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Stable and Minimum Energy Configurations in the
Spherical, Equal Mass Full 4-Body Problem

D.J. Scheeres1

Abstract: The minimum energy and stable configurations in the spherical, equal
mass full 4-body problem are investigated. This problem is defined as the dynamics
of finite density spheres which interact gravitationally and through surface contact
forces. This is a variation of the gravitational n-body problem in which the bodies
are not allowed to come arbitrarily close to each other (due to their finite density),
enabling the existence of resting configurations in addition to orbital motion. Previ-
ous work on this problem has outlined an efficient and simple way in which the sta-
bility of configurations in this problem can be defined. This methodology is applied
to the 4-body problem, where we find multiple resting equilibrium configurations
and outline the stability of a number of these. The study of these configurations is
important for understanding the mechanics and morphological properties of small
rubble pile asteroids. These results can also be generalized to other configurations
of bodies that interact via field potentials and surface contact forces.

Keywords: Celestial Mechanics, N-body problem.

1 Introduction

Celestial Mechanics systems have two fundamental conservation principles: con-
servation of momentum and conservation of (mechanical) energy. While conserva-
tion of momentum is always conserved for a closed system, mechanical energy is
often not conserved and can be dissipated through non-conservative internal inter-
actions. Thus, for any closed mechanical system it makes sense to seek out what
their local and global minimum energy configurations are at a fixed level of angular
momentum. We can use the existence of these local and global minima to define
what we consider stable states for a system, which provides a strict and robust limit
for any mechanical system and is distinguished from particle motion systems in
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astrodynamics which often are only oscillatory stable and in fact do not minimize
the total energy.

If this question is applied to the traditional N-body gravitational problem, however,
it can be shown that there are no configurations for N ≥ 3 that lead to a minimum
value of energy for a fixed level of angular momentum Scheeres (2012). What is
meant here is that the angular momentum is fixed at a given value and all possible
energy values are considered for different configurations. For the N = 2 body prob-
lem there is a well-known relation between the minimum energy of the system for
a given angular momentum, but this is lost for N ≥ 3. This is due to the point-mass
nature of the traditional N-body problem, as when there are more than 3 bodies it is
always possible to drive the potential energy of the system to−∞ while maintaining
a constant angular momentum. This issue is considered in the paper by Scheeres
(2012), where it is shown that replacing point mass bodies with finite density, rigid
bodies enables the system N-body gravitational problem to have unique minimum
energy configurations. This occurs as now bodies can rest on each other, meaning
that their relative gravitational potential energies are bounded from below. That
paper explores this phenomenon for celestial mechanics systems and finds all pos-
sible relative equilibria for the 3-body problem assuming the bodies have equal size
and density and are spherical. Among other results, it is found that the so-called
“full” 3-body problem with equal masses has seven distinct relative equilibria, five
additional beyond the familiar orbiting Lagrange and Euler configurations. Out of
these, only 3 can be stable and only one of these three can be the minimum ener-
gy configuration for a given angular momentum. An interesting result is that the
relative stability of these minimum energy configurations changes as the angular
momentum of the system is modified.

This paper applies a similar methodology to the 4-body problem, restricted so that
the bodies are spheres of equal size and density. The computational issues related
to the 4-body problem are significant, as even for the point-mass case the total
number of relative equilibria are not known and are at best bounded, e.g. Hampton
and Moeckel (2006). Since this paper only focuses on finding local and global
minimum energy configurations as a function of angular momentum, we do not
consider purely orbital relative equilibria, as by a theorem from Moeckel (1990)
these can never be minimum energy configurations. Instead, we focus on resting
configurations, or configurations that are separated into a mixture of two groups of
bodies that orbit each other (motivated by the hypothesis in Scheeres (2012)).

The method used for our analysis relies on a novel application of the Cauchy In-
equality to find a modified version of the Sundman Inequality. From this approach
we define what we refer to as the minimum energy function, which is essential-
ly the same function as Smale’s amended potential Smale (1970a,b), although the
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derivation of our result is more direct. The minimum energy function is defined for
a given level of angular momentum and only involves internal degrees of freedom
in the system. Thus, whenever this function is stationary or positive definite with
respect to all degrees of freedom, then the system is in a relative equilibrium. Fur-
ther, if the function is positive definite about this relative equilibria then the given
configuration is stable. It can be shown that at a given angular momentum there
may be multiple stable relative equilibria, in this case there is always a minimum
energy configuration which corresponds to the lowest energy level that the system
can exist in.

This paper reviews the derivation of the minimum energy function and its appli-
cation to find relative equilibria and evaluate their stability. We then apply this
methodology to the spherical, equal mass, full 4-body problem. Resulting from
this analysis we find a number of distinct types of relative equilibria involving the
bodies segregated into one or two agglomerations. The stability of these config-
urations are explored and the minimum energy configurations at any given value
of angular momentum are identified. Following this, additional implications are
reviewed and future questions for inquiry are identified.

2 Background

Before we specifically investigate potentially stable relative equilibria in the full
4-body problem we lay out a number of basic results that will be of use. Many of
these results and theorems are taken directly from Scheeres (2012), but are repeated
as they are needed for context.

2.1 Mechanical Quantities

Consider a set of N rigid bodies that interact gravitationally and which all have fi-
nite densities by definition. Of primary interest is to define the total kinetic energy,
gravitational potential energy and angular momentum of this system. Also of in-
terest is to compute the total moment of inertia and the polar moment of inertia of
this N-body system. Since finite density distributions are assumed for each body
we must also incorporate rotational kinetic energy, rigid body moments of inertia,
angular velocities and explicit mutual potentials that are a function of body attitude,
see Scheeres (2002).

In the following the ith rigid body’s center of mass is located by the position ri and
has a velocity ṙi. In addition to its mass mi, the ith body has an inertia dyadic Ii, an
angular velocity vector Ωi and an attitude dyadic that maps its body-fixed vectors
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into inertial space, Ai. The basic quantities are then defined as [Scheeres (2012)]:

T =
1
2

N

∑
i=1

[mi (ṙi · ṙi)+Ωi · Ii ·Ωi] (1)

U =
N−1

∑
i=1

N

∑
j=i+1

Ui j(ri j,Ai j) (2)

H =
N

∑
i=1

[mi (ri× ṙi)+Ai · Ii ·Ωi] (3)

For the moment of inertias we compute both the polar moment and the system
moment projected along a given direction. Specifically we are interested in the
system moment about a direction defined by the total angular momentum vector in
inertial space, Ĥ. Specifically, the moment of inertia relative to this direction can
be defined as

IH = Ĥ · I · Ĥ (4)

This alternate moment of inertia is of use in developing sharper limits for the Sund-
man Inequality later.

Ip =
N

∑
i=1

mi

[
(ri · ri)+

1
2

Trace(Ii)

]
(5)

I =
N

∑
i=1

[
mi
(
r2

i U− riri
)
+Ai · Ii ·AT

i
]

(6)

IH =
N

∑
i=1

[
miri ·

(
U− ĤĤ

)
· ri + Ĥ ·Ai · Ii ·AT

i · Ĥ
]

(7)

In the above the inertia dyadics are all specified in a body-fixed frame and thus are
constant, the Ui j are mutual potentials between two different rigid bodies i and j
and are only a function of their relative position and relative attitude, Ai j, equal to
AT

j ·Ai, and which transfers a vector from the body i frame into the body j frame.
For point mass density distributions all of the moments of inertia disappear and
Ip = IH if the bodies and their velocities all lie in a common plane. Also, for
spherical symmetry for all N masses, we can take A as the identity matrix.

The kinetic energy, moments of inertia and angular momentum can also be stated in
relative form between the center of masses (assuming barycentric coordinates and
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applying Lagrange’s Identity), leaving the rotational components in their current
form.

T =
1

2M

N−1

∑
i=1

N

∑
j=i+1

mim j (ṙi j · ṙi j)+
1
2

N

∑
i=1

Ωi · Ii ·Ωi (8)

H =
1
M

N−1

∑
i=1

N

∑
j=i+1

mim j (ri j× ṙi j)+
N

∑
i=1

Ai · Ii ·Ωi (9)

Ip =
1
M

N−1

∑
i=1

N

∑
j=i+1

mim j (ri j · ri j)+
1
2

N

∑
i=1

Trace(Ii) (10)

I =
1
M

N−1

∑
i=1

N

∑
j=i+1

[
mim j

(
r2

i jU− ri jri j
)
+Ai · Ii ·AT

i
]

(11)

IH =
1
M

N−1

∑
i=1

N

∑
j=i+1

[
mim jri j ·

(
U− ĤĤ

)
· ri j + Ĥ ·Ai · Ii ·AT

i · Ĥ
]

(12)

2.2 Finite Density Sphere Restriction

This paper focuses on the sphere-restriction of the Full-Body problem, where all of
the bodies have finite, constant densities and spherical shapes defined by a diameter
di. This allows for considerable simplification of the mutual potentials, although
the rotational kinetic energy, moments of inertia and angular momentum of the
systems are still tracked. In this case the moment of inertia of a constant density
sphere is mid2

i /10 about any axis and the minimum distance between two bodies
will be di j = (di +d j)/2. The resultant quantities for these systems are

T =
1

2M

N−1

∑
i=1

N

∑
j=i+1

mim j (ṙi j · ṙi j)+
1
2

N

∑
i=1

mid2
i

10
Ω

2
i (13)

U = −G
N−1

∑
i=1

N

∑
j=i+1

mi m j

|ri j|
(14)

H =
1
M

N−1

∑
i=1

N

∑
j=i+1

mim j (ri j× ṙi j)+
N

∑
i=1

mid2
i

10
Ωi (15)

with the two different versions of the moment of inertia

Ip =
1
M

N−1

∑
i=1

N

∑
j=i+1

mim j (ri j · ri j)+
3
2

N

∑
i=1

mid2
i

10
(16)

IH =
1
M

N−1

∑
i=1

N

∑
j=i+1

mim j
(
r2

i j− (Ĥ · ri j)
2)+ N

∑
i=1

mid2
i

10
(17)
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2.3 Energy Dissipation Interaction Models

Implicit in these discussions, although not explicitly incorporated into the interac-
tion models, are the dissipative effects of surface Coulomb and rolling friction and
the tidal distortion of gravitationally attracting bodies. These physical effects serve
a dual purpose, in that they will tend to synchronize collections of bodies, either
resting on each other or orbiting each other, and will also dissipate excess energy in
the system. This is needed in order for a resting collection of particles to dissipate
relative motion between each other when in contact and thus also represents one
possible mode of energy dissipation. Inclusion of this notional model ensures that
contact configurations will, when reduced to their minimum energy state, all rotate
at a common rate.

It is also possible to dissipate energy and synchronize spin rates even if bodies are
not in contact. Tidal distortions arising from relative motion between gravitation-
ally attracting bodies will also transfer angular momentum across the system and
cause the dissipation of energy. Even if these effects are small, as they can be for
asteroidal bodies, see Goldreich and Sari (2009), they are pervasive and will cause
continual dissipation of energy for systems that are not in a relative equilibrium
state.

The ubiquity and pervasiveness of energy dissipation in the solar system and its
role in the long-term evolution of bodies of all sizes motivates the main question
concerning the minimum energy states for celestial mechanics systems at a given
value of angular momentum. We do not account explicitly for the physics for these
assumed-to-be-present non-conservative effects, but nonetheless rely upon them to
reduce the system energy to at least one of the local energy minima consistent with
the prescribed angular momentum.

2.4 The Sundman Inequality and Minimum Energy Function

The fundamental result for this study is found by the definition of a modified ver-
sion of the Sundman Inequality, which uses the moment of inertia IH instead of the
usual polar moment of inertia Ip. We repeat, without proof, two Theorems that are
established in Scheeres (2012), as they motivate the following analysis.

Theorem 1. H2 ≤ 2IHT ≤ 2IpT

The outermost inequality is the usual Sundman Inequality, but the sharper limits
are new and are distinct for the full body problem.

The Sundman Inequality provides an important, and sharp, lower bound on the
system energy for a given angular momentum. The derivation of this is simple, but
the result has not been extensively used.
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Theorem 2. The total system energy E = T +U is bounded below by the minimum
energy function, defined as E = H2

2IH
+U, which is only a function of the system

total angular momentum and the relative configuration of the components within
the system. Thus, given a total angular momentum for the system, H, the system
energy is constrained by E ≤ E. Equality of the system energy and the minimum
energy function occurs if the minimum energy function is stationary with respec-
t to all possible variations, and corresponds with the system being in a relative
equilibrium.

Given the defined minimum energy function a rigorous approach can be formulat-
ed to the original question of what the global minimum energy configurations of
a celestial mechanics system are. These are found by determining configurations
where either all variations of the minimum energy function are zero or if config-
uration constraints exist by showing that all allowable variations only increase the
minimum energy function.

With these results we can now investigate the problem at hand.

3 Minimum Energy Configurations

3.1 Definition of the Normalized System

This discussion is restricted to bodies having equal sizes and densities. Thus, all
particles have a common spherical diameter d and mass m. Given this restriction
the moment of inertia and potential energy take on simpler forms.

IH =
m
4
(
r2

12 + r2
23 + r2

34 + r2
13 + r2

24 + r2
14
)
+

4
10

md2 (18)

U = −G m2
[

1
r12

+
1

r23
+

1
r34

+
1

r13
+

1
r24

+
1

r14

]
(19)

where m is the common mass of each body and d the common diameter. Then ri j ≥
d for all of the relative distances. Now introduce some convenient normalizations,
scaling the moment of inertia by md2 and scaling the potential energy by G m2/d.
Then the minimum energy function is

E =
H2

2
[(

r2
12 + r2

23 + r2
34 + r2

13 + r2
24 + r2

14

)
/4+0.4

]
−
[

1
r12

+
1

r23
+

1
r34

+
1

r13
+

1
r24

+
1

r14

]
(20)
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where

E =
E d
G m2 (21)

H2
=

H2

G m3d
(22)

and the constraint from the finite density assumption becomes ri j ≥ 1.

In the following the − notation is dropped for ri j and H, as it will be assumed that
all quantities are normalized.

3.2 Hypothesized Relative Equilibrium Configurations

For the case of N = 4 the number of possible configurations grows significantly
as compared to the 9 unique configurations identified for the N = 3 body problem
[Scheeres (2012)]. First of all, for orbital configurations the full set of relative equi-
libria for all mass values is not known and only bounded [Hampton and Moeckel
(2006)]. However, from Moeckel (1990) none of these will be energetically stable
and thus can be left out of this analysis. Based on this same premise, and as artic-
ulated in the Hypothesis in Scheeres (2012), it can also be surmised that the only
energetically stable orbital configurations will have the system collected in two or-
biting clusters, further restricting the space to be considered a priori. Beyond this,
one can also rely on principles of symmetry to identify the potential relative equilib-
rium candidates. An album of possible relative equilibrium configurations for the
equal mass and size case is shown in Fig. 1. These candidate configurations were
identified by noting symmetries in the configurations but do not preclude the possi-
bility of missed symmetric configurations or asymmetric configurations, which are
sure to become more significant as the number of particles increases.

No assertion that all possible relative equilibria have been identified is being made,
however the ones listed in Fig. 1 are hypothesized to control the minimum energy
configurations. To carry out a detailed analysis would require the development
of appropriate configuration variables for the different classes of motion and the
formal evaluation of stationary conditions and second variations. This is tractable
in general, as the different possible planar configurations of the contact structures
can all be described by two degrees of freedom. Some specific examples are given
later.

Instead of taking a first principles approach, as was done for the N = 3 case in
Scheeres (2012), a number of alternate and simpler approaches to determining the
global minimum configurations as a function of angular momentum are developed
in this paper. In all of the following computations normalized values for the angular
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Figure 1: Candidate relative equilibria for the N = 4 Full-body problem. Many
other configurations are expected to exist, however these appear to control the min-
imum energy landscape. Note, we do not show any purely orbital relative equilibria
as these are not expected to ever be stable.

momentum, moment of inertia, gravitational potential and minimum energy func-
tion are assumed. The angular momentum is normalized by md2, the gravitational
potential and the minimum energy function by G m2/d, and the angular momentum
H2 by G m3d. The common factor of 0.4 added to the moment of inertia IH arises
from the moments of inertia from each of the spheres.

3.3 Static Rest Configurations

Assuming that all of the relevant static rest relative equilibria have been identified,
or at least those which may be a global minimum, the global minimum can be found
by directly comparing the minimum energy functions of the various configurations
as a function of angular momentum. By default the minimum energy state must
be stable, independent of a detailed stability analysis. This approach cannot detect
when a configuration is locally energetically stable but not the global minimum. For
these static rest structures, the minimum energy function is affine in H2 since the
polar moment of inertia and the potential take on constant values. Thus a graph of
(H2,min∑

M
i=1 H2/(2Ii)+Ui) will simply delineate the global minimum structures,

assuming the individual structures are relative equilibria.
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Alternately, one can directly determine the moments of inertia and the gravitational
potentials of all of the different candidate configurations. Given two configurations,
it is then simple to determine the angular momentum at which their minimum en-
ergies are equal, and thus where the transitions between these two configurations
would occur independent of all other global results. Table 1 presents the computed
polar moment of inertia and gravitational potential for each of the static configura-
tions.

Finally, note that configuration “0” is a 3-dimensional configuration, and thus when
its moment of inertia IH is computed a direction for evaluating the moment of iner-
tia about its rotation axis must be defined, however the tetrahedron has a uniform
moment of inertia which is equal about any arbitrary axis through its center of
mass. All the other configurations lie in a plane with the rotation axis perpendicu-
lar to this plane (note that this always yields the maximum moment of inertia and
thus minimizes the energy, all else being fixed).

Table 1: Table of polar moments of inertia and gravitational energies for each static
configuration.

Configuration Ii Ui

0 1.4 -6

1 2.4 −
[
5+ 1√

3

]
2 2.4+

√
3

2 −
[

4+ 2√
2+
√

3

]
3 5.4 −

[
4+ 1

3

]
4 2.4 −

[
4+
√

2
]

5 3.4 −
[
3+
√

3
]

Assume two candidate configurations, i and j, then their minimum energy functions
are equal for the same value of angular momentum if

H2

2Ii
+Ui =

H2

2I j
+U j. (23)
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The angular momentum at which this occurs can be solved for as

H2 =
2(U j−Ui) IiI j

I j− Ii
(24)

and represents the angular momentum at which the minimum of the two config-
urations switch. Inputing the values from Table 1 into this formula generates a
transition table for the different static configurations. Table 2 shows the different
transitions that occur between the static configurations. Figure 2 graphically shows
the energy vs. angular momentum squared plot with the minimum energy config-
uration taking turns in number from 0 to 3. Figure 2 shows the normalized spin
rate of these different minimum energy configurations, equal to H/I. Note that the
higher energy configurations do not have faster spins, due to the redistribution of
mass. Transitions also occur between these configurations and numbers 4 and 5,
but these two are never minimum energy states.

Table 2: Transition values of H2 between different static resting configurations,
with transitions leading to or from global minima indicated in bold. Note that as
configurations 1 and 4 have the same moment of inertia, they never cross.

. . . 0 1 2 3 4 5

0
. . . 2.8402 4.7278 6.300 3.9365 6.0354

1 2.8402 . . . 9.813 10.748 × 13.795

2 4.7278 9.813 . . . 11.603 6.860 50.265

3 6.300 10.748 11.603 . . . 9.339 7.320

4 3.9365 × 6.860 9.339
. . . 11.133

5 6.0354 13.795 50.265 7.320 11.133
. . .

With this approach it is not possible to identify the precise transition points or the
excess energy when the different states switch, unlike the more detailed analysis
that can be given for the N = 3 case [Scheeres (2012)]. Evaluation of these transi-
tions requires that the variable resting configurations be identified, as they mediate
the loss and gain of stability for the various resting configurations.

3.4 Mixed Equilibrium Configurations

To identify the global minimum energy configurations it is also necessary to con-
sider the mixed equilibrium configurations. Each different candidate configuration



214 Copyright © 2016 Tech Science Press CMES, vol.111, no.3, pp.203-227, 2016

Figure 2: Energy-Angular Momentum graph showing the different transitions be-
tween minimum energy static resting states (left). Normalized spin rates of the
different resting configurations (right). For a 2 g/cm3 density, a unit rotation rate
corresponds to a ∼ 6.6 hour rotation period.

can be analyzed using a single degree of freedom. As an example, Fig. 3 shows
configuration D with its single degree of freedom identified.

For any of the mixed configurations the polar moment of inertia and the gravitation-
al potential as a function of the distance between the components can be defined
as d and represented as I(d) and U(d). Then the minimum energy function is
E (d) = H2/(2I(d)) +U(d). By definition, relative equilibrium will exist when
∂E /∂d = Ed = 0. This is expressed as a function of I and U as

Ed = −H2

2I2 Id +Ud (25)

Equating this to zero solves for the angular momentum for a relative equilibrium as
a function of the distance between the components, d. The functions I(d) and U(d)
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Figure 3: Mixed equilibrium configuration candidate D, showing its single degree
of freedom, the distance d.

and their partials are listed below for configurations A through D, which are the
most relevant to the discussion. In addition to these values the value of H2 is also
given when the components are touching, which defines the angular momentum
when a given static rest configuration (defined when d = 1) fissions into the given
mixed equilibrium configuration, and the energy of the system when this occurs.

Configuration A:

IA =
1
4
[
6+d2 +(d +1)2 +(d +2)2]+0.4 (26)

IAd =
3
2
(d +1) (27)

UA =−
[

2.5+
1
d
+

1
d +1

+
1

d +2

]
(28)

UAd =
1
d2 +

1
(d +1)2 +

1
(d +2)2 (29)

H2
A

∣∣
d=1 = 26.46 (30)

EA|d=1 =−1.88333 (31)
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Configuration B:

IB =
1
4
[
2+d2 +2(d +1)2 +(d +2)2]+0.4 (32)

IBd = 2(d +1) (33)

UB =−
[

2+
1
d
+

2
d +1

+
1

d +2

]
(34)

UBd =
1
d2 +

2
(d +1)2 +

1
(d +2)2 (35)

H2
B

∣∣
d=1 = 23.49 (36)

EB|d=1 =−2.158333 (37)

Configuration C:

IC =
1
4

3+2
(

d′2 +
1
4

)
+

(
d′+

√
3

2

)2
+0.4 (38)

ICd =
1
2

(
3d′+

√
3

2

)
(39)

UC =−

3+
2√

d′+ 1
4

+
1

d′+
√

3
2

 (40)

UCd =
2d′(

d′2 + 1
4

)3/2 +
1(

d′+
√

3
2

)2 (41)

H2
C

∣∣
d′=
√

3/2 = 13.737 (42)

EC|d′=√3/2 =−2.7155 (43)

Configuration D:

ID =
1
4

[
3+d2 +2

(
1+
√

3d +d2
)]

+0.4 (44)

IDd =
3
2

(
d +

1√
3

)
(45)
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UD =−

[
3+

1
d
+

2√
1+
√

3d +d2

]
(46)

UDd =
1
d2 +

2d +
√

3(
1+
√

3d +d2
)3/2 (47)

H2
D

∣∣
d=1 = 13.684 (48)

ED|d=1 =−2.9404 (49)

Note that configuration C has a lower limit of d =
√

3/2. In the following plots
the substitution d′ = d− 1+

√
3/2 is made for this configuration, allowing all of

the energy functions and angular momenta to be compared across the same range
of d ∈ [1,∞). When touching, each of these configurations is equivalent to one
of the static resting configurations. Specifically, A and B are equivalent to 3, C is
equivalent to 1, and D is equivalent to 2. Figure 4 shows H2 as a function of distance
d for the mixed equilibrium (left) and the energy for these equilibria as a function
of distance d (right). Figure 6 shows the spin rate of the different configurations
as a function of distance and as a function of angular momentum. The bifurcation
values of H2 and their associated energies and distances can be directly read off of
the graphs. Also, their relative energy ordering is apparent.

3.5 Transitions Between Resting and Mixed Configurations

To start to sketch out the more detailed picture of transitions as a function of an-
gular momentum several specific transition states are investigated. Specifically the
angular momentum values when static configurations 0, 1, 2 and 3 either become
stable, lose stability, or both are found.

3.5.1 Fission Transitions

First, given the results on the mixed relative equilibria the angular momentum val-
ues at which the different static configurations no longer exist, i.e., when they fis-
sion, can be identified. Static configuration 1 terminates when the inner orbital
configuration C collides with it. Similarly static configuration 2 terminates when
the inner orbital configuration D collides with it. For static configuration 3, there
are two possible configurations it could fission into, A or B. It is interesting to note
that configuration A consistently has a lower energy than configuration B, however
the static configuration 3 fissions into configuration B at a lower value of angular
momentum. Thus, in terms of a sequence of local minimum energy configurations
linked geometrically, A is isolated from the static configuration 3. This is discussed
in more detail later. In Table 3 the fission conditions and the angular momentum
and energy values at which these occur are listed.
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Figure 4: The angular momentum squared (left) and energy (right) for mixed rela-
tive equilibria as a function of separation distance.

Table 3: Static Configurations and the Orbital Configurations they fission into.

Static Orbital Fission Energy at
Configuration Configuration H2 Fission

1 C 13.737 -2.7155
2 D 13.684 -2.9404
3 B 23.49 -2.15833
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Figure 5: Energy versus angular momentum for the orbital relative equilibria A
through D. The endpoints show where these families terminate by touching the
static resting configurations. There are portions of these curves where there exist
two of the orbital equilibria for a given angular momentum, although for large
enough angular momentum there is only one member per family.

3.5.2 Stability Transitions

Of additional interest are the stability transitions for the various static configura-
tions, specifically, the range of H2 where they are stable. Of specific interest are
the values of angular momentum at which static configuration 0 becomes unstable
and at which 1, 2, and 3 become stable. These are dealt with in turn in the fol-
lowing. Figure 7 shows the different degrees of freedom that are considered in the
following analysis.

Stability of Static Configurations 0 and 1 The stability transitions of configura-
tions 0 and 1 can be treated with the same model, with a single degree of freedom.
Starting from the 1 configuration, if the outer two particles are brought up out of
the plane the angle between them defines an allowable degree of freedom. In con-
figuration 1 this angle equals 180◦, while at the tetrahedron limit it defines an angle
sin(θ/2) = 1/

√
3, or θ = 70.5288 . . .◦. Take the angular momentum vector Ĥ to

be perpendicular to the plane of configuration 1 and assume that the two outermost
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Figure 6: Spin rates for the different orbital relative equilibrium as a function of
distance (left) and as a function of H2 (right).

particles symmetrically rise out of the plane, then a general description of the dis-
tance between these two particles is expressed as

√
3sin(θ/2). At the lower limit

of θ the distance between the particles is unity, forming the tetrahedron, while at
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Figure 7: Degrees of freedom considered for stability analysis of the various static
rest configurations.

180◦ the total distance is
√

3. Then the moment of inertial about the normal to the
planar direction and the gravitational potential as a function of θ is

IH =
1
2
[
1+3sin2(θ/2)

]
+0.4 (50)

U = −
[

5+
1√

3sin(θ/2)

]
(51)

The first variation of the minimum energy function with respect to this degree of
freedom yields

δE = cos(θ/2)
[
−3

4
H2

I2
H

sin(θ/2)+
1

2
√

3sin2(θ/2)

]
δθ (52)

First consider the stability of configuration 0, defined by setting sin(θ/2) = 1/
√

3.
The condition for this static configuration to exist is that δE ≥ 0 for δθ ≥ 0. Then
the explicit condition for stability is that the term within the brackets be positive,
and for this to hold true the angular momentum H2 must be limited. Setting the val-
ues at the configuration 0 values (where IH = 1.4) the stability condition becomes

H2 ≤ 2(1.4)2 = 3.92 (53)
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At values of angular momentum larger than this the 0 configuration does not exist.

Next setting θ = 180◦ yields the stationarity condition that corresponds to config-
uration 1. To evaluate the stability of this, take the second partial of E and set
θ = 180◦ to find

δ
2Eθ=π = −1

2

[
−3

4
H2

I2
H

+
1

2
√

3

]
δθ

2 (54)

where IH = 2.4 now. Solving for when δ 2E ≥ 0 (note the minus sign in front)
places the constraint on the angular momentum to be

H2 ≥ 2(2.4)2

3
√

3
= 2.217 . . . (55)

at a corresponding energy of E = −5.1155 . . .. Note that configuration 1 becomes
stable before configuration 0 goes unstable1.

Stability of Static Configuration 2 For this configuration suppose that the de-
gree of freedom of interest is the angle defined in the plane from the nominal single
contact particle to its location as it rolls on the contact particle. For a positive angle
the distance from this particle to the two particles at the far end are

da =
√

2 [1− cos(150−θ)] (56)

db =
√

2 [1− cos(150+θ)] (57)

Then the moment of inertia and the gravitational potential are found as

IH = 2.4+

√
3

2
cosθ (58)

U = −

[
4+

1√
2(1− cos(150−θ))

+
1√

2(1− cos(150+θ))

]
(59)

Evaluating δE , this equals zero for θ = 0, as expected. Evaluating the second
variation and evaluating when it is positive yields the condition for stability of
configuration 2:

H2 ≥
(
8+6

√
3
) (

2.4+
√

3/2
)2[

2+
√

3
]5.2 = 7.2913 . . . (60)

1 It is somewhat remarkable that these stability conditions are so easily obtained. Approaching this
problem from a traditional mechanics approach, determination of the stability of either configura-
tion requires the definition of moments acting on each particle, centripetal accelerations, and the
like.
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and has a corresponding energy of E =−3.91904 . . ..

Stability of Static Configuration 3 For configuration 3 the two general degrees
of freedom allow the end particles to roll relative to the central pair. Define the
outer-right body as 1, the outer left body as 2 and measure the angles θ1 and θ2 as
defined in Fig. 7. The distances of the outer bodies to the furthest of the inner pair
is

di =
√

2(1+ cosθi) (61)

and the distance of these two bodies from each other is

d12 =
√

3+2(cosθ1 + cosθ2)+2cos(θ1 +θ2) (62)

The moment of inertia and the potential energy are then

IH =
1
2
[5+2(cosθ1 + cosθ2)+ cos(θ1 +θ2)]+0.4 (63)

U = −

[
3+

1√
2(1+ cosθ1)

+
1√

2(1+ cosθ2)
+

1√
3+2(cosθ1 + cosθ2)+2cos(θ1 +θ2)

]
(64)

Evaluating δE , this equals zero for θ1 = θ2 = 0, again as expected. At this config-
uration the moment of inertia takes on a value of 5.4.

Evaluating the second variation and evaluating when it is positive yields the fol-
lowing entries that must be put into a matrix:

δ
2
θiθi

E =
3
4

H2

I2
H
− 1

8
− 2

27
(65)

δ
2
θiθ j

E =
1
4

H2

I2
H
− 1

27
(66)

The two diagonal entries are equal as are the two off-diagonal entries. To be posi-
tive definite the following conditions must hold:

δ
2
θiθi

E +δ
2
θiθ j

E > 0 (67)

δ
2
θiθi

E −δ
2
θiθ j

E > 0 (68)

The controlling condition is the second one, and holds true for H2 > 9.45 and has
a corresponding energy of E =−3.458333 . . ..
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Stability of Static Configuration 5 Finally, it is also of interest to study the
stability of static configuration 5. This is similar to configuration 2, except the
masses are equally spaced about the central body. This modifies the distances to

da =
√

2 [1− cos(120−θ)] (69)

db =
√

2 [1− cos(120+θ)] (70)

Repeating the analysis we now find the controlling condition for this configuration
to be stable relative to variations in θ to be

H2 >
10

33/2 I2
H = 22.247 (71)

However, if we analyze the variation δdE with respect to the distance of the right-
most particle from the rest of the configuration we find that the condition for sta-
bility in this direction is

H2 <

(
1+

1√
3

)
I2
H = 18.23 (72)

Thus this configuration is never stable, as it would undergo fission prior to the
angles becoming stabilized. It is important to note that this particular configuration
is also never a minimum energy configuration, which is now to be expected given
this result.

3.6 Transition Diagrams and Possible Outcomes

Given the above it becomes possible to map out the possible evolution of a col-
lection of 4 particles as their angular momentum is increased or decreased. The
following only focuses on the evolution as angular momentum increases, as there
are a variety of different pathways and possible evolutions for the case of decreas-
ing angular momentum, a topic for further research. Figure 8 (left) shows a global
view of all possible stable static relative equilibria and stable and unstable orbital
equilibria, and shows a detail of this figure on the right indicating some of the
transition points.

At an angular momentum of zero Configuration 0 is the only stable relative e-
quilibrium. As angular momentum is increased Configuration 1 becomes stable
at H2 = 2.217 . . . and soon thereafter becomes the global minimum configuration.
Configuration 0 remains stable until H2 = 3.92 when it ceases to exist. At this
point there is an excess of energy in the system and it will evolve dynamically. If
energy dissipation is present, however, it can only settle into Configuration 1, as
this is the only stable relative equilibrium. Configuration 1 remains stable until
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fission into the unstable Orbital Configuration C occurs at H2 = 13.737. During
this evolution both Configurations 2 and 3 become stable. Further, Configuration
2, while the global minimum for an interval, fissions into Orbital Configuration
D at H2 = 13.684, before the fission of Configuration C occurs. Thus, a system
smoothly following this evolutionary path will completely bypass Configuration 2.

At this transition there are three possible stable relative equilibria that the system
can settle into under energy dissipation. Configuration 3 and Orbital Configura-
tions C and D. The system must shed the least energy to end up in Configuration
3, although this is not the global minimum. At this point, where the system settles
becomes a dynamics question and cannot be addressed with the methods used in
this study. The final settling place will likely depend on the manner in which ener-
gy is dissipated, the timescale over which the energy dissipation occurs, and as this
dynamical system will be chaotic will also entail an element of randomization for
specific simulations. It may be possible for the system to undergo mutual escape,
separating into an N = 1 and N = 3 system. If the system settles into either Orbital
Configuration C or D (which have nearly the same level of energy, with D having
a slightly lower energy), then under continued increase of angular momentum the
system will just evolve outwards maintaining the same orbital relative equilibri-
um. As the system grows arbitrarily large, the spin rate decreases to zero and the
Lagrange-like rest configuration of the three bodies will remain stable.

If, instead, the system falls into the stable Static Configuration 3, then the evolution
will continue as shown in Fig. 8. Then, at H2 = 23.49 this configuration will fission
into the inner, unstable Orbital Configuration B and again will have excess energy
that will drive the dynamics of the system. Now there are four possible stable or-
bital configurations which the system can relax into, barring mutual escape. The
energies of these relative equilibria are, in order, B, A, C, D. Again, which one it set-
tles into will likely be a function of their energy dissipation interactions, timescale
and chaotic evolution. If the system lands into either B, C or D then the resulting
systems will remain stable for arbitrarily large values of angular momentum (i.e.,
low spin rates for the separate components). If the system falls into configuration A
then at some future spin rate the Euler rest configuration of the primary will likely
become unstable and collapse into a Lagrange configuration, again having excess
energy to dissipate. The likely final state of Orbit Configuration A under continued
increase of angular momentum is then either Orbital Configurations C or D.

It is evident that stepping from N = 3 to N = 4 particles creates a much richer set
of possible outcomes and removes the determinism that was present for the sphere-
restricted N ≤ 3 Full Body problem. In addition to verifying the various hypotheses
on relative equilibria and their stability transitions, it will also be necessary to in-
vestigate the actual dynamical outcomes of these simulations for different models
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Figure 8: Energy versus angular momentum showing the relationship between the
static resting configurations and the orbital configurations (left). The static config-
urations are only shown for when they exist and are stable. As angular momentum
is increased or decreased there are transition points where multiple possible stable
states exist. Detail of the energy - angular momentum curve shown on the right.

of energy dissipation. The two most obvious dissipation methods will be impacts
between the particles and tidal distortion of each other. Each in isolation will likely
lead to different outcomes in some of these cases, although it would be of interest
to discover whether any specific dynamical outcomes occur with high probability.
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4 Conclusions

This paper computes and analyzes the minimum energy and stable configurations of
the sphere, equal mass full 4-body problem in celestial mechanics as a function of
angular momentum. It is shown that the complexity of the 4-body problem becomes
significant, although specific results and outcomes can be found. The analysis poses
more fundamental questions regarding how energy dissipation effects may shape
the final states of systems that have been brought to stability transition points.
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