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Modeling Impacts on Space Situational Awareness PHD
Filter Tracking
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Abstract: In recent years, probabilistic tracking methods have been becoming
increasingly popular for solving the multi-target tracking problem in Space Sit-
uational Awareness (SSA). Bayesian frameworks have been used to describe the
objects’ of interest states and cardinality as point processes. The inputs of the
Bayesian framework filters are a probabilistic description of the scene at hand, the
probability of clutter during the observation, the probability of detection of the ob-
jects, the probability of object survival and birth rates, and in the state update, the
measurement uncertainty and process noise for the propagation. However, in the
filter derivation, the assumptions of Poisson distributions of the object prior and
the clutter model are made. Extracting the first-order moments of the full Bayesian
framework leads to a so-called Probability Hypothesis Density (PHD) filter. The
first moment extraction of the PHD filter process is extremely sensitive to both the
input parameters and the measurements.
The specifics of the SSA problem and its probabilistic description are illustrated
in this paper and compared to the assumptions that the PHD filter is based on. As
an example, this paper shows the response of a Cardinality only PHD filter (only
the number of objects is estimated, not their corresponding states) to different in-
put parameterizations. The very simple Cardinality only PHD filter is chosen in
order to clearly show the sole effects of the model mismatch that might be blurred
with state estimation effects, such as non-linearity in the dynamical model, in a full
PHD filter implementation. The simulated multi-target tracking scenario entails the
observation of attitude stable and unstable geostationary objects.
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1 Introduction

The aim of multi-target tracking is to estimate the number and states of objects
in a surveillance scene, when only non-perfect sensor measurements are available.
In the multi-target tracking regime, in general, two different ways to explore this
paradigm have been followed so far: track-based approaches and population-based
approaches. The track-based approaches are intuitive, as they keep information
on each of the different targets [Bar-Shalom (1978); Reid (1979); Blackman and
Popoli (1999)]. The measurements are associated explicitly to the different targets.
However, the track-based approaches rely on expert knowledge for track accep-
tance and track rejection and cannot provide a description of the scene in the ab-
sence of new measurements. Multi-hypothesis filters (MHT) and joint probabilistic
data association (JPDA) techniques are popular representations of the track-based
approaches [Blair and Bar-Shalom (2000)].

Finite set statistics, on the other hand, seeks to represent the population as a whole
in a single random object [Mahler (2007)]. As a result, new observations influence
the whole population instead of just a single object track. This has the advantage
that a probabilistic description of the complete scenario is available and regional
statistics can be readily extracted without making heuristic assumptions. However,
as there is no explicit track association, no track history is available, which makes
the results of the filter less intuitive. In order to make the method computationally
tractable, probability hypothesis density (PHD) and cardinality probability hypoth-
esis density filter (CPHD), or Multi-Bernoulli filters became increasingly popular.

In the context of space situational awareness (SSA), the objects of interest are
Earth orbiting satellites and uncontrolled objects. Observations are mainly ground
based; only non-resolved images are available for the vast majority of objects.
The US Strategic Command currently tracks around 18,000 objects [US Air Force
(2016a,b)]; however, statistical measurements suggest a by orders of magnitude
larger number of objects of interest in the near Earth space [Klinkrad and Sdunnus
(1997)]. The tracking of those objects is crucial to ensure a sustainable use of s-
pace and to protect the active space assets. Both track-based and population-based
approaches have been explored in the solution of SSA tracking [Frueh and Schild-
knecht (2012); Frueh (2011); Kelecy, Jah, and DeMars (2012); Kreucher, Kastella,
and Hero III (2004); DeMars, Hussein, Frueh, Jah, and Erwin (2015); Jia, Pham,
Blasch, Shen, Wang, and Chen (2014); Gehly, Jones, and Axelrad (2014); Jones
and Vo (2015); Cheng, DeMars, Frueh, and Jah (2013); Cheng, Frueh, and DeMars
(2013); Singh, Poore, Sheaff, Aristoff, and Jah (2013)].

In the current publication, we want to focus on a different aspect of the PHD fil-
ter. First, the specifics of the SSA tracking scenario are illuminated. Secondly, the



Space Situational Awareness PHD Filter Tracking 173

well-known filter equations, as they are normally used, are recapitulated and the
specific assumptions that are intrinsically made are made explicit. Their applica-
bility in the context of SSA tracking and the effect of the mismatch between the
filter modeling assumptions and the SSA dynamical realities are investigated. Sim-
ulations are created for a cardinality only version of the PHD filter that estimates
only the number of targets. A ground based optical observation scenario of geosta-
tionary controlled and uncontrolled objects has been chosen. The cardinality only
PHD filter is utilized, because the effects of the modeling parameters can be shown
more easily and allow for the determination of the effects independently from the
particular state propagation and initial orbit determination method. The model as-
sumptions that are made in the derivation are identical to the ones of the full PHD
filter.

2 Tracking in the SSA regime

In the SSA regime, as in other multi-target tracking problems, tracking has to solve
three different sub-problems. First, how many objects are in the scenario of inter-
est, the cardinality problem; second, the state of each object at each time, the state
estimation problem; and third, the data association problem, which is the determi-
nation of which measurement belongs to which object. As mentioned before, the
data association is not explicitly solved in population-based tracking. In the SSA
regime, the situation arises that the movement of the objects is fully deterministic in
principle. However, the precise knowledge of all the relevant parameters influenc-
ing especially the non-conservative forces are often not at all or only incompletely
available. Such parameters could be the precise object shape, material properties,
space weather parameters, etc. The active objects may maneuver. Both the maneu-
vers (even single thrust ones) and the effects and influences of not precisely known
forces and torques, albeit uncertain, lead to a slow alternation of the orbit. In that
sense, the problem may seem easier than other multi-target tracking scenarios.

However, there are several specifics of the SSA multi-target tracking problem,
which make it significantly harder than many other multi-target tracking problems.
The measurement process and schedules and the lack of precise knowledge that is
relevant for the dynamics pose severe challenges. In general, the exact knowledge
is lacking that would allow to reliably predict the objects with small uncertainties
over longer periods of time. The thrust information and object details for high
fidelity non-conservative object-dependent force models are not available. The ob-
servation scene of interest, in the terminology of usual multi-target tracking, is the
whole area from the Earth surface (for the decaying objects) to beyond geostation-
ary orbit (42,000 km, resp. 36,000 kilometers from the Earth’s surface), whereas
the field of view (FOV) of the sensor is normally a few square degrees. Given the
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large population and the limited sensing capabilities, there are necessarily long time
intervals of 30 days or more with no observation update on single objects [Flohrer,
Schildknecht, R. and Stöveken (2005); Musci (2006); Musci, Schildknecht, and
Ploner (2004); Musci, Schildknecht, Ploner, and Beutler (2005); Oswald, Krag,
Wegener, and Bischof (2004); Potter (1995)]. The quantity of interest is classically
the object state, i.e. position and velocity. For precise modeling, theoretically also
attitude and object characterization parameters should be part of the state. Even
for the classical state definition, only part of the state is observable. In optical
observations with a single image, only two angles are measured. The situation
is only slightly better in optical observations with long exposure images or when
the information of two subsequent images are combined; then also angular rates
are available in addition to the astrometric position. Radar measurements offer the
slant range, and with larger uncertainties, the two angles. A Doppler radar also al-
lows to measure the range rate. Laser range measurements offer very precise range
measurements and angles. Prior to being able to propagate the state, either a clas-
sical first orbit determination has to be performed, which presupposes that more
than one measurement can be associated to the same object, or an admissible re-
gions approach has to be utilized. A further challenge is posed by the fact that only
non-resolved object images are available. This means that no additional informa-
tion, apart from the observed part of the state, is available for the data association
scheme. The non-linear measurement process itself is imprecise; hence, the mea-
sured parts of the non-resolved object state bears uncertainties. For more details on
the uncertainties and probability of detection of optical sensors see [Frueh and Jah
(2013); Sanson and Frueh (2015, 2016)]. Fig. 1 shows an optical object image and
its spread over the pixel grid.

Figure 1: Optical image of geostationary object.
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(a) (b) (c)

Figure 2: (a) and (b) examples of true object images, (c) example of cosmic ray
trace (ZIMLAT, University of Bern AIUB).

Furthermore, not all detections are true detections. Clutter contaminates the mea-
surements. In optical measurements, e.g. cosmic ray events contaminate the mea-
surements; they cannot readily be discriminated from true measurements, as can
be seen in Fig. 2. Because the objects move relative to the star background and
their relative motion is a priori not known, simple stacking techniques to filter out
cosmic ray events completely, cannot be used. Alternatively, cosmic filters can be
applied to at least reduce the number of clutter measurements [Frueh and Schild-
knecht (2012)].

(a) (b)

Figure 3: (a) five subsequent images of the same object, spaced by 30 seconds, (b)
five geostationary objects in front of star background (ZIMLAT, University of Bern
AIUB).

Not every time that the object is actually in the field of view it is also detected.
The signal can be below the noise level or e.g. occultation occurs. The attitude
motion of objects can be very rapid, leading to large brightness changes in short
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time intervals; one example of this is shown in Fig. 3a. Occultation in optical ob-
servations occur when the object is in front of a star, as illustrated in Fig. 3b, which
shows five geostationary objects in front of the star background [Frueh (2011)].
This illustrates how easily occultation can occur in regular observations.

3 PHD filter and Cardinality only PHD filter

Figure 4: Derivation and data flow steps of the PHD filter.

Instructive derivations of the PHD filter can be found in [Mahler (2007); Houssineau,
Delande, and Clark (2013)]. Gaussian mixture closed-form PHD filter derivations
can be found in Clark, Panta, and Vo (2006); Vo and Ma (2006). Closely following
the derivation in [Houssineau, Delande, and Clark (2013)], the formulation of the
probability generating functionals (PGFls) F are used to describe the multi-object
population and then differentiated in order to find the first-order moments.

A PGFl is a mapping of an arbitrary function h : X → [0,1], generated by a series
of probabilities pΦ, associated to a point process Φ:

F(h) = ∑
k≥0

∫
X
(

k

∏
i=1

h(xi))pΦ(x1, ......,xk)dx1....dxk = E[∏
x∈Φ

h(x)], (1)

where xi are the different realizations of the point process in the space X , in our case
the state space and the states of the different possible object realizations. A state is
defined as position and velocity of the object. E[] is denoting the expectation value.
It can easily be seen that F(0) = pΦ({0}), which is the pdf in the absence of any
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objects (empty set), and F(1) = 1. Fig. 4 shows the differentiation and data flow
steps of the PHD filter.

For the prediction step, the PGFl has the following form:

Ft(h) = Fcrea(h) ·Ft−1(1− psur(xt−1)+ psur(xt−1)
∫

X
h(xt)T (xt|xt−1)dxt), (2)

where Ft−1(h) is the PGFl describing the population at the previous time step,
Fcrea(h) is the PGFl describing the object creation process, psur is the probabili-
ty of survival, T (xt‖xt−1) is the state transition from the state at t− 1, denoted as
xt−1, to the time t, denoted as xt. x is the set of the individual states of all objects.
Eq. 2 is derived as the superposition of the surviving objects Fsur(h) and the newly
created ones Fcrea(h). xt = {x1, ...,xk}t describes the set of the states of the objects
at a given time t. It has to be noted that the PGFl is defined on the single object
state.

In order to arrive at the final simple form shown in Eq. 2, it is assumed that the
targets are independent (A1) and that the newborn targets and the surviving ones
are independent (A2); the probability of survival psur is assumed to be the parameter
in a Bernoulli process (A3). A Bernoulli process Ω can be defined as follows. For
a spatial probability density function f (x) (

∫
f (x)dx = 1):

Ω = φ with a probability 1− p (3)

Ω = {x} with a probability p f (x) (4)

for a probability parameter p, which can take values between zero and one. φ is
the empty set. In the concrete case, this means the target either survives with a
probability psur, with a state distributed according to f , or dies with a probability
1− psur. That completely describes the survival-dying process statistically.

The PGFl of the measurement process and the objects can be expressed as:

Fζ ,t(g,h) = Gclut(g) ·Gt((h(1− pd(xt)+ pd(xt)
∫

g(z)L(z|xt)dz)), (5)

with the arbitrary functions h,g : X→ [0,1]. Gclut is the PGFl of the clutter process,
pd is the probability of detection, L is the likelihood function, and z is the measure-
ment. In the derivation of Eq. 5 it is assumed that the measurements are produced
independently (A4), the probability of detection pd can be modeled a Bernoulli
parameter (A5), and that the clutter process produces measurements independently
from the actual objects in the scene (A6).

Utilizing Bayes’ rule and the fact that the actual number of measurements Z =
z1,z2, .....,zn (clutter and real object measurements) the sensor has received is known,
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the PGFl of the data update, derived as the directional derivative of the PGFl in E-
q. 5, has the following form:

Ft|ζ (h|Z) =
dnFζ ,t(g,h;dz1,dz2....dzn)|g=0

dnFζ ,t(g,1;dz1,dz2....dzn)|g=0
(6)

In order to derive the first moments, it is utilized that the first order moment density
is the first-order directional derivative of the corresponding PGFl:

µ(r) = dF(h;dr)|h=1 (7)

This leads to the following filter equations for the first-order moment densities:

µt(xt) =
∫

psur(xt−1)T (xt|xt−1)µt−1(xt−1)dxt−1 +µcrea(xt−1), (8)

µt|ζ (xt|Z) = (1− pd(xt))µt(xt)+
m

∑
z=1

pd(xt)L(z|xt)µt(xt)∫
pd(xt−1)L(z|xt−1)µt(xt−1)dxt−1 +µclut

,

(9)

where µcrea represents the first moment of the object creation. In order to derive
these closed-form expressions, one has to assume that the predicted targets is de-
scribed by a Poisson point process (A7) and that the point process describing the
number of clutter measurements can be modeled as a Poisson process, too (A8).

A simplified form of the PHD filter is the cardinality only version of the PHD filter,
which only solves the cardinality problem (not to be confused with the Cardinality
PHD filter, CPHD, which also, in addition to the first-order density, propagates
the cardinality distribution of the random finite set. The filter equations for the
cardinality only PHD filter are the same as in Eq. 9, except for the state estimation
part.

µt = psurµt−1 +µcrea, (10)

µt|Z=m = (1− pd)µt +m · pdµt

pdµt +µclut
, (11)

where m represents the number of measurements.

4 Discussion of the Premises and Assumptions

4.1 Independence of Objects

In the regime of SSA, the assumption (A1) that the objects are independent is most
of the time fulfilled. Independence means that the dynamics of the objects are not
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coupled; that is, one object does not influence the dynamics of the other. The single
target differential equation can be written as:

ẍ =−GM∇V (x)−G ∑
k=1,2

Mk

[
x−xk

|x−xk|3
+

xk

x3
k

]
+∑

l
al (12)

where x is the geocentric position of the object, G the gravitational constant, M
the Earth mass and V (x) the Earth gravitational potential, third body gravitational
perturbations of the Sun and Moon (k=1,2) with the states xk. Finally, ∑a is the
sum over all non-gravitational accelerations acting on the satellite. Popular non-
conservative perturbations include solar radiation pressure and drag. An object
interdependence could only be introduced via those accelerations; realistically, this
could be the case for decaying objects and drag wake effects. A further case is
on-orbit collisions at time scales where the dynamic effects from the collisions are
still dominating.

4.2 Independent Newborn and Surviving Objects

The assumption (A2) that the surviving and newborn objects are independent is
an assumption that might be in conflict with the real dynamical situation in the
near Earth space. For sure, there is a weak coupling between the surviving targets
and new launches, as new launches in part tend to be motivated to refurbish old
assets. However, the dead objects still remain in orbit for extended periods of
time. More crucial is the object creation that is not caused by new launches but via
satellite aging and on-orbit collisions. Following Kessler and Cour-Palais (1978),
the collision rate between satellites can be expressed as:

dC
dt

=
1
2

∫
σ

2 · v̄ · ĀdV, (13)

where σ is the spatial density created by the other objects in the volume element
dV , v̄ is the average relative velocity, and Ā is the average cross sectional area.
Although Kessler’s theory might be controversial in some of his conclusions, the
source of debris creation from collisions and impact motivated break-up is valid.
Hence, there is a strong and direct coupling between the surviving targets. As with
the assumption (A1), a violation can be found in times of tracking through collision
events.

4.3 Probability of Survival

Assumption (A3) says that the object either survives with a well-defined probability
value, or it dies; probability of survival is represented as the parameter of a (con-
stant) Bernoulli process. Often, in the use of a PHD filter, this quantity is defined



180 Copyright © 2016 Tech Science Press CMES, vol.111, no.1, pp.171-201, 2016

as a constant parameter; however, there is no restriction to make it time varying,
which is more appropriate for the SSA problem. Object death is only immediately
relevant in the strictest sense for objects in decaying orbits; however, sensing limits
should not be neglected. In the absence of collisions, the model for the probability
of survival can be modeled as the following in the absence of collisions:

psur =

{
0, for rper− ε > ρhi(SNRmax)∨ rap +−ε < ρlo(SNRmax),

1, otherwise.
(14)

If the perigee rper = (1− e)a (eccentricity e, semi-major axis a) is higher than the
upper bound sensing limit, of one or a combined sensor suite, ρhi(SNR(t)), or the
apogee rap = (1+e)a is lower than the lower bound sensing limit ρlo(SNR(t)), the
object has left the sensing scene. No new measurements on the object can safely
be expected; it hence is dropped. A precaution against orbital uncertainties can be
made with an offset ε . A good choice of ε then could be defined using the three
sigma bound in eccentricity ∆e and the three sigma bound in semi-major axis ∆a as
ε = ∆a+2∆a · e. The lower sensing limit might coincide with the Earth’s surface.
One could imagine the situation in which a target is sought to be kept alive although
no new measurements can be expected. In that case, a maximum time span since it
has left the scene (apogee, perigee condition) can be put as an additional constraint.
It has to be noted that the detection limit depends on the signal-to-noise ratio (SNR).
In a conservative approach, the maximum signal to noise ratio (SNRmax), in case
it is known, should be used, which occurs for minimum phase angle and zenith
observations under best conditions. More details on the SNR computation can be
found in section 4.5. The probability of survival model as proposed here is hence
linked to the probability of detection and can be written as:

psur =

{
0, for pd(t) = 0 ∀ t,
1, for pd(t) 6= 0 for any t.

(15)

Theoretically, one could also take the specific sensor scheduling scenario into ac-
count, which might eliminate further objects; however, it would mean that the sens-
ing schedule can be predicted for all times and excludes detections of objects under
potentially growing ∆a and ∆e.

The problem of object death in its current form in collisions that destroy the parent
object is an instantaneous process that is hard to predict given the state uncertainties
in the state propagation. Even when a collision seems certain, it is almost impossi-
ble to predict if the parent object remains sufficiently intact to allow for a survival
in the classical sense, especially as object sizes and potential overlap in the colli-
sion are hardly known. However, as stated above, assumption A1 and A2 would
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be already violated in the case of a collision. As fatal on-orbit collisions are (for-
tunately) still very seldom events, with a combined reported and suspected number
of five in the past sixty years of space fairing, see Klinkrad, Wegener, Wiedemann,
Bendisch, and Krag (2006) and references therein, and best measures are taken to
prevent further collisions, probability of survival even when taking collisions into
account is still practically one for non-decaying objects within the sensing realm
of the sensor suite. This means, even when processes like spawning are integrated
in the filter process, it is extremely challenging to incorporate it without a specific
trigger or external knowledge, because of the evanescent probability.

4.4 Independence of Measurements

Assumption (A4) requires independence of the measurements. Here, one needs
to discriminate between optical measurements and radar measurements. In optical
measurements, the measurement is the astrometric position (two angles, such as
e.g. right ascension α and declination δ ). A potential coupling of the measure-
ments of different objects that are in the same observation frame is given via the
common noise level and the readout process. However, as the background noises
are dominated by other celestial sources, such as zodiac light and the background
stars and atmospheric scattering, this effect is negligible. Extracting the velocity
information from two subsequent frames introduces a huge dependence between
the two subsequent measurements:

α(t2)−α(t1)≈ α̇ δ (t2)−δ (t1)≈ δ̇ for t2− t1 << εt , (16)

which is often done for two measurements of the same object that are very close
in time together (difference only εt , a small time step relative to the orbital period
of the object in question). The dependence can be circumvented in counting the
two adjacent measurements only as a single angle and angular rate measurement
(α(t1),δ (t1), α̇(t1), δ̇ (t1)) and not reusing the astrometric position measurement at
time t2. Alternatively, angular rates may also be extracted from single exposures.
The situation is different for radar measurements. Radar detection methods require
coherent pulse to pulse integration, computing the match-function of a set of range
and velocity values, see [Markkanen J. (2006); Krag, Klinkrad, Jehn, L.Leushacke,
and Markkanen (2007)]. Unlike in the optical case, those are normally treated as
a single measurement, hence leaving the dependence of the measurements in the
data, when they are interpreted the traditional way.

4.5 Probability of Detection

Assumption (A5) states that the probability of detection is modeled as the param-
eter of a Bernoulli process, hence that the object is either detected with a given
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probability or not. The probability of detection is directly dependent on the signal
to noise ratio (SNR) [Frueh and Jah (2013); Sanson and Frueh (2015, 2016)] and
time-varying. Albeit it does not contradict the derivation of the PHD filter directly,
the probability of detection is often modeled constant, which does not match the
SSA situation. Moreover, very low probabilities of detection can occur, which, by
construction, the PHD filter has difficulties to deal with.

In order to model the probability of detection correctly, all light that is received
at the detector has to be known, and how the detector converts it, and how the
signal evaluation process is performed. Albeit, those steps are simple, they are
often overlooked. The following discussion can in parts be found in [Sanson and
Frueh (2016); Frueh and Jah (2013); Sanson and Frueh (2015)]. The signal from
the object is dominated by the observation geometry at the time of the observation,
the object geometry, and surface properties. In the derivation here, the focus is
placed on indirect illumination by the sun; however, the results are easily adapted
to active illumination, by shifting the place and strength of the source accordingly.

4.5.1 Object Irradiation

The reflected irradiation I at the location of the observer in [W/m2], is:

IOBJ := IOBJ(white light) =
∫

ISun(λ )
A

x2
topo
· Ψ̄(λ )dλ ≈ I0 ·

A
r2

topo
·Ψ (17)

ISun is the irradiation of the sun at the location of the object for a given wavelength
λ . In general, ISun(λ̄ ) · ∆λ may be approximated with the solar constant, I0 =
1367.7W/m2; to be more precise, the deviation from the one astronomical unit
scaling should be taken into account. λ̄ would be the mean wavelength. The mean
should be chosen as the mean of the sensing spectrum of the sensor at hand. A is
the complete area off which the light is reflected, rtopo is the topocentric distance
(distance object to observer), and Ψ is the phase function. In the approximation, the
precise solar spectrum and the spectral response of the object has been neglected
and a combined white light response is modeled. For filter measurements, or color
CCD sensors, the correct spectral response has to be taken into account. The phase
function depends on the object properties, the shape and reflection properties; it
defines how the light is reflected off the object for a given incident angle of the
light and angle of observation. Ψ can be defined as:

Ψsphere =
I(α)

I(0)
=

∫ π

2
α− π

2
frµ0µ sin(θ)dθdφ∫ π

2
−π

2
frµ0µ sin(θ)dθdφ

(18)



Space Situational Awareness PHD Filter Tracking 183

µ0 is the incident light direction, µ is the outgoing observer direction, and α is the
phase angle between the incoming flux and the direction of the observer. In general,
the bidirectional reflection model of choice can be applied. In the context of this
paper, the surfaces are modeled as a mixture of Lambertian, diffuse reflection and
absorption is adapted. For a Lambertian reflection fr =

1
π

. For some simple shapes,
closed-form solutions for the phase function can be obtained, such as the sphere;
without loss of generality, the observer can be placed in the xy plane of the sphere;
defining µ0 = sinθ cosφ and µ = sinθ cos(φ −α) leads to the well-known result,
see Wertz (1978):

Ψsphere =
Cd(λ )

π
(sinα +(π−α)cosα) (19)

for a diffuse reflection parameter Cd(λ ). α would be the classical phase angle
(angle between observer, object, sun). In general, real objects are modeled for a
mixture between e.g. specular, Lambertian reflection, and absorption. In gener-
al, Cd +Cs +Ca = 1 for opaque materials. Specular reflection on a sphere is not
taken into account here as classical glints cannot be caught from ideally spherical
space objects. Glints are only possible from flat surfaces. Spherical surfaces always
return light to the observer as long as they are not in the Earth shadow or the illumi-
nation source is exactly opposite to the observer. For a flat plate, the integrals over
the hemisphere have to be replaced by the integral over the illuminated surface, and
are hence very simple. µ0 = cosβ and µ = cosγ for the flat plate case, where β is
the angle between the direction to the illumination source, S, and the normal vector
of the surface, N . γ is the angle between the observer O and the normal vector:

Ψflat(λ ) = cosβ

[
Cd(λ )

π
cosγ +

τ ·Cs(λ ) · x2
Sun

a2
Sun

]
, (20)

τ =

{
1 for cos(0.25deg)≤ cosδ

0 else
(21)

where δ = arccos
( O+S
|O+S| ·N

)
, τ is the specular reflection parameter, where 0 <

arccos(S ·O)< π/2. Cs(λ ) is the wavelength dependent specular reflection param-
eter. The specular reflection depends on how much of the solar disk is reflected off
the surface, where aSun is the radius of the Sun and xSun is the distance from the
object to the Sun. No limb darkening effects have been accounted for.

4.5.2 Celestial Background Irradiation

Besides the irradiation of the object, other background sources also enter the de-
tector. The irradiation of the object is not the only light that is reflected towards
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the observing sensor. In optical observations, several background sources, such as
zodiac light, direct and stray moonlight, atmospheric scattering, and atmospheric
glow, may be taken into account. Intensive studies on the background sources and
tabulated values can be found in [Daniels (1977) Allen (1973)]; application to SSA
observations can be found in Frueh and Jah (2013).

For celestial background sources Eq. 17 has to be adapted as the following:

ISKY,i := ISKY,i(white light) =
∫

Isky,i(λ )dλ ≈ Ii(λ̄ ) ·∆λ , (22)

Ii(λ ) denotes the wavelength dependent exact irradiation values of the different
sources. The signal expression in the following equations are derived using the
approximation in Eq. 22 at the mean optical wavelength of 600nm.

Airglow spectral radiation, IAG(λ ), is the faint glow of the atmosphere itself, which
is caused by chemiluminescent reactions occurring between 80 and 100 km. The
irradiation values can be directly computed from the irradiation values Ji, as shown
in the subsequent equations. Irradiation values are well documented in literature,
e.g. in [Daniels (1977) Allen (1973)]. Atmospherically scattered light is the sum of
all light that is scattered by the atmosphere. Both can be modeled as the following:

IAG,AS =
∫

s2 · Ji(λ )dλ Ji = JAG,JAS (23)

IAG ≈ s2 ·1.42 ·10−14 [W/m2] (24)

IAS ≈ s2 ·1.57 ·10−15 [W/m2] (25)

where s is the angle under consideration, in case of the telescope. It can be chosen
to be the field of view (FOV) of the sensor, a field averaged background would
then be derived. This is legitimate for small to medium sized FOVs; for wide
field telescopes, this approach is not recommended. The most precise modeling is
achieved when s is chosen to be the angle that is integrated into a single pixel.

Diffuse galactic light is scattered sunlight by small particles concentrated in the
ecliptic. It can be modeled as the following:

IGAL =
∫

s2 · JGAL(λ )exp(−β ·180/(15 ·π))dλ , (26)

IGAL ≈ s2 exp(−β ·180/(15 ·π)) ·2.12 ·10−15 [W/m2] (27)

where JGAL is the spectral irradiation at zero galactic latitude (β ). Zodiac light is
the diffuse stray light from the sun, which is visible in the night sky even long after
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sunset:

IZODI =
∫

s2 · JZODI(γ,δ ) ·
JSun(λ )

ESun
dλ , (28)

IZODI ≈ s2 · JZODI(γ,δ ) ·5.0 ·10−15 [W/m2]. (29)

γ,δ are the longitude and latitude in ecliptic coordinates and JZODI(γ,δ ) is the total
irradiation per unit angle. As zodiac light can be by far the strongest background
source and has a large variability, the use of the exact tabular values for the total
irradiation is recommended.

Another major light source is the faint stars in the background. One way to in-
clude stars is to include them at the exact position as they appear in extensive star
catalogs. However, this is a very time consuming procedure. Tables exist with
the number of stars of given photographic magnitudes, see [Frueh and Jah (2013);
Allen (1973)]. Using these, they can be converted to radiance values, using the
known spectral distribution of faint stars, as in the case of the galaxies. The conver-
sion is done in the blue wavelength (440nm) to have the best equivalence with the
photographic magnitudes denoted by m. This leads to the spectral star irradiation:

ISTAR(λ ) = n · s
2 ·32400

π2 ·6.76 ·10−12−0.4·m JSTAR∫
JSTARdλ

(30)

ISTAR ≈ n · s2 ·10−0.4·m ·3.0 ·10−16 [W/m2] (31)

where n is the number of stars in the assigned bin. The irradiation values correspond
to the irradiation without an atmosphere. Sometimes, one is not interested in a
specific wavelength, but the total radiation; in this case, one can integrate or use
approximations for the white light.

4.5.3 Sensor response

The response to any of the incoming celestial irradiation, from the object of interest
or from any of the celestial sources, can be modeled as the following:

S := S(white light) =
∫
(D−d)

λ

hc
I(λ ) · exp(−τ(λ )R(ζ ))dλ

≈ (D−d)
λ̄

hc
exp(−τ(λ̄ )R(ζ )) · I(white light) (32)

with the speed of light, c, Planck’s constant h, the area of the aperture, D, and the
obstruction of the aperture, d. R(ζ ) is the van Rhijn factor, which can be approx-
imated as 1

cosζ
to first order and describes the deviation from the zenith by angle
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ζ and the additional air mass and thickness that has to be accounted for in low el-
evations [Daniels (1977)]. A very simple atmospheric extinction model has been
adapted, with τ being the atmospheric extinction coefficient. Note that atmospheric
extinction is zero for the airglow and atmospheric scattering signals, because they
are created in the atmosphere rather than being extinct via passing through it.

The count rate is derived from the signal via the time integration, dt, during which
the sensor is able to catch photons:

C =
∫

S(λ ) ·Q(λ ) ·dt ≈ S ·Q(λ̄ )∆t, (33)

where Q is the quantum efficiency. The photon count is a statistical process. A
model for the signal and subsequent count at the detector is a Poisson distribu-
tion. The approximation neglects the shutter function itself and assumes that the
integration time is the same over all the field of view of the sensor. The signal,
however, is spread over several pixels, which report their count rates independent-
ly. The count rate C is hence interpreted as the mean of a Poisson process. Strictly
speaking, quantization already happens at the signal level. However, this is without
consequences, as only in the count, the time averaging takes place. The count rates
are then transformed via the so-called gain, g, from the count level to the analog
to digital units (ADU) that are read out electronically. The gain is not complete-
ly linear over all counts of the sensor, although a linearity of the gain is desired.
Non-linearity normally occurs when reaching the saturation level of the sensor. In
the process of the transformation, a truncation takes place as normally only integer
ADU values can be reported.

For simplicity, it is assumed that the complete irradiation is counted in a single
pixel. Depending on the pixel size in combination with the setup of the optics, the
Airy disk diffraction pattern that is formed is counted in several adjacent pixels.
In this case, normally only the pixel counts of the first maximum are taken into
account, which is around 84% of the total count of the complete diffraction pattern.
This is especially true if the object is moving relative to the sensor.

The sensor itself introduces additional counts, so-called dark noise, that stem from
electron fluctuations that occur even when the shutter remains closed. The readout
process itself creates readout noise.

4.5.4 Probability of Detection

The probability of detection PD can be defined as the following (for further details,
please also see Sanson and Frueh (2015, 2016)):

PD = P(SOBJ/N > t), (34)
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where SOBJ is the object signal, modeled as the mean of a Poisson distribution, and
N is the cumulative noise. Again, it is assumed that the signal is integrated in a
single pixel. Following the derivation of [Merline and Howell (1995)], the noise
can be represented as:

N =

√
SOBJ +(1+

1
nB

) · (SSKY +SDARK +SR +SU), (35)

N =

√
COBJ +(1+

1
nB

) · (CSKY +CDARK +C2
R +CU), (36)

where SSKY is the variance of the celestial background sources, modeled as a Pois-
son distribution with the count rate as the parameter CSKY . SDARK is the mean of the
dark noise, modeled as a Poisson distribution with the parameter CDARK , S2

R is the
readout noise, which by the central limit theorem is modeled as Gaussian distribut-
ed with the variance of a Gaussian distribution, C2

R, and SU is the truncation noise
variance, which approximately can be modeled as uniformly distributed, rendering
the variance CU = g2/12, where g is the gain. nB is the number of pixels that have
been used in the background determination. For the derivation of the CCD equa-
tion, including improved modeling for cases, when the source is not integrated in a
single pixel, see Sanson and Frueh (2015, 2016). Inserting it into the probability of
detection formula:

PD = 1−P(SOBJ < t ·
√

SOBJ +(1+1/nB) · (SSKY +SDARK +SR +SU)), (37)

It can be rewritten as:

PD = 1−P(SOBJ < t ·
√

COBJ +(1+1/nB) · (CSKY +CDARK + ε1 + ε2)) ·
P(C2

R = ε1) ·P(CU = ε2), (38)

which allows to evaluate the different distributions in a cumulative density function
for the Poisson distributed parts and conditional probability density function on the
remaining terms:

PD = 1−∑
ε1

∑
ε2

Γ(bB+1c,COBJ)

bBc!
· 1√

2πC2
R

exp(
ε2

1
2 ·CR

) · 1
g
, (39)

B := t ·
√

COBJ +(1+1/nB) · (CSKY +CDARK + ε1 + ε2), (40)

where bc is the floor operator and Γ is the gamma function. As the dark and trun-
cation noises often are small, they may also be neglected, leading to the following
approximation of the probability of detection:

PD ≈ 1− Γ(bB+1c,COBJ)

bBc!
, (41)
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where B is defined as in Eq. 40, but with ε1 = ε2 = 0.

4.6 Clutter

Assumptions (A6) and (A8) focus on the clutter process. The assumption that clut-
ter and measurements are produced independently is easily fulfilled, as the physical
processes that are generating the object signal and the clutter signal, such as the
cosmic ray events in the optical observation, are independent. The signal of the
object is the irradiation from the object, either stemming from the sun or from the
observation station and is radiated back to the observer. Clutter, such as cosmic ray
events, are charged particles that accidentally impinge on the sensor. No part of the
measurement process excites or influences the charged particles that arrive at the
detector. Cosmic ray events are a textbook example of a Poisson process that de-
scribes the arrival of the charged particles at no distinct order at this time integrated
process.

4.7 Predicted Object Distribution

Assumption (A7), that the predicted object distribution is a Poisson process, is one
of the most crucial ones. As we have seen in Eq. 12, the underlying dynamics
is of course purely deterministic, even though sometimes, exact knowledge on al-
l parameters is missing. Together with the way objects are created or die, single
outbursts in the population in crucial collisions, and a few launches and decays,
the object population cannot readily be suspected to be in a close resemblance of a
Poisson process. In the previous section, no weighting is applied in the filter equa-
tions, which means the filter is highly responsive at each new time step. A Poisson
process implies that the actual number of targets can jump, same as it accurately
applies to the clutter population that is detected. Actual jumps in the factual popula-
tions only happen in collisions, which are rare and problematic as discussed above
already. The actual population is concentrated in certain orbits and not highly vari-
able, hence the predicted object population on the observation frames is highly de-
pendent on the specific observation scenario. In actively tracking specific objects,
often called follow-up tracking, in contrast to so-called blind tracking or surveying,
it is expected that the objects that are visible in the observation frames is more or
less constant.

It can be seen that the filter is put to its edges already with the birth and death
processes, which takes on extreme values and does not settle on the middle ground.
This is in connection to the Poisson process assumption for the object population,
which might be highly inadequate.
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5 Simulation Results

Simple tests to show the impact of the modeling parameters on the filter perfor-
mance have been run. Five different variations of the same scenario have been
created. For the tests, the cardinality only version of the PHD filter has been used,
hence only the number of targets is estimated. In the filter there is hence no explicit
state dependence. As explained above, this makes the analysis independent of spe-
cific solutions for problems of first orbit determination and propagation. However,
it already illustrates the general filter performance under model mismatch. In or-
der to adequately supply the Cardinality only filter, all state dependent values are
assumed to be identical for each target.

The scenario is chosen as the optical observation of the ASTRA satellite cluster.
The ASTRA cluster is located in the geostationary ring. It is assumed that the
telescope is in staring mode and the objects are in the field of view at all times, dis-
played in Fig. 3b. The scenario comprises of 100 seconds and measurements every
10 seconds. The phase angle can be assumed to be nearly constant during such a
small time period, the solar panels are roughly aligned with the sun direction, and
a three degree offset is assumed. The direction to the observer is 80 degrees. The
angles are assumed fixed in the filter. Motion of the sun and the observer are negli-
gible in the 100 second scenario. ASTRA satellites are at a distance of 36,000 km.
The solar panel area (which dominates the reflection) can be assumed to be around
45 square meters (based of the dimensions of retired ASTRA 1B). Solar panels
have an absorption coefficient of around 0.3, a specular component of around 0.5,
and a diffuse component of 0.2. Under these observation conditions, the ASTRA
satellites have a magnitude of 12. ASTRA satellites are large space objects and
they appear very bright on the night sky under small observation angles. The cur-
rent large observation angle is chosen to illustrate the effect of different sensors
even on relatively large, stabilized (constant angle to the sun) objects. In the simu-
lations, a gain of 0.1 is assumed, a readout noise of 100 ADU, a sky background of
5,000,000 ADU, and an exposure time of 1 second is modeled; for the background
estimation, it is assumed the whole detector of 2000 by 2000 pixels have been used.

Each scenario is run 1000 times. In order to measure and illustrate the performance,
the average of all runs is plotted, and the mean sample error can be evaluated:

E(t) =
1
n

n

∑
i=1

mi(t)− m̂i(t), (42)

where m(t) is the true number of objects, five in the chosen scenarios, m̂(t) is the
estimated number of targets, and the number of runs in the simulation, n, is 1000.
It has to be noted that within the filter, non-integer values for the number of objects
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are allowed. Accordingly, the sample variance is computed:

var(t) =
1
n

n

∑
i=1

(mi(t)− m̂i(t)−E(t))2 (43)

Scenario 1 is the baseline scenario. No clutter is assumed, the number of true ob-
jects stays constant combined with a high probability of detection of 1.0, which
corresponds to a large aperture telescope observation of one meter. In the second
scenario, realistic large aperture observations are assumed with a high quality cam-
era, which means that clutter is also present. In the third scenario, a small aperture
is assumed and camera performance parameters are slightly decreased, where either
of those factors decreases the probability of detection. Clutter is also present. In
scenarios 4 and 5, variable probability of detection is modeled, which corresponds
to the ASTRA satellites after attitude control has been disabled. Natural torques
lead to attitude motion, which is reflected in a varying signal to noise ratio and, ul-
timately, in a non-static probability of detection. A mid-sized aperture is assumed.
In scenario 4, the filter models the change in the probability of detection exactly
according to the truth model, in scenario 5, the filter assumes a constant probability
of detection, whereas the true probability of detections is time-varying, same as in
scenario 4.

5.1 Scenario 1

Scenario one is a baseline scenario; a one meter aperture telescope is assumed with
10 cm obstruction and a very high quantum efficiency of 0.97. The probability of
detection is 1.0, despite the large observation angle, and the signal to noise ratio at
the detector is 23.2. A detection threshold of t = 2.5 is assumed. The five objects
in the cluster are in the field of view during the whole scenario, and no objects
are created nor lost. Object birth is assumed to be practically zero (10−15), and
probability of survival is 1.0. It is assumed that no clutter would be present and
that the filter is initialized with the correct number of objects (5), both unrealistic
assumptions. Apart from the fixed number of objects, all assumptions of the filter
are met. Not surprisingly, the filter performance is also perfect; at every time of the
scenario, the correct cardinality is estimated, also illustrated in 5.

5.2 Scenario 2

In the second scenario, clutter was added. The clutter is modeled to be Poisson dis-
tributed with a parameter of 4. Probability of detection is still 1.0. The remaining
parameters are modeled like in scenario 1. This would correspond to observations
with a large one meter aperture telescope and 10 centimeter obstruction, with a re-
alistic clutter process caused by cosmic ray events. The actual number of cosmic
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Figure 5: Scenario 1: True number of objects (red), the cardinality of the mea-
surements (true measurements plus clutter every ten seconds (blue)) and the filter
estimate (dashed green).

Figure 6: Scenario 2, one arbitrary solution in the Monte Carlo trials: True num-
ber of objects (red), the cardinality of the measurements (true measurements plus
clutter every ten seconds (blue)) and the filter estimate (dashed green).
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ray events varies by location and sensor specifics, as some sensor materials them-
selves are very radioactive on a low level. A Monte Carlo simulation of 1000 trials
has been conducted. Fig. 6 shows one trial scenario outcome from the Monte Carlo
simulations, where the estimated number of objects are rounded to the closest inte-
ger in the display (inside the filter, floating point numbers of the estimated number
of objects for the computation are kept). It shows that in the mismatch of the ob-
ject population distribution, despite the high and correctly modeled probability of
detection of 1.0, the filter does not match the true object population. Fig. 7 shows
the average over all trials without rounding. The error, standard deviation, and the
deviation from the true number of observations. As the probability of detection
is one, the number of observations is overshooting. Not surprisingly, the average
number of observations above the correct number of objects is very close to the
Poisson parameter of 4. The error in the number of objects that are estimated is
not stable. The one sigma standard deviation does not envelope the true averaged
error that is found in the simulations. The error in the estimate reaches around six
percent maximally in the scenario.

(a) (b)

Figure 7: Scenario 2: (a) sample mean error (red), one standard deviation (green);
(b) difference in the average number of measurements and the true object number.

5.3 Scenario 3

In scenario three, it is assumed that a smaller aperture telescope of 10 centimeter is
used. The obstruction is 0.5 centimeters. The camera is assumed to have a quantum
efficiency of 0.8. The signal to noise ratio in this case would be 2.2. A detection
threshold of t = 2.5 is assumed. This leads to a probability of detection of around
0.3. Fig. 8 shows one sample trial of the Monte Carlo simulation. Because of the
low probability of detection, the number of objects is consistently underestimated.
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Figure 8: Scenario 3, one arbitrary solution in the Monte Carlo trials: True num-
ber of objects (red), the cardinality of the measurements (true measurements plus
clutter every ten seconds (blue)) and the filter estimate (dashed green).

(a) (b)

Figure 9: Scenario 3: (a) sample mean error (red), one standard deviation (green);
(b) difference in the average number of measurements and the true object number.

Fig. 9a shows the error and standard deviation, and Fig. 9b shows the difference in
the number of measurements and the true number of objects that are in the field of
view. Because of the low probability of detection, on average, six to seven obser-
vations are made (true objects and clutter) with a clutter Poisson distribution with
parameter four. The error statistic shows that the estimate is consistently off and
seems to worsen the longer the scenario lasts. The error is significantly larger as in
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the previous case and builds up to over 300 percent. The model mismatch consists
of the static object numbers and the assumption of a Poisson process in the predict-
ed number of objects. The filter is stressed by the very low probability of detection
in the presence of significant clutter. However, the scenario is not unrealistic. Low
probabilities of detection can, as outlined above, even occur for large objects, un-
der large observation or phase angles, even when the objects are stabilized and the
angle to the sun is optimal. Small apertures lead to lower probability of detections
in optical sensors than larger apertures for the same observation conditions. The
performance of the sensor also has an influence, albeit to a lesser degree. The AS-
TRA satellites are among the largest objects in the geostationary ring, and the area
of the solar panels is tremendous. Any smaller object with comparable reflection
values, or less reflective objects of the same size, will have a lower signal to noise
ratio, which in turn then can lead to a low probability of detection. Exceptions are
glint conditions.

5.4 Scenario 4

In the fourth scenario, a mid-sized aperture is assumed of 50 centimeters and a 3
centimeter obstruction. Instead of assuming stabilized satellites that have a con-
stant angle towards the sun and a slowly changing angle towards the observer, it
is assumed that the satellites slowly rotate around the axis perpendicular to the so-
lar panels. In the absence of stable active attitude control, natural torques induce
rotation. The situation is also comparable to spin stabilized satellites with a very
heterogeneous outer surfaces. The satellite solar panels are assumed to move from
an angle of 35 degrees to the observer and 25 degrees to the sun, continuously to
85 degrees to the observer and 75 degrees to the sun, respectively. With a quantum
efficiency of the camera of 0.9, this leads to a change in the signal to noise ratios
of 97 to 3. The probability of detection accordingly changes from initially 1.0 for
seven of the ten measurements and then reaches values of 0.99, 0.87, and 0.23. A
detection threshold of 2.5 is assumed again. In the filter, the truth of the probability
of detection is exactly matched. Fig. 10 shows a sample trial of the scenario. It can
be seen that the filter changes from underestimating to overestimating the number
of objects when the probability of detection changes from values of one in the first
measurements to lower values, although the filter is updated with the correct values
for the probability of detection. Fig. 11 shows the that consistently the error is in-
creasing as the probability of detections are lowered values towards the end of the
scenario. The number of measurements on average is stable around four, the Pois-
son parameter of the clutter process, and then drops as not all objects are detected
any more. Overall, the performance of the filter is better than with consistently low
probability of detection values. The error reaches only around 7 percent.
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Figure 10: Scenario 4, one arbitrary solution in the Monte Carlo trials: True num-
ber of objects (red), the cardinality of the measurements (true measurements plus
clutter every ten seconds (blue)) and the filter estimate (dashed green).

(a) (b)

Figure 11: Scenario 4: (a) sample mean error (red), one standard deviation (green);
(b) difference in the average number of measurements and the true object number.

5.5 Scenario 5

Scenario five is a replica of scenario four, except that the filter is provided with a
constant value of the probability of detection of the correct but constant average
value for the scenario of 0.91. For the generation of the measurements, the correct
probability of detection sequence of 1.0 for seven of the ten measurements and the
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values of 0.99, 0.87, and 0.23 for the remaining three measurement times, respec-
tively, is used. Fig. 12 shows one trial of the Monte Carlo simulations. It can

Figure 12: Scenario 5, one arbitrary solution in the Monte Carlo trials: True num-
ber of objects (red), the cardinality of the measurements (true measurements plus
clutter every ten seconds (blue)) and the filter estimate (dashed green).

(a) (b)

Figure 13: Scenario 5: (a) sample mean error (red), one standard deviation (green);
(b) difference in the average number of measurements and the true object number.

be seen that in this case the number of objects is constantly either over or under-
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estimated and that the estimation error increases in the last observation, where the
true probability of detection and the averaged one used in the filter differ the most.
This trend that is visible in the single trial is supported by the complete Monte Car-
lo simulation. The mean sample error is larger throughout the scenario compared
(be aware of the different scales) to the same scenario with the correctly modeled
probability of detection (scenario 4). Although the performance is still in the same
order of magnitude at the beginning of the scenario when the large probability of
detections are dominated, towards the end of the scenario, when the small probabil-
ity of detections are reached, the error dramatically increases and reaches values of
40 percent. It appears that the filter is performing comparably with the averaged to
the true probability of detection as long as truth and average are both high and rela-
tively close to one another. The filter performance worsens when truth and average
probability of detection differ significantly.

6 Conclusions

Finite set statistics based filters have advantages because they offer a fully proba-
bilistic description of a tracking scenario. First order approximations, such as in
the cardinality only PHD, have become increasingly popular. In this paper, the fil-
ter assumptions that are made in the PHD filter derivation have been compared to
the reality of space situational awareness (SSA) tracking. It has been found that,
especially in dedicated tracking, a potential mismatch between the predicted object
distribution might exist. Probability of survival and object birth are put to their
extreme in SSA, especially in the absence of collisions. Collisions pose specif-
ic challenges, such as, among others, a model mismatch in target independence.
Measurement independence assumptions require careful measurement treatmen-
t and potential redefinition especially in radar measurements. A special focus has
been laid on the correct definition of the probability of detection. Scenarios have
been run, mimicking a simple SSA tracking of five objects of the ASTRA cluster
in the geostationary ring. For the simulations, the cardinality only part of the PHD
filter has been utilized. Although state dependence has been lost, it provides the
advantage to investigate crucial parts of the full PHD filter performance without
committing to and independent of a specific method for object propagation and
initial orbit determination.

The simulations suggest that, in the presence of realistic clutter, the mean sample
error is of the order of ten percent, even when the probability of detection is one,
and object birth and death are perfectly known and the predicted object population
is the only potential model mismatch. Performance significantly worsens with low
probability of detection, leading to mean sample errors of several hundred percent,
even when perfectly matched in the filter. Using a time varying probability of de-
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tection leads to consistent results with the constant probability of detection. Results
are significantly worsened when an average probability of detection is used, espe-
cially when the average and the true probability of detection differ significantly. In
all cases, the standard variation was small relative to the mean sample error.
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