional GMMs 111

(a) GMM and MGMM (b) MGMM with weight threshold

Figure 17: LL of a 105 point MC distribution with respect to GMMs and MGMMs
for the 10-dimensional case

order. The nonlinearity along the other directions is considered to be insignificant.
The values of the nonlinearity measure along a given direction correspond to the
improvement in performance, shown in Fig. 17, gained by generating splits along
that direction. Since nonlinearity is present along multiple spectral directions, an
MGMM further improves accuracy compared to using a GMM. The nonlinearity
measure is a useful ranking method to find the number of splits to implement along
the spectral directions. The number of splits along direction 10 N10 is used to
calibrate the number of splits along the other directions 8, 2, and 6 because the
highest nonlinearity is along i = 10. The number of splits along the remaining
spectral directions are computed using the following equation:

Ni = odd
(

log(φi)

log(φ10)
N10

)
i = 8,2,6 (26)

where odd computes the closest odd integer to a number:

odd(x) = 2× ceil(x/2)−1 (27)

The performance of the GMMs along directions 10, 8, 2, and 6 are seen in Fig. 17,
along with the performance of the 4-dimensional MGMM. The nonlinearity mea-
sure along a direction performs well as an indicator of increase in performance
gained by splitting along that direction. Direction 10 has the highest value for
the nonlinearity measure and therefore, splitting along this direction results in the
largest increase in performance. Splitting only along any one direction has a plateau
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in performance after a certain number of splits is reached. Using an MGMM, how-
ever, results in a higher value of the log-likelihood compared to a GMM along any
of the directions.

The benefit of using a minimum threshold for the MGMM weights is seen in
Fig. 17. When a threshold of ε = 10−4 is used, approximately 6 times fewer el-
ements are required to achieve the same accuracy (LL ≈ −1.2×106) for the MG-
MM without a threshold. For the highest accuracy presented here with N10 = 17,
thresholds of ε = 10−6 and ε = 10−5 require approximately 2 times and 4 times
fewer elements, respectively.

5 Conclusion

Nonlinear functions acting on an initial multivariate state with a Gaussian uncer-
tainty are common scenarios. In the orbit uncertainty problem a Gaussian state
uncertainty is the result of most Orbit Determination (OD) and state estimation
algorithms for space objects. Accurately capturing the resulting non-Gaussian dis-
tribution after the nonlinear transformation without resorting to computationally
expensive techniques such as Monte Carlo (MC) simulations remains an attractive
ongoing area of research. The primary contributions of this paper are the extension
of the univariate GMM library to 39 elements 2, a formal extension of the GMM
concept to multi-directions, and a method to choose any split direction and intro-
duction of a nonlinearity metric to rank the importance of splitting along a certain
direction.

Univariate splitting libraries of up to 39 elements that are carefully fit in advance
are generated by minimizing the L2 distance with respect to a standard normal dis-
tribution. The library has an odd number of elements and standard deviation of all
the elements is the same, which depends on the number of elements required. In-
stead of applying the univariate library along only a single direction, the univariate
library is applied recursively along multiple directions forming a regular grid over
multiple dimensions. These Multidimensional GMMs (MGMMs) approximate the
propagated multivariate non-Gaussian distribution more accurately than if the split
is made along only one direction. A second-order divided difference is used to
measure nonlinearity in selected directions. Thus, the directions that benefit most
from splitting are identified and can be exploited. This nonlinearity merit provides
a ratio to relate the number of splits along each direction. Therefore, a practitioner
can implement the MGMM technique with the selection of just one fidelity tun-
ing parameter, as shown for a ten dimensional case. A user enforces a number
of splits along a single direction, then the number of splits in the other directions

2 http://russell.ae.utexas.edu/code/GMMsplittingLibrary.txt/
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can be chosen according to their relative nonlinearity. A threshold for the weight
further reduces the computational load by ensuring that the MGMM only contains
elements above a certain weight.

Combining the univariate library with up to 39 elements with the multidirectional
splitting results in a deterministic choice of initial states for propagation through
the nonlinear function. The number of necessary function evaluations is ultimately
a trade-off between accuracy and computational cost. The MGMM allows users to
access all regions of this spectrum, filling in the gap that typically exists between
Monte Carlos and simple linearized covariance analyses. The MGMM represen-
tation of the state uncertainty of space objects has the potential to improve the ac-
curacy of commonly used estimation and conjunction assessment techniques with
minor changes in the implementation.
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