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A Tree-Based Approach for Efficient and Accurate
Conjunction Analysis

Michael Mercurio1 and Puneet Singla2

Abstract: Conjunction analysis is the study of possible collisions between ob-
jects in space. Conventional conjunction analysis algorithms are geared towards
computing the collision probability between any two resident space objects. Cur-
rently, there are few heuristic methods available to select which objects should be
considered for a detailed collision analysis. A simple all-on-all collision analysis
results in an O(N2) procedure, which quickly becomes intractable for large dataset-
s. The main objective of this research work is to preemptively determine which
catalogued objects should be considered for a more detailed conjunction analysis,
significantly reducing the number of object pairs to be investigated. The heart of the
approach lies in the efficient kd-tree algorithm. It has been found that this binary
search method significantly reduces computational cost to a tractable complexity of
O(N logN). The conventional tree-based search is modified slightly by accounting
for probabilistic nearest neighbors via the Hellinger Distance. Finally, the method
is extended to account for Non-Gaussian errors via the inclusion of Gaussian Mix-
ture Models. It has been found that the reduced computational complexity of the
kd-tree is maintained, while the applicability of the method is extended to uncertain
cases.

1 Introduction

Space debris and Resident Space Objects (RSOs) are tracked and logged to monitor
the significant threat they pose to current space operations. Currently, debris of ap-
proximately five centimeters can be tracked and logged, and from this, a catalog of
over 21,000 objects currently in orbit is monitored and updated [Mercurio, Singla,
and Patra (2012)]. Additionally, the uncertainties present from measurement noise
and errors greatly affect the accuracy of the catalog. A relatively small piece of
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debris can render a satellite useless, and create more debris. Hence, no single item
should be barred from conjunction analysis. The examination of this risk, typically
referred to as conjunction analysis, requires extensive computational effort due to
the combinatorial nature of the algorithms, and the number of RSOs considered.
The unintentional collision between Russia’s Cosmos 2251 satellite and a US Irid-
ium satellite advocates a need for an accurate and efficient conjunction analysis
algorithm [Mercurio, Singla, and Patra (2012)].

With the inherent uncertainties in the motion of the space objects, the collision is no
longer just the intersection of the two trajectories. Rather, one has to consider the
intersection of multiple realizations of orbit trajectories of both objects. This nat-
urally leads to the notion of conjunction probability [Vallado (2001)]. A thorough
conjunction analysis requires a significant amount of information about the RSOs,
including time of closest approach, relative distance, and probability of collision.
The simplest form of the conjunction analysis begins with calculating the distance
between the greatest perigee and the smallest apogee from the two RSO orbits. The
collision of the two RSOs will be analyzed further if this distance is less than some
specified tolerance. If the distance is less than the specified tolerance, an error el-
lipsoid is created about the first RSO of interest based on its covariance matrix.
The ellipsoid is placed such that its major axis is aligned with the RSO’s velocity
vector. From here, the probability of collision between the two RSOs is computed
[Vallado (2001)]. Computing the accurate conjunction probability is often difficult
and hence many reasonable approximations are made to evaluate this probability
leading to different computational methods [Akella and Alfriend (2000); Alfano
(2007, 2009); Carpenter (2004, 2007); Carpenter, Markley, and Gold (2012); Cho,
Chung, and Bang (2012); Milani, Chesley, Chodas, and Valsecchi (2002); Vallado
(2001); Adurthi and Singla (2015)].

Although a great detail of attention has been paid to compute the collision probabil-
ities between any single pair of RSOs, little attention has been paid to select a subset
of catalogued objects, which has highest probability of collision. This generally re-
quires an exhaustive search of catalogued objects. Of course, certain combinations
are exempt, such as collisions between objects in low-Earth orbit (LEO) and objects
in Geosynchronous orbit (GEO). A naive search would require all object-pairs to
be considered for potential collision candidates. This would result in computing
the probability of collision between each and every object in a set, which, for a set
of N objects, results in an O(N2) operation. Due to the increasing size of the space
object catalog, a methodology is sought to assist in reducing the number of RSO
pairs to be considered for detailed conjunction analyses. This research presents a
method for intelligent selection of these RSO pairs to be further investigated vi-
a more detailed conjunction analysis methods. While attempts have been made



A Tree-Based Approach for Efficient and Accurate Conjunction Analysis 231

to reduce the computational overhead, these revised methods often require a form
of space discretization, or a slightly reduced combinatorial analysis [Crassidis, S-
ingla, McConky, and Sudit (2011); Mercurio, Singla, and Patra (2012)]. It is these
considerations that serve as the main motivation for this research.

Elementary nearest-neighbor searches involve computing the distance between all
objects within a dataset, and determining the minimum distance values. Efficient
sorting and storage algorithms can be introduced to assist in reducing the computa-
tional load associated with the nearest-neighbor search. Tree-based data structures,
specifically kd-trees, are well-known for their efficient storage and retrieval prop-
erties [Bentley (1975)]. Here, the dataset is conditioned about its median value,
and the objects are recursively stored, and indexed, via nodes within the tree struc-
ture. The structure of the kd-tree lends itself to efficient determination of an objects
nearest neighbors. The conventional application, however, is limited to determinis-
tic datasets, i.e. the data is known perfectly. Thus, in order to apply the kd-tree to
uncertain cases, some modifications must be made.

Deterministic nearest-neighbor algorithms rely on computing a distance value be-
tween object-pairs within a dataset. Some datasets, such as RSO locations, are char-
acterized by probability density functions (PDFs) and thus, a deterministic nearest-
neighbor search is not directly applicable. Therefore, a probabilistic distance met-
ric is required to determine the an object’s nearest neighbor in a probabilistic sense.
These metrics measure the amount of shared area between two PDFs and thus, of-
fer a value linked to the probability of collision. While some of these measures
offer closed-form expressions for Gaussian uncertainties, direct extensions to Non-
Gaussian cases often involve expensive numerical integration procedures. This can
be circumvented by first approximating Non-Gaussian PDFs as a finite weighted
sum of independent Gaussian kernels. From here, a novel approach to compute a
probabilistic distance is investigated, relying on a linear programming framework.
Preliminary investigations using this methodology are available in Refs. Mercurio,
Singla, and Patra (2012, 2013). However, the sum of these necessary modifications
serves as the basis for this research work.

First, an introduction to kd-trees and nearest neighbor searches in detailed. Then,
for uncertain RSO position, methods for characterizing uncertainty are discussed,
followed by a brief overview of probabilistic distance metrics. Next, as accurate
representations of uncertainty are sought, extending the computation of probabilis-
tic distance metrics to GMMs is presented. Finally, a modified nearest neighbor
algorithm is detailed, offering an extension of the conventional kd-tree to uncer-
tain scenarios. Numerical results are provided to demonstrate the efficacy of the
proposed approach.
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2 Proposed Methodology

As discussed earlier, conventional conjunction analysis algorithms require combi-
natorial analyses, resulting in O(N2) operations. An approach is sought to reduce
the computational burden, while maintaining accurate and verifiable results. In the
framework of data storage and retrieval algorithms, the kd-tree structure is a well-
known methodology. When applied to a nearest neighbor search, the kd-tree offers
an ideal computational load of O(N logN), which is a significant reduction from
the conventional conjunction analysis algorithms.

2.1 kd-Trees

Typical data structures, such as arrays, can be used for storage and searching of a
dataset. In this case, there is no rule as to how the data is stored or indexed. Thus,
the search and retrieval operation can be accelerated by the introduction of a better
storage algorithm. It is this purpose that warrants the use of tree data structures. A
tree is a hierarchical data structure created by efficiently organizing a dataset [Bent-
ley (1975)]. A tree structure contains nodes, which store information, or points,
from the dataset. Each node may have descendants, or children, which store points
related to the parent node. This organization lends itself to rapid searching and re-
covery of data within the tree. While numerous trees exist for data storage, kd-trees
and octrees are the most prominent for three-dimensional datasets.

Octrees are tree data structures in which each node possesses a maximum of eight
descendants [Sundar and Sampath (2007)]. In dividing the domain of interest,
cubes (octants) are created and further divided until each datapoint lies in its own
octant. Octrees create a physical mesh, and are typically used for collision analysis
of solid objects, and finite element analysis. As opposed to octrees, kd-trees are
data structures in which each node has a maximum of two descendants. These data
structures are favored due to their low computational and storage requirements, as
no physical mesh is created. An example kd-tree of dimension two is depicted in
Fig. 1.

For this analysis, a kd-tree implementation was chosen over an octree as a physical
mesh need not be created. The nodes of a kd-tree are not physically created; they
are used simply to index the points in a given dataset. In general, the kd-tree imple-
mentation is described as “top-down” as this is the direction of construction of the
tree [Press (2007)]. The root box, which can be described as the space surrounding
the entire dataset, is first initialized. The root box is then divided along a specified
dimension, typically the longest available, creating two nodes. Once divided, the
location of each data point is examined to determine their respective placement in
the kd-tree - if the item is leftward of the division, it is placed into the leftmost n-
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Figure 1: Example kd-tree of Dimension Two

ode, and vice versa for a rightward item. From here, the procedure is repeated until
only one item lies in each node (box). Upon completion of the final divisions, the
remaining boxes, each populated with one or two data points, are termed leaves.
This insertion procedure is termed recursion, and its simplicity governs the favored
implementation of kd-trees. Although the original order of the dataset is stored
elsewhere, the dataset is organized in increasing order during construction of the
kd-tree. A simplified kd-tree algorithm is presented as Alg. 1 [Press (2007)]. An
schematic detailing an example application of this algorithm is depicted in Fig. 2.

Algorithm 1 Kd-Tree Algorithm
1: Initialize size of Root Box based on minimum and maximum values in dataset.
2: Reorganize dataset based on median value. Note: original order is still main-

tained separately. Let p denote a single datapoint from reorganized set.
3: if p < division then place p into leftmost node.
4: else
5: place p into the rightmost node.
6: end if
7: if node contains more than one or two points then divide node.
8: else
9: store as leaf.

10: end if
11: Continue until each node contains one or two datapoints.

Tree data structures are well known for their computational efficiency in obtaining
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(a) Initialize Root Box Using Dataset Values. (b) Divide Root Box Along Arbitrary Dimension.

(c) Split Resulting Nodes - Store Single Objects. (d) Split Resulting Nodes - Store Single Objects.

(e) Split Resulting Nodes - Store Single Objects. (f) Split Resulting Nodes - Store Single Objects.

Figure 2: Example Construction of kd-tree of Dimension Two

accurate and verifiable results. As the kd-tree is defined based on recursive prin-
ciples, the workload can be scaled by clever programming principles. The kd-tree
construction discussed above can be analyzed to determine the cost required.

2.1.1 Computational Cost of kd-Tree Construction

The most expensive portion of creating the kd-tree is the insertion algorithm. By
inserting points into a tree one by one, the best possible computational load is
O(N) [Moore and Hall (1990)]. This cost is reduced by utilizing a balanced kd-
tree, which ensures that the domain is divided such that an approximately equal
number of points lie on each side of each division [Press (2007)]. One method of
ensuring a balanced kd-tree is to divide the domain along the longest dimension at
each step [Moore and Hall (1990)]. By dividing the domain of interest as such, and
preconditioning the dataset about the median value, a recursive insertion algorithm
can be used to scale the insertion algorithm to O(N logN). The recursion principle
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scales the computational cost to [Wald and Havran (2006)]:

T (N) = 2T (N/2)+N (1)

Where T (N) is the operational time for N items. Eq. 1 is valid for N≥ 2. For N = 1,
the cost is simply T (1) = 1, as only one item is stored. The multiplicative factor
of 2 is applied as the domain is halved at each iteration, creating two subdomains.
Further, the number of items to be considered is also halved, resulting in a cost
of T (N/2) at the current iteration, e.g. each subdomain contains approximately
N/2 items. Finally, the N term is present as the cost to find the median of the
dataset. It must be noted that this is an approximation of the computational cost
for any dimensionality, as the dimension of the dataset simply scales the cost by a
constant. Substituting the recurrence relations yields:

T (N) =2T (N/2)+N (2)

T (N) =2 [2T (N/4)+N/2]+N (3)

T (N) =2 [2(2T (N/8)+N/4)+N/2]+N = 8T (N/8)+3N (4)

From Eq. 4, it can be seen that after three iterations, the following relationship can
be inferred:

T (N) = 2pT (N/2p)+ pN (5)

Where p is the iteration number. Since it is known that T (1) = 1, setting N
2p = 1

yields:

T (N) = 2pT (1)+ pN = 2p + pN (6)

This is the cost required after p applications of the recursive algorithm to reduce
the dataset to a single item from N initial items. The value of p can be determined
as N = 2p→ p = log2 N. Thus, the total cost for N items is:

T (N) = N +N log2 N = O(N logN) (7)

The final equality follows from the fact that as N is increased, N log2 N will overtake
N. Additionally, the base of the logarithm is not included, as the base can be
changed via a constant multiplier, which is absorbed in the “big-O” notation. Eq. 7
provides the cost of constructing the kd-tree for a conditioned dataset. However,
as noted above, the preconditioning step requires sorting the dataset in regards to
the median value, a O(k ·N logN) operation. Thus, the total computational load to
construct the kd-tree is O(N logN) + O(k ·N logN), which is simply O(N logN) in
“big-O” notation.
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2.2 Conventional Deterministic Nearest Neighbor Search

The data storage structure of kd-trees can be exploited to obtain information about
the dataset with increased efficiency. As the dataset is preconditioned based on
increasing values of object locations, objects surrounding a specific datapoint can
be readily retrieved [Moore and Hall (1990); Press (2007)].

A conventional nearest-neighbor (NN) search is conducted by computing the Eu-
clidean distance between all possible combinations of items. By sorting the results,
the nearest neighbor to each item can be determined. Additionally, the brute-force
method can be improved by only considering object-pairs once, e.g. if objects A
and B are found to be sufficiently far from one another when investigating object
A, then object A need not be considered again when investigating object B. This is
readily apparent in terms of a symmetric distance metric, e.g. d(A,B) = d(B,A),
thus only one distance computation need be carried out for a given object pair. This
reduces the brute-force computations to

(N
2

)
= N(N−1)

2 , which is expressed as O(N2)
in “big-O” notation.

Kd-trees aid in NN searches by reducing the computational load required. The
computational complexity of a conventional brute-force NN search is O(N2) where-
as a kd-tree based search reduces this load to O(N logN) on average, where N is the
number of items considered [Bentley (1975)]. It must be noted, however, that this
is an average complexity. If the dataset is poorly conditioned, e.g. a sparse dataset,
resulting in multiple empty nodes within the tree, the number of nodes investigated
increases [Moore and Hall (1990)]. A kd-tree NN search algorithm is outlined as
Alg. 2 [Press (2007)]. An example application of this algorithm is depicted in Fig.
3. This approach is carried-out using the example kd-tree from Fig. 2.

2.2.1 Computational Cost of Conventional Deterministic Nearest Neighbor Search

The algorithm complexity can be determined by analyzing the number of possible
operations for each iteration of the algorithm. Initially, there are N possible oper-
ations, as any object is a candidate nearest neighbor. For the second iteration, the
algorithm has eliminated objects on the current side of the domain. This reduces the
number of potential operations to N/2, as the balanced kd-tree assures an approxi-
mately equal number of objects on either side of each division. The third iteration
splits the current side of the domain once again, reducing the number of possible
operations to N/4. This trend continues until, at worst, the final iteration leaves a
single object to investigate. Tab. 1 depicts this trend. An example schematic of the
algorithm complexity analysis is shown in Fig. 4 using seven items in a balanced
kd-tree. This again shows the reduction in possible operations at each iteration,
where the hatched regions are eliminated at the start of the given iteration.
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Algorithm 2 Conventional Nearest-Neighbor Search Algorithm
1: Determine required number of nearest neighbors.
2: for p = 1:Number of points do
3: Locate the item of interest in the kd-tree.
4: Traverse up the tree, opening boxes until the required number of nearest

neighbors is met.
5: Compute the distance from the item of interest to the nearest neighbors

found.
6: Store the minimum distance value, dmin.
7: Compute the distance from the item of interest to all remaining nodes (box-

es) in the kd-tree, dbox.
8: if dbox < dmin then open the box and compute the distance from the item of

interest to the enclosed items. Update dmin and nearest neighbors.
9: else

10: Move to next possible box.
11: end if
12: end for

(a) First Iteration: N Possible Operations. (b) Second Iteration: N/2 Possible Operations.

(c) Third Iteration: N/4 Possible Operations. (d) Fourth (final) Iteration: N/8 Possible Oper-
taions.

Figure 4: Example Algorithm Complexity Analysis

It can be seen that for the pth iteration, the resulting number of possible operations
is O(N/2k). It is also known that the last iteration has but one iteration, i.e. the final
iteration number is the iteration that corresponds to the algorithm investigating a
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(a) Select Object of Interest in Tree. Initialize
Number of Neighbors.

(b) Traverse up to Containing Box with Required
Number of Neighbors.

(c) Compute Distance to All Objects in Box. S-
tore Minimum Value.

(d) Move to Adjacent Box in Tree Containing E-
qual Number of Objects.

(e) Compute Distance to Adjacent Box. If Less
Than Stored Minimum, Open.

(f) Compute Distance to All Objects in Adjacent
Box.

Figure 3: Example Nearest Neighbor Search

single point. Therefore, the number of iterations can be computed as

N
2p = 1→ p = log2 N (8)

From Eq. 8, it can be seen that the computational complexity of the nearest neigh-
bor search algorithm is O(logN) for a single object’s nearest neighbor. For all N
objects, the complexity scales to O(N logN). Note that the base of the logarithm is
not specified, as log bases can be changed via a constant, which is ignored in “big-
O” notation [Cormen, Leiserson, Rivest, and Stein (2001)]. It must be noted that
this complexity only accounts for the nearest-neighbor search. The total complexi-
ty, including constructing the kd-tree would be O(N logN)+O(N logN), which is,
of course, O(N logN) in “big-O” notation.

The conventional NN search via a kd-tree implementation is clearly more efficien-
t than a brute-force NN search algorithm, which requires the computation of the
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Table 1: Possible Operations

Iteration Possible Operations
0 N
1 N/2
2 N/4
3 N/8
...

...
end 1

distance between all possible combinations of items. It can immediately be seen
that the kd-tree lends itself towards conjunction analysis, however, the convention-
al implementation cannot directly account for uncertain RSO locations. Here, a
probabilistic distance metric is required

2.3 Overview of Probabilistic Distance Metrics

As seen in Alg. 2, the conventional nearest neighbor search requires a comparison
of distance values between two RSOs. For the case of uncertain RSO positions,
the Euclidean distance metric does not offer insight towards the likelihood of col-
lision between any two objects. The standard approach to computing the collision
probability relies on integrating the overlapping region between two PDFs [Mer-
curio, Singla, and Patra (2012, 2013)]. This approach, however, yields a value of
probability and thus, cannot be employed as a distance metric. It is therefore ap-
propriate to find a proper metric to represent the probability of collision between
two RSOs. For this research, the Kullback-Leibler divergence, the Bhattacharyya
Distance, and the Hellinger Distance have been considered.

The Kullback-Leibler (KL) divergence measure was first investigated as it offers a
measure of the information content difference between two PDFs. For two arbitrary
PDFs p(xxx) and q(xxx), the KL divergence can be computed as:

D(p,q) =
∞∫
−∞

p(xxx) ln
p(xxx)
q(xxx)

dxxx =
∞∫
−∞

p(xxx) ln p(xxx)dxxx−
∞∫
−∞

p(xxx) lnq(xxx)dxxx (9)

The first term in the aforementioned expression for the KL divergence is the mea-
sure of uncertainty in the true PDF p(xxx) while second term is the measure of uncer-
tainty in q(xxx) relative to the true PDF p(xxx). If both p(xxx) and q(xxx) are assumed to be
Gaussian distributions characterized by N (µµµ p,Σp) and N (µµµq,Σq), respectively,
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then the KL divergence has a closed-form expression given by

DKL(p,q) =
1
2

[
log(
‖Σq‖
‖Σp‖

)+Tr(Σ−1
q Σp)−d +

(
µµµ p−µµµq

)T
Σ
−1
q
(
µµµ p−µµµq

)]
(10)

It can be shown that DKL(p,q) is non-negative and is zero if and only if p(xxx)= q(xxx).
As it does not satisfy the symmetry requirement, or obey the triangle inequality,
the KL divergence is not suitable for this research work [Johnson and Sinanovic
(2001)].

Another important measure of distance between two PDFs is provided by the Bhat-
tacharyya Distance (DB), which can be computed for two arbitrary PDFs p(xxx) and
q(xxx) as:

DB(p(xxx),q(xxx)) =−2ln
(∫ √

p(xxx)q(xxx)dxxx
)

(11)

If both p(xxx) and q(xxx) are assumed to be Gaussian with distributions N (µµµ p,Σp) and
N (µµµq,Σq) respectively, the Bhattacharyya Distance has a closed-form expression
given by

DB(p(xxx),q(xxx)) =
[

1
2

ln(
‖Σ‖
‖ΣpΣq‖

)+
1
8
(
µµµ p−µµµq

)T
Σ
−1 (

µµµ p−µµµq
)]

(12)

where Σ ≡ Σp+Σq
2 . Furthermore, the Bhattacharyya coefficient, ρB = exp{−DB},

is a very popular statistical measure, which provides upper and lower bounds on
the probability of classification error. The Bhattacharyya Distance is non-negative
and symmetric, however, as with the KL divergence, it does not obey the triangle
inequality [Johnson and Sinanovic (2001)].

As the above-described probabilistic distance metrics do not satisfy the triangle in-
equality, a new distance metric must be employed. The Hellinger Distance, which
is closely related to the Bhattacharya coefficient satisfies all all properties of a dis-
tance metric, including the triangle inequality [Harsha (2008)]. For two arbitrary
PDFs p(xxx) and q(xxx), the Hellinger Distance can be computed as:

DH(p,q) =
1
2

∫ (√
p(xxx)−

√
q(xxx)

)2
dxxx (13)

DH(p,q) = 1−
∫ √

p(xxx)q(xxx)dxxx =
√

1−ρB (14)

It can be seen from Eq. 13 that the Hellinger Distance yields a numerical value
related to the difference between two PDFs. As with most probabilistic distance
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metrics, the Distance between two Gaussian PDFs p(xxx) and q(xxx) can be expressed
as in [Saul (2011)]:

DH(p,q) =

√
1−
|Σp|1/4|Σq|1/4

|Σpq|1/2 e−
1
2 (µµµ p−µµµq)

T Σ
−1
pq (µµµ p−µµµq) (15)

Where Σpq =
1
2(Σp+Σq). Note that DH(p,q) ranges between zero and one, where a

DH(p,q) = 0 implies that two PDFs’s overlap completely and DH(p,q) = 1 implies
no overlap. It has been shown that the Hellinger Distance metric yields a value
inversely proportional to the probability of collision between any two objects, i.e.
as the Hellinger Distance approaches unity, the probability of collision tends to zero
[Mercurio, Singla, and Patra (2012, 2013)].

The probabilistic metrics described possess closed-form solutions for cases in which
all uncertainties are characterized by Gaussian distributions. Uncertainties charac-
terized by non-Gaussian distributions, however, must be treated via numerical in-
tegration procedures. For the case of two mixture models, however, a simplified
approach exists.

2.4 Probabilistic Distance Metrics for Mixture Models

The lack of closed-form expressions for distance metrics in the presence non-
Gaussian uncertainties limits their applicability to non-efficient algorithms. Numer-
ical integration methods can be used to evaluate these distances, however, these pro-
cedures are often computationally expensive [Mercurio, Singla, and Patra (2013)].
Instead, a method is sought to exploit the formulation of GMM distributions, and
avoid expensive numerical integration procedures.

Recent research in uncertainty characterization has focused on fusing accurate PDF
representations with computationally efficient methods. Recently, different variants
of Gaussian Mixture Models (GMM) have found special interest in the field of or-
bital mechanics for uncertainty propagation [Horwood, Aragon, and Poore (2011);
Vishwajeet, Singla, and Jah (2014); Vishwajeet and Singla (2014)], orbit determi-
nation [DeMars and Jah (2013)], and conjunction assessment [Vittaldev and Rus-
sell (2013); Mercurio, Singla, and Patra (2013)]. All GMM based algorithms are
based upon the assumption that the probability density function of the state can be
approximated by a mixture of Gaussian kernels [Terejanu, Singla, Singh, and Scott
(2008, 2011)]. The mean and covariance information for each Gaussian kernel is
computed independently. Different algorithms incorporate various criteria and cor-
responding rationale for selection of the Gaussian kernels and the computation of
weight of each Gaussian kernel.

These methods are often a trade-off between expensive, but highly-accurate, Monte



242 Copyright © 2016 Tech Science Press CMES, vol.111, no.3, pp.229-256, 2016

Carlo methods, and efficient, but ultimately inaccurate, Gaussian-based methods.
Due to the nature of the GMM formulation, however, many properties of Gaussian
PDFs can be exploited [DeMars, Cheng, and Jah (2014); Mercurio, Singla, and
Patra (2013)].

The Gaussian (Normal) density associated with an n-dimensional random variable
xxx is given by:

p(xxx|µµµ,Σ) = 1
(2π)N/2|Σ|1/2 exp

[
−1

2
(xxx−µµµ)T

Σ
−1(xxx−µµµ)

]
(16)

Where µµµ , and Σ represent the mean vector and covariance matrix, respectively. In
short-hand notation, the Gaussian density with mean µµµ and covariance Σ can be
expressed as N (xxx|µµµ,Σ). An n-dimensional GMM is simply a weighted sum of n-
dimensional Gaussian density functions, expressed as [Mercurio, Singla, and Patra
(2013)]:

P(xxx|w) =
M

∑
i=1

wiN (xxx|µµµ i,Σi) (17)

Where wi is the weight of the ith Gaussian component. The weights are subject to
the constraint:

M

∑
i=1

wi = 1 (18)

GMMs can be used to represent non-Gaussian uncertainties and thus, offer addi-
tional accuracy in computing collision probabilities. As GMMs are comprised of
a weighted-sum of Gaussian components, many formulae developed for Gaussian
uncertainties can be extended simply.

Given two mixture models, P(xxx|α) and Q(xxx|β ), their probabilistic distance can be
computed as a solution to a straightforward optimization problem.

P(xxx|α) =
N

∑
i=1

αi pi(xxx|µµµ i,Σi) (19)

Q(xxx|β ) =
M

∑
j=1

β jq j(xxx|µµµ j,Σ j) (20)

Where αi and β j are the weights, and pi(xxx|µµµ i,Σi) and q j(x|µµµ j,Σ j) are any chosen
probability density functions. The following linear programming problem is ob-
tained to compute the probabilistic distance between any two mixture models [Liu
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and Huang (2000)].

D(P,Q) = min
w=[wi j]

N

∑
i=1

M

∑
j=1

wi jd(pi,q j) (21)

Subject to:

wi j ≥ 0, 1≤ i≤ N, 1≤ j ≤M (22)

m

∑
j=1

wi j = αi, 1≤ i≤ N (23)

n

∑
i=1

wi j = β j, 1≤ j ≤M (24)

Where, as above, αi and β j are the weights of the mixture model components,
pi and q j are any chosen probability density functions (components of mixture
models P and Q, respectively), wi j is the weight of the i jth distance component,
and d(pi,q j) is the probabilistic distance metric of choice between the ith and jth

components of the chosen mixture models. The optimized distance will satisfy
the same properties as the metric chosen for inter-component distances, e.g. if
d(pi,q j) satisfies the non-negativity and symmetry properties, then D(P,Q) will
also satisfy these properties [Liu and Huang (2000)]. This distance computation
may be used with any probabilistic distance metric, however, the Hellinger Distance
will be employed due to the fact that it is a proper metric. The optimization problem
can thus be posed as:

D(P,Q) = min
w=[wi j]

N

∑
i=1

M

∑
j=1

wi jDH(pi,q j) (25)

Subject to:

wi j ≥ 0, 1≤ i≤ N, 1≤ j ≤M (26)

m

∑
j=1

wi j = αi, 1≤ i≤ N (27)

m

∑
i=1

wi j = β j, 1≤ j ≤M (28)

Where DH(pi,q j) is the Hellinger Distance between the ith component of P(xxx|α),
and the jth component of Q(xxx|β ). Note that since P(xxx|α) and Q(xxx|β ) are GMMs
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and thus comprised of a weighted-sum of Gaussian distributions, the Hellinger Dis-
tance between the components of the mixtures can be computed via the closed-form
expression in Eq. (15).

The linear programming (LP) problem defined above is convex, as the objective
function and equality constraints are linear. Therefore, if an optimum solution
can be found, global optimality is guaranteed [Arora (2004)]. Additionally, the
LP problem possesses the following qualities: (1) the following trivial, feasible,
non-optimal solution exists, which satisfies the constraints: wi j = αiβ j (the linear
programming problem is therefore feasible), and (2) the objective function is upper-
bounded (by unity when the Hellinger Distance is used).

2.5 Modified Probabilistic Nearest Neighbor Search

The conventional nearest-neighbor search relies on deterministic locations of R-
SOs. For uncertain locations, however, a modified approach must be derived. The
main challenge lies in computing the distance-to-box, dbox to identify the appro-
priate tree node or box containing the nearest neighbor. Many modifications were
considered involving various methods of modifying the distance-to-box function in
the nearest-neighbor algorithm. The first of these approaches required the Hellinger
distance for inter-RSO analyses, while the Euclidean distance was maintained for
the distance-to-box [Mercurio, Singla, and Patra (2012, 2013)]. This resulted in
comparing the Hellinger distance with the Euclidean distance prior to investigating
RSOs within a given box, as shown in Fig. 5. As the Hellinger distance is nor-
malized, the values obtained will almost always be less than those obtained via the
Euclidean distance in a non-normalized space. Additionally, use of a normalized
space is not advisable, as the values obtained from two different distance metrics
would be compared.Thus, this approach did not yield accurate results, and a new
approach was sought based on the probabilistic nature of the problem. Another
approach involved representing a given box as a joint Gaussian PDF comprised of
the contained RSOs, as shown in Fig. 6. This approach failed to yield accurate
results as the covariance of the joint PDF is weighted by the inverse of the sum
of the component covariances. Therefore, for large covariances, the resulting joint
PDF possesses a small covariance. Therefore, in all cases considered, no overlap
would occur and thus, the Hellinger distance would assume a value of unity, and
the contained RSOs would not be investigated further. The final approach consisted
of approximating a given box as a uniform density function, as shown in Fig. 7.
As with the previous methods, this approach fails to capture uncertainties extending
beyond the limits of the containing box. Therefore, if no overlap is present between
the PDF of the current RSO and the box of interest, the RSOs contained will not be
investigated.
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Figure 5: Distance-to-Box - Euclidean Distance Method

Figure 6: Distance-to-Box - Joint Gaussian Method

Figure 7: Distance-to-Box - Uniform Distribution Method
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Finally, a modification to the algorithm described in Alg. 3 is considered. First, the
kd-tree is formed based upon the mean locations of the RSOs. Regarding the inter-
actions between RSOs, the Hellinger distance is employed to obtain a “distance”
value inversely proportional to the overlap of the PDFs and thus, the probability of
collision. In addition to this metric, the Euclidean Distance is computed between
RSOs. This serves as comparison values for the distance-to-box computation. It
is noted that the structure of the nearest-neighbor search algorithm is maintained.
The modified algorithm is described as Alg. 3.

Algorithm 3 Modified Nearest-Neighbor Search Algorithm
1: Determine required number of nearest neighbors.
2: for p = 1:Number of points do
3: Locate the item of interest in the kd-tree.
4: Traverse up the tree, opening boxes until the required number of nearest

neighbors is met.
5: Compute the Hellinger Distance (DH), and the Euclidean Distance (DE)

from the item of interest to the nearest neighbors found.
6: Store the minimum distance values: DHmin and DEmin .
7: Compute the Euclidean Distance from the item of interest to all remaining

nodes (boxes) in the kd-tree, Dbox.
8: if Dbox < DEmin then open the box and compute the distance from the item

of interest to the enclosed items. Update DEmin and nearest neighbors.
9: else

10: Move to next possible box.
11: end if
12: end for

Comparing Alg. 3 with Alg. 2, it can be seen that the modified nearest neighbor
algorithm is of the same computational complexity. While, at each iteration, the
number of possible operations is increased by a factor of two, due to the inclusion
of the Euclidean distance metric, the computational complexities differ only by
a constant, which is ignored in “big-O” notation. With the proposed approach
detailed, numerical test cases are presented next.

3 Numerical Results

This section provides numerical results to demonstrate the efficacy of the proposed
approach. All simulations were run on a 2.3 GHz Intel Core i7 machine, with 4 GB
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of RAM, and all code written in C++. To perform comparisons, sets of 200, 2,000,
5,000, and 10,000 RSOs have been pseudo-randomly generated in LEO orbits.

First, a scenario is examined where position uncertainties in each RSO are gov-
erned by Gaussian probability density functions. Each RSO assumed to possess a
diagonal covariance matrix, with variances between 100 and 10,000 km. The large
variance values are chosen to ensure interaction between the RSOs. A second sce-
nario will quantify the uncertainty associated with each RSO as a GMM containing
six components with equal weights. The mean of each Gaussian component (χχχ i) is
generated by:

χχχ i = µµµ +(
√

NΣ)i, i = 1,2,3 (29)

χχχ i+N = µµµ− (
√

NΣ)i, i = 1,2,3 (30)

Where N is the dimension of the space, and (
√

NΣ)i is the ith column of the matrix
square root of NΣ. For a given mixture, each Gaussian component is assumed to
possess a covariance matrix equal to Σ, where Σ is the original covariance matrix
of the current RSO. It should be noted that since the GMM distributions are cre-
ated somewhat arbitrarily, the results need not be equivalent between cases, e.g.
the nearest neighbors obtained when considering Gaussian errors need not be the
same as those obtained when considering GMM errors. For a basis of compari-
son, a brute-force nearest neighbor analysis is carried out, computing the Hellinger
distance between all possible of RSO interactions. The symmetry of the Hellinger
Distance can be exploited to reduce the number of object-pair comparisons, e.g.
computing DH(p1, p2) yields the value for DH(p2, p1). This reduces the number
of brute force computations to

(N
2

)
= N(N−1)

2 , which is expressed as O(N2) in “big-
O” notation. Thus, the proposed method can be compared to the “best-case” brute
force method. Finally, the top ten candidates for collision have been assimilated for
all simulations.

Tab. 2 - Tab. 5 list the top 10 candidates for collision in the case of Gaussian po-
sition errors while Tab. 6 - Tab. 9 list top 10 candidates for collision in the case of
non-Gaussian position errors. The result from the proposed kd-tree based approach
are compared with the brute force (i.e. exhaustive search) way of identifying the
top 10 collision candidates. As expected the proposed method accurately captures
the top ten nearest-neighbors for RSOs with both the Gaussian position errors and
GMM position errors. Furthermore, Fig. 8 shows the CPU time required for all
the methods and Fig. 9 shows the number of comparisons required by each ap-
proach. From these figures, it can be seen that the proposed method significantly
outperforms brute-force methods, and follows the O(N logN) trend as expected.
Additionally, the number of iterations required for Gaussian uncertainties is equiv-
alent to that of the GMM uncertainties. Due to the optimization routines required,
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the CPU time for the GMM case is somewhat greater than that of Gaussian errors.
The number of iterations required, however, is approximately equal for both cases.
Additionally, Tab. 8 shows only the time required to carry out the nearest-neighbor
searches. Eq. 10 shows the time required to create the kd-tree for all cases investi-
gated. This value includes the CPU time required to sort the dataset, and construct
the kd-tree. It can be seen that the tree creation does not add a significant amount of
time to the total time required to carry out the proposed methodology. Additionally,
accounting for the time to create the kd-tree, the proposed methodology still offers
a significant improvement over the brute-force counterpart.

Next, the nearest neighbor to each RSO is computed by making use of the proposed
approach and compared against the brute force method (i.e. exhaustive search).
Tab. 11 lists the percentage accuracy in identifying the nearest neighbor as com-
pared to the brute force method. From these results, it can be seen that at worst, the
proposed method captures 98.6% of the nearest neighbors. Note that for the cases
investigated, the level of accuracy is not necessarily the same between Gaussian and
GMM uncertainties, as although the initial datasets are equivalent in each case, the
GMM PDFs are generated using only the mean and covariance values the Gaussian
PDFs. This results in a different set of PDFs and thus, the nearest neighbors may
not coincide between both scenarios. However, this level of accuracy is expected,
due to the assumptions made in formulating the proposed approach. By employing
a deterministic distance metric in the distance-to-box function, the uncertain loca-
tion of each RSO is not taken into account. Thus, an assumption is made, where
only the mean values of the RSO locations are considered when deciding whether
or not to investigate RSOs located in nodes far away from the current RSO. Thus,
a probabilistic nearest neighbor may lie in a node far away from the current RSO,
but in a deterministic sense, the algorithm avoids investigating that node. As dis-
cussed in Section 2.6, accounting for uncertain RSO locations when employing the
distance-to-box function is an area of active research.

Finally, as the proposed method does not capture all of the nearest neighbors for
a given scenario, a short failure analysis is carried out. Here, the 10,000 RSO
cases are analyzed to ascertain, which nearest neighbors are “missed”. Tab. 12
depicts the minimum Hellinger Distance values for the missed RSO encounters for
both Gaussian and GMM uncertainties. It can be seen that although the proposed
method captures a significant number of RSO pairs, it does miss an object-pair with
a fairly low Hellinger Distance value, resulting in a moderately high probability
of collision. Again, the level of inaccuracy is expected due to the deterministic
distance-to-box function.
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Table 2: Top 10 Results - Gaussian Uncertainties - 200 RSOs.

Kd-Tree Brute Force
P1 P2 Hellinger Distance (DH) P1 P2 Hellinger Distance (DH)

127 16 0.190532 127 16 0.190532
145 46 0.589249 145 46 0.589249
186 46 0.614217 186 46 0.614217
80 17 0.698227 80 17 0.698227
198 20 0.885388 198 20 0.885388
58 1 0.897813 58 1 0.897813
187 16 0.898243 187 16 0.898243
106 57 0.898516 106 57 0.898516
110 27 0.914968 110 27 0.914968
184 11 0.916594 184 11 0.916594

Table 3: Top 10 Results - Gaussian Uncertainties - 2,000 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
1554 325 0.226495 1554 325 0.226495
307 196 0.261281 307 196 0.261281
1901 325 0.36314 1901 325 0.36314
1320 315 0.409216 1320 315 0.409216
1745 1059 0.413887 1745 1059 0.413887
1599 1497 0.419238 1599 1497 0.419238
1922 226 0.438103 1922 226 0.438103
1788 817 0.448657 1788 817 0.448657
1921 1584 0.449346 1921 1584 0.449346
1052 248 0.449486 1052 248 0.449486

Table 4: Top 10 Results - Gaussian Uncertainties - 5,000 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
2796 1235 0.234008 2796 1235 0.234008
4581 210 0.257578 4581 210 0.257578
4903 4388 0.272949 4903 4388 0.272949
2992 1756 0.280218 2992 1756 0.280218
4041 2186 0.31192 4041 2186 0.31192
4511 4010 0.312982 4511 4010 0.312982
2923 4511 0.33224 2923 4511 0.33224
2614 2095 0.344263 2614 2095 0.344263
1985 575 0.347735 1985 575 0.347735
4870 2840 0.353278 4870 2840 0.353278
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Table 5: Top 10 Results - Gaussian Uncertainties - 10,000 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
7226 2659 0.177235 7226 2659 0.177235
7120 4038 0.203769 7120 4038 0.203769
7509 4203 0.212973 7509 4203 0.212973
9063 5373 0.216052 9063 5373 0.216052
2540 834 0.221753 2540 834 0.221753
6392 2665 0.225235 6392 2665 0.225235
8701 3162 0.225876 8701 3162 0.225876
5258 4835 0.229633 5258 4835 0.229633
6888 695 0.244521 6888 695 0.244521
8421 4452 0.245311 8421 4452 0.245311

Table 6: Top 10 Results - GMM Uncertainties - 200 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
127 16 0.21554 127 16 0.21554
145 46 0.590181 145 46 0.590181
186 46 0.623265 186 46 0.623265
80 17 0.689146 80 17 0.689146

198 20 0.80863 198 20 0.80863
188 53 0.826048 188 53 0.826048
11 127 0.836558 11 127 0.836558

184 11 0.837386 184 11 0.837386
52 46 0.83953 52 46 0.83953

110 27 0.83961 110 27 0.83961

Table 7: Top 10 Results - GMM Uncertainties - 2,000 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
1554 325 0.241356 1554 325 0.241356
307 196 0.275591 307 196 0.275591
1901 325 0.39507 1901 325 0.39507
1745 1059 0.424781 1745 1059 0.424781
1599 1497 0.430482 1599 1497 0.430482
1320 315 0.438824 1320 315 0.438824
1922 226 0.449263 1922 226 0.449263
1052 248 0.478697 1052 248 0.478697
1821 472 0.495241 1821 472 0.495241
1788 817 0.496736 1788 817 0.496736
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Table 8: Top 10 Results - GMM Uncertainties - 5,000 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
2796 1235 0.254638 2796 1235 0.254638
4581 210 0.264462 4581 210 0.264462
4903 4388 0.280123 4903 4388 0.280123
2992 1756 0.283679 2992 1756 0.283679
4511 2923 0.355648 4511 2923 0.355648
4041 2186 0.359624 4041 2186 0.359624
4010 4511 0.3666 4010 4511 0.3666
3748 2982 0.376153 3748 2982 0.376153
3099 1031 0.38161 3099 1031 0.38161
2140 1731 0.382595 2140 1731 0.382595

Table 9: Top 10 Results - GMM - 10,000 RSOs.
Kd-Tree Brute Force

P1 P2 Hellinger Distance (DH ) P1 P2 Hellinger Distance (DH )
7120 4038 0.209296 7120 4038 0.209296
7226 2659 0.213655 7226 2659 0.213655
9063 5373 0.217749 9063 5373 0.217749
2540 834 0.238839 2540 834 0.238839
5258 4835 0.240083 5258 4835 0.240083
6392 2665 0.242983 6392 2665 0.242983
7509 4203 0.243925 7509 4203 0.243925
6888 695 0.248986 6888 695 0.248986
8701 3162 0.259893 8701 3162 0.259893
8421 4452 0.26805 8421 4452 0.26805

Table 10: CPU Time Required for Tree Creation.

RSOs CPU Time
200 1.2×10−4 sec.
2000 9.1×10−4 sec.
5000 2.7×10−3 sec.

10000 5.6×10−3sec.

Table 11: Percent of Nearest Neighbors Captured.

RSOs Percent Accuracy - Gaussian Percent Accuracy - GMM
200 99.5% 99.5%
2000 99.4% 99.0%
5000 99.0% 98.8%
10000 98.9% 98.6%
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Table 12: Failure Analysis - 10,000 RSOs.

Scenario RSO kd NN kd DH Actual NN Actual DH

Gaussian 2463 3326 0.37884 6316 0.37559
GMM 2463 3326 0.420466 6316 0.376113
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Figure 8: CPU Time Required for All Methods

4 Conclusions

Tree-based nearest neighbor searches are widely used for large datasets, as the num-
ber of computations is significantly reduced when compared to those required by a
brute-force algorithm. Upon selecting the kd-tree due to its low-complexity, mesh-
free application, a modification was required in order to account for probabilistic
nearest neighbors. For this, the Hellinger distance was chosen, as all properties of
a distance metric are satisfied. Finally, to better quantify the uncertainties in RSO
positions, each RSO position uncertainty is assumed to be represented by a Gaus-
sian Mixture Model (GMM). With the necessary modifications made, the proposed
method was implemented to obtain verifiable results against brute-force tests.

In the cases considered, the modified kd-tree method corroborated the most sig-
nificant results obtained by brute-force methods, ensuring that the Hellinger dis-
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Figure 9: Iterations Required for All Methods

tance provides a link to the actual probability of collision and thus, the proba-
bilistic nearest-neighbor. This research thus proposes a novel continuation of con-
junction analysis algorithms. The modified kd-tree approach offers a significant
improvement over conventional conjunction analysis algorithms, offering extreme
reductions in required CPU time and iterations required. Further, Gaussian mixture
models (GMMs) better quantify uncertainties when compared to standard Gaus-
sian models, thus extending the applicability of the proposed method to scenarios
with non-Gaussian errors. Finally, due to the linear programming-based distance
metric computation, the inclusion of GMM uncertainties does not significantly in-
crease the computational load required when compared to a conventional kd-tree
approach.

It should be noted that the proposed approach is currently implemented for a single
time instant. Propagation of RSO uncertainties will require some modification to
the current algorithm, which is an area of active research. Although almost negli-
gible at a single time instant, the time required to construct the kd-tree may pose
a constraint to how often the tree should be constructed and thus, how often the
nearest-neighbor search should be performed. However, it is anticipated that this
methodology will offer insight towards accurate and efficient conjunction analy-
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sis for any encounter scenario by removing restrictive assumptions for the sake of
computational efficiency.

Acknowledgement: This material is based upon work supported by AFOSR
grant FA9550-15-1-0313.
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