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Integration of the Coupled Orbit-Attitude Dynamics Using
Modified Chebyshev-Picard Iteration Methods
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Abstract: This paper presents Modified Chebyshev-Picard Iteration (MCPI) meth-
ods for long-term integration of the coupled orbit and attitude dynamics. Although
most orbit predictions for operational satellites have assumed that the attitude dy-
namics is decoupled from the orbit dynamics, the fully coupled dynamics is re-
quired for the solutions of uncontrolled space debris and space objects with high
area-to-mass ratio, for which cross sectional area is constantly changing leading to
significant change on the solar radiation pressure and atmospheric drag. MCPI is a
set of methods for solution of initial value problems and boundary value problem-
s. The methods refine an orthogonal function approximation of long-time-interval
segments of state trajectories iteratively by fusing Chebyshev polynomials with the
classical Picard iteration and have been applied to multiple challenging aerospace
problems. Through the studies on integrating a torque-free rigid body rotation and
a long-term integration of the coupled orbit-attitude dynamics through the effec-
t of solar radiation pressure, MCPI methods are shown to achieve several times
speedup over the Runge-Kutta 7(8) methods with several orders of magnitudes of
better accuracy. MCPI methods are further optimized by integrating the decoupled
dynamics at the beginning of the iteration and coupling the full dynamics when
the attitude solutions and orbit solutions are converging during the iteration. The
approach of decoupling and then coupling during iterations provides a unique and
promising perspective on the way to warm start the solution process for the long-
term integration of the coupled orbit-attitude dynamics. Furthermore, an attractive
feature of MCPI in maintaining the unity constraint for the integration of quater-
nions within machine accuracy is illustrated to be very appealing.
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1 Introduction

A population of space objects estimated to have high area-to-mass ratio (HAMR)
have been reported recently [Schildknecht, Musci, Ploner, Beutler, Flury, Kuusela,
Cruz and Palmero (2004); Schildknecht, Musci, Ploner, Flury, Kuusela, Cruz, and
Palmero (2003)]. Such objects are initially found in GEO-like orbits and lat-
er are also confirmed from statistical analysis on the debris of the Fengyun-1C
breakup as well as the Cosmos 2251 fragments [Anselmo and Pardini (2010); Par-
dini and Anselmo (2009)]. The original discovery of these “kite-like” area to mass
ratio (AMR) objects with AMR larger than 1m2/kg was quite surprising, while
more studies have confirmed that a primary origin of these HAMR objects is from
breakups or surface degradation. Since most of these objects transit through the
orbits of Geosynchronous (GEO) satellite, prediction of their orbit with high ac-
curacy, or more to the point, with realistic uncertainty in their orbit, is important
for collision avoidance. It is also necessary to make long-term prediction, usually
a few days in advance, such that the required orbit maneuvers for the operational
GEO satellite can be scheduled and executed optimally. Since models of these
objects using simplistic “cannonball” drag and ignoring attitude dynamics lead to
unrealistic results, it is important to properly couple the dynamics. It is well known
that these equations are frequently stiff, and possess low frequencies associated
with orbital dynamics and high frequencies associated with attitude dynamics. We
present a computationally efficient method for long-term six-degrees-of-freedom
propagation of the state of such HAMR objects with high accuracy.

To characterize the orbits of these HAMR objects is challenging. On one hand,
most of these objects are tracked by on-ground telescope through which the optical
observations are not only sparse but also dim with time-varying light intensity (due
to the observation geometry, lighting, albedo variations, and especially, the attitude
relative to the sensor line of sight). On the other hand, the orbits and attitude of
these objects are highly perturbed by non-conservative forces and moments espe-
cially solar radiation pressure (SRP), comparable to how the orbits of the low Earth
orbit (LEO) objects could be highly perturbed by the atmospheric drag. The diffi-
culty to get quality measurements together with the highly unstable orbits of these
HAMR objects lead to large model uncertainties about these objects, including
their orbit, attitude, mass, shape, reflection and thermal properties. In addition to
these challenges, a computationally demanding task for orbit propagation of these
objects is the necessity to integrate their orbit dynamics and attitude dynamics si-
multaneously, which is the specific topic that this paper aims to address.

For a rigid space object, orbit dynamics describes its translational motion of the
center of the mass and attitude dynamics represents its rotational motion about its
center of mass. Although these two types of motion are naturally coupled via SRP,
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atmospheric drag, gravity gradient, as well as Earth’s magnetic field, the traditional
approach is to integrate the attitude dynamics and orbit dynamics separately. This
practice is well-grounded for many situations. For example, the attitude of the oper-
ational spacecraft is normally stabilized either actively or passively, so the attitude
dynamics is naturally solved separately from orbit dynamics. Additionally most of
spacecraft has a low AMR. For these objects, although the orbital motion affects
the attitude motion, the effect of the attitude motion on the orbit motion is small
and frequently insignificant, so the orbit motion can be integrated first and then we
can solve for the attitude. However, for HAMR objects these situations do not hold
and the orbit dynamics and the attitude dynamics are frequently highly coupled and
may have time-varying AMR.

Numerically integrating the coupled orbit-attitude dynamics is demanding because
the attitude dynamics usually changes on a much faster time-scale than the orbit dy-
namics. Using Runge-Kutta type of methods, perhaps the most popular numerical
integration approach, the small step size required by the attitude dynamics will have
to be adopted to integrate the orbit dynamics which makes the orbital integration
very slow. A few studies have focused on the semi-coupled approaches. Woodburn
and Tanygin propose using an Encke-type correction method to account for the ef-
fect of the attitude dynamics on the orbit dynamics, on the assumptions that the
differences between the higher order perturbations in the main orbit integration and
the Encke correction are negligible [Woodburn (2001)]. However, significant er-
rors could exist when using this approach for highly perturbed objects because the
correction is only forced on the correction step but not the full solution. In a recent
paper by Früh, Kelecy, and Jah, the orbit and attitude are integrated separately but
are recoupled according to the value of either Shannon entropy or Kullback-Leibler
divergence [Früh, Kelecy, and Jah (2013)]. For the test case of a uniform plate, the
entropy saturates after the first few integration steps and thus could not track the
attitude changes but the Kullback-Leibler divergence approach is shown to achieve
high accuracy. The methodology to pick the threshold to trigger the couple phase
and decouple phase is left as a future work in the paper. Of special interest is the u-
nified state models originally proposed by Altman that use quaternions to describe
attitude and velocity-hodograph parameters to describe the size and shape of the
orbits [Altman (1975)]. Such models have been used for tracking observations and
orbit determination [Raol and Sinha (1985); Vittaldev and Naeije (2012)]. A few
new forms have also been recently developed [Shuster (1993)]. Although the cur-
rent paper is not using the unified state models, we expect that further extension of
the present to consider these state variables would be most interesting.

In this paper, we propose using Modified Chebyshev-Picard Iteration (MCPI) meth-
ods for long-term integration of the coupled orbit and attitude dynamics [Bai (2010);
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Bai and Junkins (2011); Bai and Junkins (2011); Younes (2013); Macomber (2015)].
MCPI is a set of parallel-structured methods for solution of initial value problems
and boundary value problems, developed in Bai’s dissertation. The methods ap-
proximate the solution of the differential equations through Chebyshev polynomi-
als and then utilize Picard iterations to solve for the polynomial coefficients. MCPI
methods have proven to be computationally efficient for solving many challeng-
ing astrodynamics problems: MCPI methods are shown to be 10-100 times faster
for given RK4, RK5, RK45 while achieving 10 times better accuracy before paral-
lelization, 10 times faster than Runge-Kutta-Nystrom 12th–10th (RKN1210) using
a serial machine, competitive with Battin’s semi-analytical method to solve the
Lambert’s problem, and achieved 30 times speedup over pseudospectral method
for solving an optimal control problem. These selected results are for particular ap-
plications, and the MCPI methods require problem-specific tuning. However, the
methodology is rapidly maturing, and Macomber’s recent dissertation [Macomber
(2015)] includes methods for automatic tuning the segment intervals and order of
the Chebyshev approximations. More recently, the improved MCPI achieved one
order of magnitude speedup over Gauss-Jackson 8th order. Notice all of these are
achieved on a serial computer. MCPI is well suited for parallelization, and given
a particular computer architecture, additional orders of magnitude speedup can be
achieved. MCPI has been recognized recently as a “promising and parallelizable
method for orbit propagation” by National Research Council [Nielsen, Alfriend,
Bloomfield, Emmert, Guo, Maclay, and Saari (2012)].

As MCPI has already proven superior to a variety of Runge-Kutta methods for orbit
propagation, we choose to study the potential for computational savings when using
MCPI for long-term coupled orbit-attitude dynamics integration. Since the attitude
dynamics is represented by first-order differential equations, for which neither the
Gauss-Jackson nor RKN1210 are applicable, we compare MCPI with Runge-Kutta
methods using Dormand and Prince’s 8–7th order formulas (RK78) [Prince and
Dormand (1981)]. We emphasize that there exist other computational methods
such as the sympletic integrator which conserves the system energy [Fahnestock,
Lee, Leok, McClamroch, and Scheeres (2006)] and the dual-quaternion approach
which uses a single dual number quaternion vector to described both translational
and rotational motion but so far only has been developed for rather simple models
but not high fidelity models [Park, Park, Park and Kim (2013)]. It is the ability of
MCPI to solve general different equations that suggests it should be investigated
to solve for the coupled attitude and orbits of HAMR objects which involve large
perturbations.

The rest of the paper is organized as follows. Background for the current study
is presented in the next section. We describe the orbit dynamics and the attitude
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dynamics first, from which the coupled orbit-attitude dynamics will be illustrated.
Two sets of simulation results are shown next. First we use 1-day integration of
the torque-free motion as an example to illustrate the capability of MCPI for long-
term integration of the attitude dynamics. Second we use 10-day orbital-attitude
integration to demonstrate MCPI’s performance for long-term coupled dynamics
integration. Finally, conclusions are drawn and future work is discussed.

2 Background

2.1 Orbit dynamics

Using vector XXX = [rrr,vvv]T to represent three positions rrr = [x,y,z]T and three velocity
vvv = [ẋ, ẏ, ż]T of a space object, the differential equations governing the evolution of
the position and velocity can be written as

ṙrr = vvv (1)

v̇vv = aaa (2)

where aaa is the acceleration determined from the governing physics forces. For an
object orbiting around the Earth, aaa includes the effects from Earth gravity, atmo-
spheric drag, SRP, third body perturbations, and a few other small effects such as
tides and albedo. Since the major perturbation on HAMR objects are SRP, we fo-
cus on the Earth gravity and SRP in the current paper, leading to aaa = aaaE + aaaSRP.
Point-mass Earth gravitation model is used, such that

aaaEEE =−µµµEEE

rrr3 rrr (3)

where µE is the Earth gravitational constant and r =
√

x2 + y2 + z2.

For an object consisting of N flat plates, the acceleration due to SRP for the ith plate
surface can be expressed as
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iii
NNN +

111
333

CCCddd,iii

)
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where ûuui
S is the unit vector from the space object to the Sun, ûuui

N is the unit vector
normal to the ith plate, s is the shadow factor such that s equals to zero whenever the
space object is the in the Earth shadow and otherwise equals to one, F is the solar
flux constant (F = 4.5605 µN/m2), rAU is the astronomical unit, rSO is the distance
between the Sun and the space object, Ai is the area of the ith plate, m is the mass
of the space object, Cs,i is the specular reflection coefficient of the ith plate and Cd,i
is the diffuse reflection coefficient of the ith plate. The overall acceleration due to

SRP is aaaSRP =
i=N
∑

i=1
aaai

SSSRRRPPP.
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2.2 Attitude dynamics

The rotational motion of the space object idealized as a collection of rigid flat plates
is represented by its angular velocity and attitude. Euler equations provide the
differential equations to solve for the angular velocity, in the form

IIIω̇ωω +ωωω× IIIωωω = τττ (5)

where ωωω = [ω1,ω2,ω3] is the angular velocity of the body, I is the momentum-
of-inertia matrix with the object’s mass center as the base point for computing
the inertia elements, and τττ is the external torque on the object with the momen-
t taken about the mass center. The kinematics of the attitude can be represented
by a variety of parameters, such as Euler angles, classical Rodrigues Parameters,
and quaternions. Shuster has presented a comprehensive survey on such descrip-
tions [Shuster (1993)]. We choose to use quaternions in this paper because of its
singularity-free characteristics. One major criticism to use quaternions comes from
the challenge to maintain its unity constraint during numerical integration. How-
ever, as to be shown in the simulation section, this is not a problem when MCPI
methods are used for attitude integration. Kinematic differential equations for the
quaternions are rigorously linear and regular [Schaub and Junkins (2009)]:

q̇qq =
111
222
[ΩΩΩ]qqq, [ΩΩΩ] =


0 ω3 −ω2 ω1
−ω3 0 ω1 ω2
ω2 −ω1 0 ω3
−ω1 −ω2 −ω3 0

 (6)

where qqq = [q1,q2,q3,q4] and the constraint is q2
1 +q2

2 +q2
3 +q2

4 = 1.

The coupling between the orbit dynamics and attitude dynamics is illustrated through
Eq. 4 and Eq. 5. On one hand, the change of orbit will change the distance of the
object to the Sun, which will change solar radiation pressure and further changes
the solar radiation torque, thus effecting on the attitude dynamics. On the oth-
er hand, the change of attitude will change the projected surface area and further
change the acceleration due to SRP, thus effecting on the orbit dynamics. For ob-
jects with high area to mass ratio, the change of the SRP could be significant,
leading to the strong coupling between the orbit dynamics and attitude dynamics.

2.3 Modified Chebyshev-Picard Iteration

Original development on MCPI can found in references [Bai (2010); Bai and Junk-
ins (2011); Bai and Junkins (2011)] and more recent studies can be found in ref-
erences [Younes (2013); Macomber (2015)]. A few basic concepts on MCPI are
listed below for the convenience of the readers.
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(i) MCPI are parallel-structured methods for solving both initial value problems
and boundary value problems.

(ii) MCPI methods use Chebyshev polynomials to approximate the solutions. The
order of the Chebyshev polynomials MCPI used is called the order of MCPI.

(iii) MCPI methods normally use a much larger step size (called segment length)
than the Runge-Kutta type of methods in solving the initial value problems.

(iv) MCPI methods can solve two-point boundary value problems computational-
ly efficiently and with high accuracy without requiring shooting methods or
gradient information.

3 Simulation Results

3.1 MCPI for1-day attitude integration

Before integrating the coupled orbit-attitude dynamics, we study the performance
of MCPI for integrating the attitude-only dynamics. We consider the special case
that the body is idealized as axially symmetric and no external torques are present.
Notice the only reason we choose this special case is because the solution for this
case can be expressed in terms of circular sines and cosines, which provides the
baseline to check the accuracy of MCPI as well as to compare MCPI with RK78.
The analytical solutions for the angular velocity are [Schaub and Junkins (2009)]:

ω1(t) = ω10 cos(ωpt)−ω20 sin(ωpt) (7)

ω2(t) = ω20 cos(ωpt)+ω10 sin(ωpt) (8)

ω3(t) = ω30 (9)

ωp =

(
I3

It
−1
)

ω30 (10)

where ω10,ω20,ω30 are initial angular velocities and It is the transverse inertia with
It = I1 = I2. The solution for the quaternions are solved through Eq. 6.

We choose a flat plate with dimension of 1meter by 1meter and AMR equaling
one, leading to the mass of the plate as 1kg and the inertia of [1, 1, 10] kg·m2. The
initial angular velocity is chosen as ωωω(ttt000) = [1,1,3]T deg/s and initial quaternion
is chosen as qqq(ttt000) = [

√
2

2 ,
√

2
2 ,0,0]. Simulation results from using MCPI and RK78

are displayed from Fig. 1 to Fig. 8. Fig. 1 shows that MCPI achieves about
four times speedup over RK78 while other figures confirm that this speedup is
achieved simultaneously with a superior accuracy. Fig. 2 shows that MCPI has
two magnitudes of better accuracy than RK78 in maintaining the unity constraint
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for the quaternions. Fig. 3 to Fig. 6 compare the angular velocity errors of MCPI
and RK78, illustrating that MCPI achieved about four orders of magnitude better
accuracy than RK78. Fig. 7 and Fig. 8 compare the capability of MCPI and RK78
in conserving the Hamiltonian and energy for this torque-free motion. Again, the
better accuracy of MCPI is supported by the simulation results.

A special feature of using MCPI for attitude integration in terms of quaternions
is that the unity constraint can be conveniently maintained. This normalization
is done to provide an improved “warm start” for additional Picard iterations (via
MCPI). The normalization only affects the initiation of the MCPI implementation
of Picard iteration which is theoretically attracted to the accurate final solution
without explicit imposition of the normalization constraint. Suppose the solution at
one of the nodes obtained at one iteration is [q1,q2 ·q3,q4]. The normalized solution
to start the final convergent Picard iteration is

[
q1√

q2
1 +q2

2 +q2
3+q2

4

,
q2√

q2
1 +q2

2 +q2
3+q2

4

,
q3√

q2
1 +q2

2 +q2
3 +q2

4

q4√
q2

1 +q2
2 +q2

3 +q2
4

].

Again, this normalization is “believed” only as an approximation to improve the
“warm start” Picard iteration and the final converged iteration does not impose this
constraint. We do, however, check the constraint normalization error and other
metrics to confirm when the final convergence is achieved. We have invariably
found that the final iterations are of near machine precision magnitude and on the
tangent plane of the unit sphere constraint surface (essentially correcting the near
machine precision errors in the last warm start).

Two approaches can be adopted to realize this. We can either normalize quaternions
according to its second norm after each iteration, or we can switch between the nor-
malization iteration and the non-normalization iteration. Fig. 9 compares the CPU
time using these two approaches. “Approach 1” which normalizes at every itera-
tion takes average 25.6 seconds and “Approach 2” which normalizes at every other
iteration takes average 23.6 seconds. This is expected since the normalization can
be done simultaneously across all the nodes, thus there is computation saving from
the second approach but it is not significant. 3.2 illustrates that both approaches can
maintain the unity constraint to machine accuracy. Notice the converged iteration is
guaranteed to maintain the unity constraint, otherwise we will call a new iteration.

We emphasize that this “ad hoc” approach to normalize the quaternion is provid-
ing a more physically correct hot start for MCPI which is theoretically attracted
to the solution. This will have the consequence of initiating MCPI multiple times
from neighboring trajectories which will satisfy the norm = 1 constraint at every
node to near machine precision. The corrections can be done independently at each
node. Furthermore, MCPI makes this process more rigorous than the identical re-
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scaling when using traditional, e.g., Runge-Kutta step-by-step integrators, because
we follow each re-scale with an unconstrained MCPI correction that is theoretical-
ly attracted to the actual solution. The heuristic justification is that we insist that
our “hot re-starts” of MCPI near final convergence be from closely-neighboring-
previous MCPI iterations that satisfies the quaternion norm to machine precision.
As Picard iteration theoretically is a contraction mapping to the actual solution of
the differential equations, and the quaternion norm is simply an attribute of the
exact solution, the final MCPI solution satisfies (to high precision) both the differ-
ential equations and also the quaternion constraint. However, the traditional meth-
ods obtain the solutions first and then normalize, which evidently does not lead to
precise solutions (although the violations are usually very small).
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3.2 MCPI for coupled orbit-attitude integration

For the coupled orbit-attitude integration, we consider a 10-day integration of a flat
plate with dimension of 1meter by 1meter and its AMR equals to one, leading to the
mass of the plate as 1kg and the inertia of [1, 1, 10] kg·m2. This HAMR object is as-
sumed in a geosynchronous orbit with initial position rrr(ttt000) = [42000,0,0]T km and
initial velocity vvv(ttt000) = [0,3.0807,0]T km/s. The initial angular velocity is ωωω(ttt000) =
[0.001,0.001,0.001]T rad/s and quaternion qqq(ttt000))) = [0.5,0.5,0.5,0.5]. The specular
reflection coefficient Cs,i = 0.8 and the diffuse reflection coefficient Cd,i = 0. The
epoch is chosen as January 1, 2020, 00:00:00, at that time the geocentric position
of the Sun is calculated. We did not update the Sun’s position as well as not in-
clude the Earth shadow effect in this study. Additionally, the perturbation torque
by the solar radiation pressure is assumed to be zero, leading to the Hamiltonian of
the rotational dynamics be constant thus providing a baseline for accuracy check.
Since these assumptions are equally applied to both MCPI and RK78, adding the
constraints shall not change the computational comparison results between the two
methods. We also emphasize the numerical integration is set up in a general way
and other perturbation force and torque can be easily included.

3.2.1 Basic MCPI for coupled orbit-attitude integration

For this case, MCPI uses order 40 to approximate both the rotational dynamics and
translational dynamics. The segment length is three hours. Fig. 11 compares the
CPU time required for orbit-only integration which takes an average of 0.1 seconds
and the integration for the coupled orbit-attitude case which takes an average of
0.7 seconds. The position deviations with and without SRP effect are shown in
Fig. 12. Notice without the SRP, the two-body solution along the z axis will stay
zero but will have oscillations with the SRP. Additionally, the effect of SRP leads to
about 1000km distance errors thus it is important to be carefully taken into account.
Fig. 13 compares the CPU time required by using MCPI which takes average
0.7 seconds and by using RK78 which takes average 3 seconds, thus MCPI has
a speedup four times over RK78. Fig. 14 illustrates that both MCPI and RK78
achieve high accuracy in maintaining the Hamiltonian. The step sizes used by
RK78 are shown in its histogram form at Fig. 15, and the percentage of these step
sizes that are used by RK78 is displayed in Fig. 16, illustrating that more than 60%
of the step sizes are less than 250 seconds. Comparing with the step size of 3 hours
that MCPI uses, the speedup from using MCPI over RK78 is easy to understand.

3.2.2 More speedup from MCPI by smart coupling

A special technique that has been developed recently for MCPI is what is called
warm-start [Macomber (2015)]. The basic idea is that a low accuracy dynamical
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model can be used at the initial MCPI iterations and the high-accuracy and com-
putationally intensive dynamical models will be used only when the iteration is
in the region of its geometric convergence, thus only a few numbers of iterations.
Significant computational time can be saved as shown in Macomber’s dissertation
[Macomber (2015)]. Here we integrate the decoupled orbit dynamics and attitude
dynamics initially, and only couple the full dynamics when the attitude solution is
converging. A tuning process is required for this approach, through which we find
the threshold to couple the orbital integration and attitude integration with suffi-
cient accuracy for the current demonstration. Notice a poor threshold could lead to
instability of the iterations.

Fig. 17 compares the CPU time when using the basic MCPI as well as this warm-
start approach. The relative time saving shown in Fig. 18 illustrates this saving can
be as high as 10%. The position and velocity difference for these two approaches
are displayed in Fig. 19 and Fig.20. The position difference is in the range of
centimeter and the velocity difference is in the range of 10−3 milimeter/seconds,
which confirms that the speedup from using this warm-start approach is achieved
without losing accuracy.

We emphasize that the final solutions from MCPI through this smart preliminary
coupling approach are accurate solution of the fully coupled dynamics that again
enjoy the theoretical attraction to the exact solution of Picard iteration operating
on the fully coupled differential equations. This is different from other traditional
methods that decouples the dynamics first and then couples the dynamics to make
corrections on the decoupled solutions, and most importantly, these methods uti-
lize algorithms without a theoretical convergence guarantee. Since the approximate
coupling phase usually does not solve the original differential equations, the solu-
tions from these types of methods can be expected to have less accuracy than the
final Picard iteration solutions of the fully coupled differential equations from the
MCPI methods proposed in this paper.

3.2.3 Further speedup by reducing the position tolerance

If we loosen the accuracy requirement, more speedup could be achieved. Fig. 21
compares the CPU time when using the basic MCPI as well as the warm-start ap-
proach but with a low accuracy requirement. The relative time saving shown in
Fig. 22 illustrates this saving can be as high as 16%. Fig. 23 and Fig. 24 show the
position errors are in the range of 10km and the velocity errors are in the range of
10−4 km/s.

Finally, we summarize the CPU times for the four cases we have discussed in Fig.
25. The relative time savings using three types of MCPI over RK78 are displayed
in Fig. 26, thus MCPI methods save 70–80% of CPU time over RK78. We re-
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emphasize, because MCPI is highly parallelizable and the Runge-Kutta methods
are not, further orders of magnitude speedup is conveniently achievable if, for ex-
ample, we are doing a Monte-Carlo study to accommodate uncertainty considera-
tions. Furthermore, for Monte-Carlo studies, typically the nominal converged 6 D-
OF orbit and attitude solution can “warm start” all of the Monte-Carlo trajectories.
The individual Monte-Carlo trials can be computed in parallel, and with MCPI,
each state history propagation is itself parallelizable, therefore massive paralleliz-
able Monte-Carlo studies are possible with the details depending on the machine
architecture.
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body solution: w/ and w/o SRP
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Figure 16: Percentage of step size:
RK78
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Figure 18: Relative time saving
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Figure 21: CPU time comparison
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Figure 22: Relative time saving
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Figure 24: Velocity difference
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4 Conclusions

This paper assesses the capability of Modified Chebyshev-Picard Iteration (MCPI)
methods for coupled orbit-attitude integration. The performance of MCPI in inte-
grating the rotational dynamics is first reported through integrating a torque-free
rotation, where MCPI achieves four times of speedup over Runge-Kutta method-
s using Dormand and Prince’s 8–7th order formulas (RK78) with four magnitude
better accuracy. For the coupled orbit-attitude case, a 10-day integration of a HAM-
R object in geosynchronous orbit is studied and the computational advantage to use
MCPI is demonstrated: the basic MCPI is shown to save CPU time about 70%
over RK78; using the warm start approach through which the orbit dynamics and
attitude dynamics are integrated separately initially, but are coupled when the atti-
tude dynamics is converging, the time savings can be as high as 80%; and further
speedup is achieved if the accuracy requirement is in the range of kilometer.

Since earlier studies have proven that the MCPI methods are more computationally
efficient than other Runge-Kutta type of methods for orbit propagation, “the com-
putational savings through using MCPI for the fully coupled dynamics are expected
and should be augmented in future studies with a wider class of force models and
orbit/attitude motions”. Additionally, parallelization will lead to orders of magni-
tude of additional speedup, due to the inherent parallel structure of MCPI. Since the
performance of MCPI is dependent on both the parallel processors and the equa-
tions to solve, significant research and expertise on both the hardware and software
are required for a solid demonstration. The authors have been researching on this
aspect and are making progress and anticipate parallel implementation performance
will be reported in the near future.
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