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1 Introduction

Owing to the proliferation of orbital debris [Kessler and Cour-Palais (1978)] and
imposing threat of Earth impacting asteroids [Junkins, Singla, Mortari, Bottke, and
Durda (2005)], uncertainty characterization and propagation research has occupied
a center stage in modern space system design applications. Traditional methods of
linear covariance analysis and associated sequential orbit estimation strategies are
of limited utility when the propagation times between measurements of the space
objects grows large. Nonlinearity of astrodynamics problems makes the evolution
of the probability density function that governs the uncertainty of the state vector
non Gaussian in nature. This non-Gaussian [Junkins, Akella, and Alfriend (1996)]
evolution of uncertainty cannot be captured faithfully using linearized models.

The Fokker-Planck equation [Risken (1996)] dictates the evolution of the probabil-
ity density function (PDF) associated with the state vector of a dynamical system
that is a Markov process. Recently, researchers have developed efficient meth-
ods to solve the Fokker-Planck equation for high dimensional problems. Park and
Scheeres (2006) developed the high order state transition tensor approach for propa-
gation of uncertainties in orbital mechanics problems. Kumar, Chakravorty, Singla,
and Junkins (2009) and Kumar, Chakravorty, and Junkins (2010) provided finite el-
ement formulations to solve the Fokker-Planck equation for determination of the
transient and stationary probability density function solutions. Terejanu, Singla,
Singh, and Scott (2008) provide a computational method to propagate uncertainty
through nonlinear systems of high dimensionality using Gaussian mixture models.

For astrodynamics problems, the general nonlinear motion models are well under-
stood but sparse observations and incomplete state information and low precision
require accurate uncertainty quantification. The presence of high fidelity dynamics
models reduces the need to use high levels of process noise in the propagation equa-
tion to capture the model uncertainties and appropriate time-scale analysis allows
for identification of when nonconservative forces begin to significantly contribute
to motion. Therefore, the diffusion term of the Fokker-Planck equation can be
neglected in the uncertainty propagation calculations for astrodynamics problems
where it has been shown when and how nonconservative forces start to manifest
[Awad, Narang-Siddarth, and Weisman (2016)]. The Fokker-Planck equation with-
out the diffusion term becomes Liouville’s equation that governs the evolution of
the probability density function between two time steps of interest. To this end,
Halder and Bhattacharya (2011) apply the method of characteristics to solve Liou-
ville’s equation for computing the evolution of the probability density function in
atmospheric re-entry problems. Fujimoto, Scheeres, and Alfriend (2012) use the
state transition tensor approach to provide an expression for the probability density
function at an arbitrary time instant. Analytical expressions for the state transition
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tensors are used by Fujimoto, Scheeres, and Alfriend (2012) and Majji, Junkins,
and Turner (2008a) provide a set of partials required to compute the state transition
tensors. The evolution equations for high order statistical moments are derived as a
set of tensor differential equations by Majji, Junkins, and Turner (2010), providing
an alternative approach for uncertainty propagation in terms of moments rather than
the probability density function. In this work, state transition tensors are avoided by
use of mathematical perturbation theory used to derive the mean orbital elements
[Brouwer (1959)].

Liouville’s Equation is an important partial differential equation in statistical physic-
s that describes the time evolution of the phase space distribution function [Gibbs
(1902)]. It originally appears in the classical and statistical mechanics asserting the
conservation of the probability density function in the phase space for a conser-
vative dynamical system. The equation is a set of quasi-linear partial differential
equations that govern the time evolution of the PDF of the system states subject
to a Markov process. For a conservative dynamical system, the partial differential
equation specializes the evolution of the probability density in time to that of a
system being governed by a state-transition matrix formulation. Even further, the
dimensionality of the conservatively perturbed system can be reduced if any mo-
menta variables for the system are able to be shown to be constant in time through
use of Hamilton’s equations.

In addition to covariance intersection and threat assessment, uncertainty propaga-
tion methods are useful for state estimation. Park and Scheeres (2006) provide
an estimation framework based on state transition tensors, where the propagat-
ed higher-order moments are used to compute an improved Kalman gain matrix.
However, with each set of measurements, only the state and the covariance are up-
dated, while the higher-order moments are not updated in this filter. Majji, Junkins,
and Turner (2010) and Majji, Junkins, and Turner (2008b) extend this approach
to propagate and update the high order moments to realize a high order extended
Kalman filter. Efficient and accurate probability density function evolution (in con-
trast to the high order statistical moment propagation) calculations using Gaussian
mixture models enabled Terejanu, Singla, Singh, and Scott (2011) to develop an
implementation of a Bayesian filtering approach for nonlinear dynamic systems.
For problems in astrodynamics and where the time-scale analysis permits, further
computational efficiency is obtained for filtering, prediction, and tracking applica-
tions by neglecting the diffusion term in the Fokker-Planck equation that governs
the time evolution.

In most problems of interest however, the analysts do not have direct access to
the state variables due to incomplete state observations, sparse observations, and
noisy observations. In such cases, estimation techniques are used to obtain initial
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condition estimates such that the trajectories of plant models of interest can be
computed using these estimates. Usually the presence of noise prevents the analyst
from estimating the system parameters (such as the initial conditions) exactly. Thus
the uncertainty associated with the system parameters manifests itself and evolves
in time in many problems of interest in astrodynamics.

This paper aims at studying the uncertainty propagation in orbital mechanics prob-
lems by making use of Liouville’s equation and mathematical perturbation theo-
ry. Results are shown for both Keplerian motion and the Main Problem in Satel-
lite Theory (J2 zonal perturbed two-body motion) [Deprit (1969)]. Considerations
about the choice of coordinates in astrodynamics are discussed that make the solu-
tion of this quasi-linear partial differential equation.

The rest of this paper proceeds as follows: Section 2 introduces Hamiltonian me-
chanics and nomenclature, Section 3 details Liouville’s equation along with the
Method of Characteristics and the transformation of variables approaches to its so-
lution, Section 4 provides the solution to Liouville’s equation for Two-Body motion
with Keplerian and Delaunay variables, Section 5 shows the results of uncertainty
propagation with Two-Body motion, Section 6 introduces Brouwer-Lyddane theo-
ry for derivation of mean orbital elements along with Lie Series and the first-order
transformation between mean and osculating elements, and Section 7 provides nu-
merical results for uncertainty propagation in the main problem of satellite theory.

2 Hamiltonian Mechanics

Analytical mechanics provides an alternative formalism to the Newton-Euler ap-
proach for developing equations of motion for mechanical systems. The varia-
tional principle forms a core of analytical mechanics where the principle of least
action applied on the Lagrangian of the dynamical system yields second order d-
ifferential equations of motion. By defining a Hamiltonian (energy-like) function
using Legendre’s transformation, an equivalent description of motion is obtained
that provides a system of first order differential equations governing the system
dynamics [Goldstein, Poole, and Safko (2002)]. Hamilton’s canonical equations
of motion provide critical insight to the nature of solutions of the dynamical sys-
tem without having to explicitly solve the resulting ordinary differential equations.
Further, canonical transformation of Hamilton’s equations provide a mechanism
for identification of conserved quantities that are constants of motion. Application
of perturbation theory and averaging to the canonical equations of motion remain
important tools for analysis of nonlinear dynamical systems to study motion prop-
erties such as identify slow and fast variables as well as resonance [Nayfeh (1973)].

Let L (x, ẋ, t) = T −V be the Lagrangian of a mechanical system where T =
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T (x, ẋ, t) and V = V (x) are the kinetic and potential energies of the system. Al-
so let x ∈ Rn be an n dimensional vector describing the configuration space of the
dynamical system. When conservative forces act on the system, Lagrange’s equa-
tions govern the dynamics of the conservative mechanical system and are written
as n second order differential equations given by

d
dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0. (1)

Legendre’s transformation [Goldstein, Poole, and Safko (2002)] defines the Hamil-
tonian function for the dynamical system in terms of the Lagrangian as

H (x,X, t) =
n

∑
i=1

∂L

∂ ẋi
ẋi−L . (2)

Legendre’s transform also defines a conjugate momentum given by X = ∂L
∂ ẋ such

that

H (x,X, t) = XT ẋ−L (3)

this gives a phase space that comprises of the configuration vector x and its as-
sociated momentum variable X, denoted by z =

[
xT ,XT

]T . Hamilton’s canonical
equations of motion for this dynamical system can be derived from the variational
principle as

ẋi =
∂

∂Xi
H (4)

Ẋi =−
∂

∂xi
H (5)

for all i = 1, ...,n.

Hamilton’s canonical equations have an inextricable relationship with the choice
of generalized coordinates and the resulting momenta, as defined by the Legen-
dre transformation. Depending on the choice of the coordinates, the description of
the time evolution of the phase volume gets tremendously simplified, with signif-
icant impact on the uncertainty propagation, as described by Liouville’s theorem
discussed in the next section [Goldstein, Poole, and Safko (2002)]. The system-
atic pursuit of such coordinate choices is contingent upon a transformation known
as the generating function that is obtained by the solution of the Hamilton Jacobi
partial differential equation.
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3 Liouville’s Equation

This section follows the discussion of our previous work [Majji, Weisman, and
Alfriend (2012)] and is repeated here for completeness instead of cross-referencing.
Consider the differential equation governing the evolution of the state from one
time step to another to be given by

ż = f(z(t), t) (6)

with initial conditions z(t0)= z0, where z∈Rn. When z0 is a deterministic quantity,
the solution of the dynamical system given in Eq. 6 is guaranteed to exist and can
be computed by using standard techniques. For a stochastic z0, the quasi-linear
partial differential equation governing the time evolution of the probability density
function, u(z, t) is given by

∂u(z, t)
∂ t

+
ns

∑
i=1

∂

∂ zi
[u(z) fi(z, t)] = 0 (7)

with a boundary (at initial condition) density function given by u(z, t) = u(z0, t0).
Stated in this manner, z denotes the state vector, n is the number of states in the dy-
namical system, and the functional, fi, is given by Eqs. 4 and 5. For a conservative
dynamical system, the structure of the system of differential equations specializes
the evolution of the density function in time. This can be shown from first princi-
ples by using the nature of the differential equations for a Hamiltonian dynamical
system. Using the differential equations, we can write

∂u(x,X, t)
∂ t

+
n

∑
i=1

∂

∂xi
[u(z, t) fi(x,X, t)]+

n

∑
i=1

∂

∂Xi
[u(z, t) fi+n(x,X, t)] = 0 (8)

For the special case of the dynamical system described using Hamilton’s canonical
equations, we make use of the fact that

fi =
∂

∂Xi
H ∀i = 1, ...,n and

fi =− ∂

∂xi
H ∀i = n+1, ...,2n

and substitute these equations in the partial differential equation in Eq. 8 to obtain
Eq. 9. The resulting partial differential equation using Einstein notation with i
ranging over the number of degrees-of-freedom of the system is then

∂u(x, t)
∂ t

+

(
∂u
∂xi

∂H

∂Xi
− ∂u

∂Xi

∂H

∂xi

)
= 0. (9)
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Since the second term in the equation is the Poisson bracket [Schaub and Junkins
(2010); Battin (1990)], Eq. 9 can be expressed using the Poisson bracket notation
(.; .), resulting in

∂u(x,X, t)
∂ t

+(u;H) = 0. (10)

For the case of autonomous Hamiltonian dynamical systems, the integrals of mo-
tion have vanishing Poisson bracket product with the Hamiltonian function. It is
pointed out here that the Liouville’s equation is indicating a conserved quantity
in terms of the total derivative (i.e., D

Dt u(x, t) sometimes known as the material
derivative in mechanics) of the density function along the trajectories of motion
of a dynamical system operating in a conservative force field. The vanishing total
derivative and the associated conservation principle is different from integrals of
motion in mechanics. In problems of classical mechanics, constants of motion are
usually time invariant and depend upon the specific realization of initial conditions
in the phase space. The total derivative conservation on the other hand, allows for
variations in the transient characteristics of the density functions in question. S-
ince it is well known that the probability density functions for problems in orbital
mechanics [Junkins (1997); Junkins and Singla (2003); Majji, Junkins, and Turner
(2010)] (and the references there in) are transient in nature with no steady state so-
lutions for the probability density functions, a systematic solution to the Liouville’s
equation provides a necessary transient characterization of the evolution of PDF. In
this paper, we provide an analytical solution to the Liouville’s equation that forms
a basis for the development of advanced tools for uncertainty quantification and
state estimation of problems in astrodynamics. This result enables the use of dif-
ferent state formulations to be utilized for state and uncertainty propagation while
maintaining computational tractability.

3.1 Methods of Solution: Method of Characteristics

In the theory of partial differential equations, Liouville’s equation belongs to a class
of first order partial differential equation (PDE) in several variables that are quasi-
linear in nature [Evans (1998)]. From the theory of partial differential equations, it
is possible to use the method of characteristics [Halder and Bhattacharya (2011)]
for solution of Liouville’s equation to compute the transformation of uncertainty
between two time steps of a general dynamical system, not necessarily conservative
in nature.

The method of characteristics transforms the solution process of a PDE in n di-
mensions into a set of ordinary differential equations (2n+1 in number). Once the
characteristic curves are determined from the solution of the ordinary differential
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equations of interest, they are used to symbolically map the boundary condition
into the solution at the current time. In essence, the existence of a smooth path be-
tween the boundary curve (density function) and the density function at an arbitrary
instant of time is assumed. This path is called the characteristic curve. However,
it is in general impossible to solve these problems analytically, because for most
problems of interest, the characteristic curves turn out to be the solutions of the
(usually) nonlinear equations of motion of the dynamical system considered.

3.2 Methods of Solution: Change of Variables

Using the method of characteristics theory, whether or not the solution of the dy-
namical system is the characteristic curve mapping the boundary density function to
the current functional can be assessed. If so, they are related by smooth functional
relationships. Therefore a smooth mapping should exist between u(x(t0), t0) and the
solution at current time u(x(t), t). Under these conditions, the change of variables
formula can be applied using the fact that u(x(t0), t0) = u(x(t0)(x(t)), t0(t)). For
notational convenience, denoting the boundary curve by u(x(t0), t0) = u0(x(t0), t0),
results in saying that u0(x(t0), t0) = u0(u(x(t), t))! The example provided by Halder
and Bhattacharya (2011) is used to demonstrate the solution process. Their exam-
ple 1 involves the scalar dynamical system

ẋ =−x2 (11)

with a symbolic initial condition x(0) = x0. For the Liouville’s equation an initial
probability density function ϕ0(x0) is assumed to be given. The solution of this
nonlinear differential equation can be written as

x(x0, t) =
x0

1+ tx0
. (12)

This relationship is invertible and can be written as

x0 =
x

1− tx
. (13)

To provide a straightforward solution, consider the transformation of variables for-
mula. Let ηηη = g(ζζζ ) be an invertible, continuously differentiable mapping, with a
differentiable inverse, ζζζ = g−1(ηηη). If the probability density function of the vari-
able ζζζ denoted by pζζζ (ζζζ ) is known, then the probability density function of the
transformed variable ηηη is given by

pηηη = pζζζ (ζζζ = ggg−1(ηηη))

∣∣∣∣det
(

dggg−1(ηηη)

dηηη

)∣∣∣∣ . (14)
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The existence and differentiability of the functional relationship and an inverse
between the current state x(t), ηηη in Eq. 14, and the initial state x0, ζζζ with the
inverse functional relationship in Eq. 13. Straightforward application of the formula
in Eq. 14 gives the probability density function ϕ(x) in terms of the initial density
function ϕ0(x0) given as

ϕ(x) = ϕ0

(
x

1− tx

)
1

(1− tx)2 . (15)

This solution can be verified to be the same solution obtained by Halder and B-
hattacharya (2011). This shows the theory behind the method of characteristics is
implicit in the application of the change of variables formula application. This is an
important tool for mapping uncertainties in time, in addition to the other applica-
tions outlined in recent work for orbit filtering and propagation[Majji, Junkins, and
Turner (2011); Weisman, Majji, and Alfriend (2011); Majji, Weisman, and Alfriend
(2012)], attitude filtering and system parameter identification [Weisman (2012);
Weisman, Majji, and Alfriend (2014a)], and orbit determination and filtering using
different state variable representations [Weisman and Jah (2014); Weisman, Majji,
and Alfriend (2014b)].

4 Solution of the Liouville’s Equation for Keplerian Motion

Keplerian motion is one of the most important nonlinear problems that analysts
have been able to develop clear understanding about due to existence of a closed
form solution [Battin (1990)]. The two body problem is one of the most elegant so-
lutions for a set of nonlinear differential equations and forms an important body of
useful mathematical literature with widely applicable results. However, the trans-
formation of uncertainty and its propagation for filtering and collision assessment
have been important challenges for astrodynamists even in the ideal situation of
the two body problem. Junkins (1997), Junkins and Singla (2003), and Junkins,
Akella, and Alfriend (1996) have argued that the choice of coordinates is an impor-
tant consideration in computation of meaningful uncertainties of orbital dynamics
models. Recent investigations by Izzo (2006) use delta functions to give several
useful probability density function formulae for problems of interest in astrody-
namics starting from full state information. However, the lingering question about
the choice of coordinates and the ease of solution methods has not been satisfactori-
ly answered in the astronautics community. In this vein, let us consider the solution
of the Liouville’s equation in three different coordinate systems.
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4.1 Cartesian Coordinates

While the Cartesian coordinates are canonical for the two body problem, the so-
lution of the Liouville’s equation is an insurmountable analytical task in these co-
ordinates. This is because the Cartesian version of the two body problem shows
up in computing the characteristic curves (or equivalently in the initial to current
state mapping approach using the change of variables formula). While numerical
solutions are possible, as has been presented by Halder and Bhattacharya (2011),
no new insight is gained other than number crunching and hyper-histograms.

4.2 Solution in Kepler Elements

We now consider the Kepler elements with the mean anomaly as the time variable.
The time evolution equations for this set can be directly written in the solution form
as

a(t) = a(t0) = a0 (16)

M(t) = M(t0)+
√

µ

a3 t = M0 +nt

e(t) = e(t0)

i(t) = i(t0)

Ω(t) = Ω(t0)

ω(t) = ω(t0)

where t is an arbitrary time, t0 is the epoch time at which the mean anomaly attains
the value M0 and µ is the gravitational parameter. Clearly the only equation with
linear time evolution is the mean anomaly M(t). Given the mapping of Eq. 16, it
is seen that although nonlinear, the inversion relationships between the elements at
initial and current time are rather trivial (including M(t)). The determinant of the
inverse Jacobian required for the transformation is unity. Thus if we are given an
initial joint density function in-terms of the classical Kepler elements,

u0 = u0(a0,M0,e0, i0,Ω0,ω0), (17)

we can immediately construct the probability density function at the current time
and give a symbolic expression for it as

u(a,M,e, i,Ω,ω) = u0(a,M−
√

µ

a3 t,e, i,Ω,ω). (18)

While the expression for the probability density function at an arbitrary time in-
stant is readily obtained for exponential family of probability density functions,
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Gaussian sum or other approximations for domain mapping need to be invoked in
general. Since the expression for the transformed density is available for all time,
its evaluation incurs trivial cost, making the process quite efficient when compared
to Monte-Carlo based methods. If the initial density function in the orbital ele-
ment space is given to be a Gaussian distribution with a mean vector given by
[µa0,µM0,µe0,µi0,µΩ0,µω0]

T and a variance value given by σa0,σM0,σe0,σi0,σΩ0
for each variable with zero cross covariance values (covariance matrix is diagonal),

u0 =
1
N

e
− (a0−µa0)

2

σ2
a0

− (M0−µM0)
2

σ2
M0

− (e0−µe0)
2

σ2
e0

− (i0−µi0)
2

σi0

2
− (Ω0−µΩ0)

2

σ2
Ω0

− (ω0−µω0)
2

σ2
ω0 . (19)

where N = 8π3σa0σM0σe0σi0σΩ0 is the normalization constant for the PDF. For the
actual PDF forms resulting from radar or angles-only initial orbit determination and
filtering see Weisman, Majji, and Alfriend (2014b) and Weisman and Jah (2014).
Using Eq. 18, we can now write an expression for the PDF at an arbitrary instant
of time t > t0 given by

u =
1
N

e
− (a−µa0)

2

σ2
a0
−

(M−
√

µ

a3 t−µM0)
2

σ2
M0

− (e−µe0)
2

σ2
e0
− (i−µi0)

2

σi0

2
− (Ω−µΩ0)

2

σ2
Ω0

− (ω−µω0)
2

σ2
ω0 (20)

In the analytical expression for the PDF at an arbitrary time instant, t, the dominant
evolution occurs between the mean anomaly M and the semi major axis a random
variables because of the Kepler laws of planetary motion for the two body problem.
The orientation parameter uncertainties remain unaffected and their corresponding
uncertainties remain stationary in time. This is an important result of the analytical
solution of the Liouville’s equation. It enables the analyst to compute uncertainties
in the reduced phase space (namely a,M variables).

4.3 Solution in Delaunay Elements

A similar solution can be obtained in the Delaunay variables that are canonical in
nature. The Delaunay variables are defined as

L =
√

µa (21)

G = L
√

1− e2 = Lη (22)

H = G cosi (23)

l = M (24)

g = ω (25)

h = Ω (26)
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where new symbols l,g,h have been introduced to denote the mean anomaly M,
argument of the periapsis ω and longitude of the ascending node, Ω to empha-
size the canonical nature of the Delaunay elements with respect to their momenta
(L,G,H). Similar to the Kepler elements, the probability density function at any
time can be written as a function of the initial probability density function using
the transformation of variables formula. Evolution of uncertainty in the Delaunay
element space can be accomplished along the same lines of the Kepler elements by
using the analytical expression for the flow of the dynamical system. However, the
dimensionality reduction available in the Kepler elements does not lend itself to the
Delaunay space since the variables G,H are functions of the variable L. Accord-
ingly, the variables L,G,H co-vary with the mean anomaly l while the uncertainties
with respect to the two orientation variables g,h remain stationary throughout the
motion of the dynamical system. We now apply the solution to a representative
problem and compare the evolution of the PDF with histograms of trajectory simu-
lations propagated using a Monte-Carlo approach.

5 Numerical Example: Uncertainty Propagation Through Two Body Dy-
namics

The analytical solution to the stochastic Liouville’s equation developed in the pre-
vious section is now applied to study the time evolution of the state PDF for Two-
Body motion. Part of this section’s example and results come from our previous
work [Majji, Weisman, and Alfriend (2012)] and is given here for completeness and
to set up the perturbation theory results in the following section. It is assumed that
the initial state vector is a random variable with a jointly Gaussian density function
with mean and standard deviation as outlined in Tab. 1. Other orbital elements are
given by e = 0, Ω = 0.7854 rad, ω = 0.7854 rad and i = 0.7854rad. Nondimen-
sional units are utilized: 1 Distance Unit (DU) = 1R⊕ = 6378.13km; 1 Time Unit

(TU) =
√

R3
⊕/µ = 806.811 sec with µ = 3.986×105km3/sec2, the orbital period of

Tab. 1 is 8688.75sec (∼ 1 TU). The initial condition uncertainty is being used for
demonstration purposes only. We know from our previous work [Weisman, Majji,
and Alfriend (2014b)] that in a physical orbit problem the joint density function
in the Kepler element space can never be uncorrelated, let alone Gaussian. Fur-
ther, we observe that the analytical solution to the stochastic Liouville’s equation is
independent of the initial PDF.

In uncertainty propagation problems involving three or more dimensions, it is cus-
tomary to plot either conditional density slices of the PDF or to show marginal den-
sity function contours. However, owing to the special nature of the Kepler element
space, we observe that the joint density of the Mean anomaly and the semi-major
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Table 1: Initial Statistics of the Keplerian Elements for Two Body Uncertainty
Propagation

µa (R⊕) σa (R⊕) µM0 (rad) σM0 (rad)

1.4322 0.25 0 0.02

axis are the pair of states that covary widely. The other state variables maintain
constant dispersion characteristics with each other, shown by Eqs. 16 and 20, there
is no mixing of the probability density fluid with other variables in the Kepler el-
ement space. This unique property of the Kepler elements enables a significant
dimensionality reduction for analysis and design. This is lost when another an-
gle variable is used. For example, using the true anomaly instead of the mean
anomaly makes the evolution of uncertainties jointly correlated with the eccentric-
ity and semi-major axis together. In addition to this, we make use of the initial
mean anomaly which varies more slowly when compared to its alternatives (true
and eccentric anomalies).

The initial density function according to the assumptions is contoured in Fig. 1.
The use of a large standard deviation for the semi-major axis implies that a fraction
of the uncertain phase volume goes through the Earth over the course of its orbit,
the unusually large uncertainty in the semi-major axis is used purely for analysis
purposes to demonstrate the utility of the approach. This density upon integration
to the next time instant t = 0.25 TU evolves into the density function as plotted
in Fig. 2. The intermediate time step is shown to demonstrate the fast evolution
of the conditional joint density between the semi major axis and mean anomaly of
interest. Subsequent evolution at t = 0.50 TU is plotted in Fig. 3 to show the speed
of uncertainty evolution.

To validate the results of the analytical solution, we make use of Monte-Carlo simu-
lations carried out by generating random initial mean anomaly and semi major axis
value with specified statistics and propagating the state vector to t = 0.5TU . There
were 1×106 initial condition samples with two-body equations of motion used to
propagate to the final time for the Monte Carlo solution and 2.5×105 were used
for the analytic representation. The semi-major axis and mean anomaly space was
subsequently discretized in to a space of 750x750 bins to compute a histogram of
the final conditions attained by the propagated initial conditions. Upon normaliza-
tion, this histogram represents an approximation of the (conditional) joint density
of the mean anomaly and the semi major axis. The approximate PDF obtained



282 Copyright © 2016 Tech Science Press CMES, vol.111, no.3, pp.269-304, 2016

Osculating Joint PDF at t = 0 TU
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Figure 1: Initial Uncertainty in the Semi-Major Axis and Mean Anomaly

Osculating ToV Joint PDF at t = 0.25 TU
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Figure 2: Joint (Conditional) Density between Semi-Major Axis and Mean Anoma-
ly for Circular Orbit at t = 0.25 TU
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Osculating ToV Joint PDF at t = 0.50 TU
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Figure 3: Joint Density between Semi-Major Axis and Mean Anomaly for Circular
Orbit at t = 0.5 TU

from the Monte-Carlo simulations is plotted in Fig. 4. The jagged edges on the
contours of the approximate density function are caused by the randomized initial
condition generation process. The generated initial condition samples cannot guar-
antee a uniform state distribution at final time in all the bins of interest. Therefore,
the histogram is noisy because of these binning artifacts being carried over to the
contour plot. With the exception of these artifacts, it can be seen clearly that the
approximate density function agrees to within plotting accuracy with the analytical
solution that is computed almost instantaneously in Fig. 3. For evolution of uncer-
tainty over 3 orbital periods, ∼32 TU, Fig. 5 and Fig. 6 display the Monte Carlo
and analytic transformation results respectively. For the orbital period results, the
number of Monte Carlo bins was increased to 3750 by 3750. The modulus of mean
anomaly is not performed to keep the shape intact for presentation, if the modulus
were performed the area of highest uncertainty (semi-major axis range of 1.3 to 1.6
Earth Radii) would encompass the entire range of Mean Anomaly. After 1 orbital
period the area of highest uncertainty spans 2 radians in Mean Anomaly space.
The Monte Carlo reconstructed PDFs, have fewer points in the tail region which is
accentuated by the longer propagation times. The relatively minor shape disagree-
ment between the Monte Carlo generated equal probability contours of Fig. 5 and
the solution to Liouville equation in Fig. 6 is attributed to this fundamental property
of MC simulations. Note that, this feature of accurate characterization of contours
of low probability is very useful in conjunction analysis.
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Osculating Monte Carlo Joint PDF at t = 0.50 TU
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Figure 4: Approximate PDF Computed from Monte Carlo Simulations for Circular
Orbit at t = 0.5 TU

Osculating Monte Carlo Joint PDF at t =32.3077 TU
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Figure 5: Approximate PDF Computed from Monte Carlo Simulations for Circular
Orbit at t = 3 Period ( 32 TU)
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Osculating ToV Joint PDF at t =32.3077 TU
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Figure 6: Approximate PDF Computed from Analytic Solution for Circular Orbit
at t = 3 Period ( 32 TU)

Although the analytical solution derived in this paper is useful for uncertainty
propagation for Keplerian motion, most physical space systems operate in non-
Keplerian orbits. Earth oblateness (J2), atmospheric drag, third body gravitational
perturbations and higher order zonal harmonics act as perturbation forces to influ-
ence the orbital motion of the spacecraft. To use the analytical solution process
developed in this paper, we make use of analytical orbit theories that describe the
long period and secular variations of the perturbed two body problem. Specifical-
ly, we make use of Brouwer’s solution (Brouwer-Lyddane theory) to the artificial
satellite problem without drag in conjunction with the Liouville’s equation solution
to provide an exact expression for the evolution of the mean orbital elements then
transformed back to osculating space. Mean orbital elements express the secular
variation of the zonal perturbed two-body dynamics. The osculating elements can
be recovered from the propagated mean elements by adding back in the short and
long period contribution to the motion. To this end, we discuss the fundamentals of
Brouwer theory and define Lie transforms to derive the averaged equations in the
next section.

6 Brouwer Theory and Mean Element Equations

One of the key perturbation forces experienced by artificial satellites is the effec-
t of Earth’s oblateness on the orbital dynamics. Cowell’s method [Battin (1990)]
is frequently employed and a special perturbation solution is obtained for the s-
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pacecraft using numerical integration. For uncertainty propagation applications,
the special perturbation solution yields one particular trajectory and is frequently
repeated millions of times (for a 6 dimensional problem) to yield high confidence
histograms representing the approximate evolution of the probability density func-
tion. However, this approach is computationally expensive, especially when the
system dimensionality becomes large. For conservative perturbations such as J2,
analytical orbit theory can be used to provide a closed form approximate solutions
to the artificial satellite problem with no drag. Brouwer (1959) enables a closed
form solution for artificial satellite’s main problem (motion of a satellite about an
oblate planet without drag). It uses canonical transformations to provide a solution
for the secular and long period oscillation solutions to the main problem. During the
late 50s, various analytical orbit theories were developed to study satellite motion
under the influence of orbit perturbations. Garfinkel (1959) presents a closed form
solution to the main problem using a modified potential for the oblate spheroid,
while Kozai (1959) is quite similar to Brouwer theory but utilizes direct averag-
ing. Vinti (1959) develops a closed form solution for the motion of a satellite about
an oblate spheroid using Jacobian elliptic functions. Although Vinti theory is the
most accurate closed form solution, its formal expressions involve Jacobian elliptic
functions that makes working with them tedious.

We develop Brouwer theory to first order using an averaging approach that is based
on the application of Lie transforms [Deprit (1969); Nayfeh (1973)] due to Deprit
and Rom (1970) re-derived by Alfriend, Vadali, Gurfil, How, and Breger (2010)
and Alfriend and Majji (2009) to construct the canonical transformations to the
mean elements. This development establishes an analytical relationship between
the osculating elements and the mean orbital elements. This analytical functional
relationship allows for an initial osculating PDF to be transformed to mean element
space, propagated using the transformation of variables’ solution to Liouville’s e-
quation, then transformed back to osculating space at the propagated point in time.

6.1 Averaging and Lie Series

Lie transforms form a systematic approach to develop canonical transformation
between the variables (x,X) to (y,Y) where the Hamiltonian in the transformed
variables possesses certain desired properties (i.e., comprises of long period terms
by averaging out the short period oscillations). By choosing an appropriate Hamil-
tonian in the “new” variables (hereby referred to as the Mean elements in this paper,
with the required Hamiltonian being written as K (y,Y)), a Hamilton-Jacobi equa-
tion is solved to obtain the generating function that enables the requisite transforma-
tion. In astrodynamics problems involving analytical orbit theories, this transfor-
mation is constructed between osculating and mean orbital elements. Mean orbital
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elements are the first-order averaged equations that capture the secular variation of
the constants of motion due to orbit perturbations. Lie transforms are defined as
formal power series in terms of the small parameter ε given by

x = y+
∞

∑
n=1

1
n!

ε
ny(n)(y,Y; t) (27)

X = Y+
∞

∑
n=1

1
n!

ε
nY(n)(y,Y; t) (28)

The Hamiltonian in the “old” variables (hereby referred to as the osculating ele-
ments, i.e., (x,X)) is given by

H (x,X; t;ε) = H0(x,X; t)+
∞

∑
n=1

1
n!

ε
nHn(x,X; t). (29)

such that the canonical equations in terms of the osculating elements are given by
Eqs. 4 and 5. In the mean elements, the Hamiltonian is also expressed as a power
series in terms of the small parameter given by

K (y,Y; t;ε) = K0(y,Y; t)+
∞

∑
n=1

1
n!

ε
nKn(y,Y; t). (30)

The generating function (to be determined) is also written in terms of the formal
power series given by

W (x,Y;ε) = xT Y+
∞

∑
n=1

1
n!

ε
nWn(x,Y) (31)

that generates the implicit equations relating the mean and osculating elements by

X =
∂

∂x
W, y =

∂

∂Y
W (32)

Using the definitions of Lie transforms [Deprit and Rom (1970); Deprit (1969)],
the first order term in the power series expansion of the phase variables in Eq. 27
can be written as

y(1) = LW1y =
∂W1

∂Y
(33)

Y(1) = LW1Y =−∂W1

∂y
(34)



288 Copyright © 2016 Tech Science Press CMES, vol.111, no.3, pp.269-304, 2016

Therefore, to first order in ε , we have the transformations given by X = Y−ε
∂

∂yW1

and x = y+ ε
∂

∂YW1. To produce the first order term in the generating function, we
are required to solve the partial differential equation

K1 = H1 +(H0;W1)−
∂W1

∂ t
. (35)

By choosing the first order term in the transformed Hamiltonian K1 to be the av-
eraged energy function, short period terms are eliminated from the osculating el-
ements and the mean elements (y;Y) are produced. High order approximations
of the osculating elements can be obtained in a similar fashion, by retaining more
terms in the power series expansion of the Lie transform [Deprit (1969); Deprit and
Rom (1970)]. As opposed to the Von-Zeipel method used by Brouwer (1959) and
Nayfeh (1973), the Lie series recursions are highly amenable for implementations
on a computer. We develop analytical expressions for the main problem by using
Lie transform in conjunction with Lyddane’s modification of Brouwer theory. The
resulting developments are discussed below.

6.2 First Order Transformation Relating Osculating and Mean Keplerian Or-
bital Elements

The theory of Lyddane (1963), is a reformulation of the original mapping of zonal
perturbed mean elements to osculating elements developed by Brouwer (1959).
The formulation was introduced by Lyddane to provide a more numerically sta-
ble transformation from mean element to osculating element space as inclination
and eccentricity go to zero. To first-order of the dominant zonal perturbation, J2,
one can transform between mean and osculating elements by simply flipping the
sign, otherwise a differential correction scheme must be used to convert osculating
elements to mean elements.

The first-order transformation between mean and osculating Keplerian orbital ele-
ments for the J2 perturbed two body problem using Poincaré elements is reported
since it is not explicitly stated in Lyddane’s presentation and it is derived also from
Lie series [Alfriend and Majji (2009)]. Long, Cappellari Jr., Velez, and Fuchs
(1989) present second order expansions of the mean orbital elements in terms of
the osculating elements, however, the presentation is more appropriate for com-
puter coding instead of analysis. This presentation is similar to that of Schaub
and Junkins (2010) but with different equations for deriving the composite lon-
gitude and right ascension of the ascending node with the reasoning given where
the equations are derived. For small eccentricity one could also use the approach
of Tapley, Schutz, and Born (2004), where eccentricity, argument of perigee, and
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mean anomaly are replaced with esin(ω), ecos(ω), and ω+M, and the long-period
terms are neglected.

It is customary to express the transformations relating mean and osculating orbital
elements using Kepler elements, although the averaging has been carried out using
other coordinate systems. Brouwer-Lyddane theory is useful to provide quick so-
lution to compute satellite ephemeris, the solution provides a mechanism to derive
mean orbital elements without including high order effects in the dynamical sys-
tem [Walter (1967);Der and Danchick (1999)]. The format of the algorithm follows
that given by Schaub and Junkins (2010), where the transformed-to element space
is denoted with a single prime and the initial space elements are unprimed.

When transforming between osculating and mean element spaces the modification
made to Brouwer’s γ2 variable is given by Eq. 36. Other simplifying variables are
given by Eq. 37. The true anomaly variable for the initial domain is computed from
the eccentric anomaly solution to Kepler’s equation if it is not already known.

γ2 =
J2

2

(
R⊕
a

)2

=

{
−1 Osculating to Mean
+1 Mean to Osculating

(36)

γ
′
2 =

γ2

η4

a
r
=

1+ ecos( f )
η2

η =
√

1− e2

(37)

The new domain’s semi-major axis is then computed from the first-order J2 map-
ping given by Brouwer with the modified γ2 variable as shown by Eq. 38. The
semi-major axis only contains secular and short-period results, this is important in
understanding the form of the PDF as it evolves in time.

⇒ a′ = a
{

1+ γ2

[(
3cos2(i)−1

)((a
r

)3
−η

−3
)

+3
(
1− cos2(i)

)(a
r

)3
cos(2ω +2 f )

]} (38)

The long-period and short-period corrections for eccentricity are modified using
Lyddane’s expressions to avoid errors when the eccentricity is small. The modifi-
cations are given by Eq. 39. The short-period results for eccentricity are given by
Eq. 40 and since the long-period eccentricity and inclination are related by a scale
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factor, both are given in Eq. 41. The short-period results for inclination are given
in Eq. 42. If in the present domain, true anomaly is not available it is computed
from mean anomaly and eccentricity either by Newton’s method for Kepler’s e-
quation [Schaub and Junkins (2010)], or the Fourier-Bessel function expansions in
terms of the eccentricity [Battin (1990)].

1
e

[(a
r

)3
−η

−3
]
= η

−6
[
eη + e(1+η)−1 +3cos( f )+3ecos2( f )+ e2 cos3( f )

]
1
e

[(a
r

)3
−η

−4
]
= η

−6 [e+3cos( f )+3ecos2( f )+ e2 cos3( f )
]

(39)

eSP =
η2

2
(
γ2eSP1 + γ2eSP2− γ

′
2eSP3

)
eSP1 =

3cos2(i)−1
η6

(
eη +

e
1+η

+3cos( f )+3ecos2( f )+ e2 cos3( f )
)

eSP2 = 3
1− cos2(i)

η6

(
e+3cos( f )+3ecos2( f )+ e2 cos3( f )

)
cos(2ω +2 f )

eSP3 =
(
1− cos2(i)

)
(3cos(2ω + f )+ cos(2ω +3 f ))

(40)

eLP =
γ ′2eη2 cos(2ω)

8

(
1−11cos2(i)−40

cos4(i)
1−5cos2(i)

)
iLP =− e

η2 tan(i)
eLP

(41)

iSP =
1
2

γ
′
2 cos(i) [3cos(2ω +2 f )+3ecos(2ω + f )+ ecos(2ω +3 f )] (42)

The long and short-period terms of mean anomaly are given by Eqs. 43 and 44.

MLP =
γ ′2η3

8

(
1−11cos2(i)−40cos4(i)

(
1−5cos2(i)

)−1
)

sin(2ω) (43)

MSP =−γ ′2η3

4e
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2
(
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)((aη
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+
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r
+1
)

sin( f )

+3
(
1− cos2(i)
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(aη

r

)2
− a

r
+1
)

sin(2ω + f )

+

((aη

r

)2
+

a
r
+

1
3

)
sin(2ω +3 f )

]} (44)
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The new domain eccentricity and mean anomaly can be computed using Eq. 45.

e′ cos(M′) = (e+ eLP + eSP)cos(M)− e(MLP +MSP)sin(M)

e′ sin(M′) = (e+ eLP + eSP)sin(M)+ e(MLP +MSP)cos(M)

⇒ e′ =
√

(e′ cos(M′))2 +(e′ sin(M′))2

⇒M′ = arctan
{

e′ sin(M′)
e′ cos(M′)

} (45)

The long and short-period terms of right ascension of ascending node are given by
Eqs. 46 and 47.

ΩLP =−γ ′2e2 cos(i)
8

(
11+

80cos2(i)
1−5cos2(i)

+
200cos4(i)

(1−5cos2(i))2

)
sin(2ω) (46)

ΩSP =−γ ′2 cos(i)
2

[
6( f −M+ esin( f ))−3sin(2ω +2 f )−3esin(2ω + f )

−esin(2ω +3 f )
] (47)

The long and short-period terms of argument of perigee are given by Eqs. 48
through 51. The first part of short-period term of argument of perigee and the
short-period terms of mean anomaly differ by a factor of η .

ωLP =− γ ′2
16

[
2+ e2−11

(
2+3e2)cos2(i)

−
40
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2+5e2

)
cos4(i)

1−5cos2(i)
− 400e2 cos6(i)

(1−5cos2(i))2

]
sin(2ω)

(48)

ωSP = ωSP1 +ωSP2 (49)
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4e
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(
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)((aη

r

)2
+

a
r
+1
)

sin( f )
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1− cos2(i)
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−
(aη

r
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]} (50)

ωSP2 =
γ ′2
4
{

6
(
5cos2(i)−1

)
( f −M+ esin( f ))

+
(
3−5cos2(i)

)
[3sin(2ω +2 f )

+3esin(2ω + f )+ esin(2ω +3 f )]}

(51)
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The composite longitude is computed by Eq. 52. When the short-period terms of
mean anomaly and the first short-period term of argument of perigee are added
together the result of

(
η−2−η−1

)
/e has eccentricity as a factor not divisor when

simplified so the expression goes to 0/1 since
(
1− e2

)
→ 1 faster than e→ 0 as

e→ 0, see Brouwer’s remark after his Equation (23) [Brouwer (1959)], Eq. 53
shows the rearrangement effect. It is here that the derivation differs from that of
Schaub and Junkins (2010) because the reference assumed this sum to be zero.(
M′+ω

′+Ω
′)= M+MLP +MSP +ω +ωLP +ωSP +Ω+ΩLP +ΩSP (52)

γ ′2
4e

(
η

2−η
3)= γ2

4e

(
η
−2−η

−1)
=

γ2

4

(η−1)
1
e
+ e

η3

 (53)

The new domain inclination, right ascension of ascending node, and argument of
perigee are computed from Eqs. 54 and 55. When computing the transformed ar-
gument of perigee, Eqs. 52 and 53 are applied to compute the parenthetical term
then the transformed Mean Anomaly solution from Eq. 45 and transformed Right
Ascension of Ascending Node solution from Eq. 55 are subtracted out.
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An alternative but similar implementation of Lyddane’s modification to Brouwer’s
theory is given by Long, Cappellari Jr., Velez, and Fuchs (1989). Both versions
were implemented and tested with differences found to be on the order of 1×10−9

for each element’s respective units. The results of the Lyddane conversion between
first order elements was also compared to those of Aksnes (1972) who presented
numerical results as well as explicit expressions of Izsak’s approach which utilized
Hill variables [Izsak (1963)] to reduce the complexity of the Brouwer and Lyddane
solutions.

For an example of conversion between orbital element space, the Two-Line elemen-
t (TLE) of Hubble Space telescope (HST) was converted from mean to osculating
then back to mean space with the results shown in Tab. 2. For simplicity, the mean
motion from the TLE was assumed to be the Brouwer value and not the Koza-
i value. The results would be similar if one converted from Kozai mean motion
to Brouwer mean motion then computed the orbital element results. The element
conversion errors of mean to osculating back to mean (M→O→M) and osculat-
ing to mean back to osculating (O→M→O) are shown in Tab. 3. The value of
J2 is approximately 0.00108, when converted to degrees from radians the value is
approximately 0.0620. The tables show that the errors of semi-major axis, eccen-
tricity, right ascension of ascending node, and inclination angle are below the order
of J2. The errors of the anomalies and argument of perigee are on the order of J2,
approximately 0.09 to 0.12 degrees.

Table 2: Keplerian Elements for HST TLE for Day 23 of Year 2011

Parameter Original Converted Converted
Mean Osculating Mean

Semi-Major Axis (km) 6941.499 6943.690 6941.498
Eccentricity 3.35×10−4 1.45×10−3 3.27×10−4

RAAN (Deg) 238.23 237.79 238.23
Inclination (Deg) 28.47 28.48 28.47

Argument of Perigee (Deg) 30.04 6.530 30.14
True Anomaly (Deg) 330.02 354.46 329.92
Mean Anomaly (Deg) 330.04 354.47 329.94
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Table 3: Conversion Errors of HST TLE for Day 23 of Year 2011

Parameter M→O→M O→M→O
Error

Semi-Major Axis (km) 0.0034 0.0035
Eccentricity 7.820×10−6 7.983×10−6

RAAN (Deg) 2.639×10−7 1.305×10−6

Inclination (Deg) 2.069×10−5 2.083×10−5

Argument of Perigee (Deg) 0.0993 0.1241
True Anomaly (Deg) 0.0988 0.1167
Mean Anomaly (Deg) 0.0993 0.1167

7 Evolution of PDFs in the Main Problem

The analytical solution of Liouville’s equation to the averaged mean elements de-
rived for the main problem of artificial satellite theory is now examined. The aver-
aging process establishes a smooth and differentiable mapping between the oscu-
lating orbital elements and the mean orbital elements. Further, dynamical singular-
ities in the mapping process are eliminated using the Poincaré elements following
the developments of Lyddane. Two orbits are considered to demonstrate the non-
singular nature of the mean equations and to outline the uncertainty propagation
in the main problem of artificial satellite theory. The first case uses an osculating
eccentricity of 0.001 making the orbit nearly circular. The second case consider-
s the uncertainty propagation problem for a more eccentric orbit, e = 0.2. Initial
conditions for both cases and the statistics associated are shown in Tab. 4 with the
osculating Kepler element values listed. Again, the large standard deviation used
in the initial uncertainty associated with the semi-major axis is used for demonstra-
tion purposes. Consequently, it is possible that a part of the PDF volume consists
of solutions that go through the Earth. For more realistic Cartesian, Keplerian, and
mean state uncertainties please see Weisman, Majji, and Alfriend (2014b) where
the state uncertainties were derived from typical sensor measurement uncertainties
and the Herrick-Gibbs initial orbit determination process utilizing the transforma-
tion of variables technique and Weisman and Jah (2014) for angles-only initial orbit
determination uncertainty transformation and sensitivity to measurement spacing.

Similar to the two body problem, approximate PDFs are generated by using Monte
Carlo simulations. Again, 1×106 sample points of the osculating orbital elements
are computed using a special perturbation solution to the Lagrange planetary equa-
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tions. The osculating orbital element samples are then used to compute the corre-
sponding mean orbital elements using Brouwer-Lyddane theory [Lyddane (1963)]
at each representative sample time of interest. Plotting contours of the histograms
in the mean orbital element space upon normalization provides sampled data on
the approximate PDF derived from the simulations. This is compared with the ana-
lytically derived PDF from the solution to Liouville’s equation associated with the
mean orbital elements.

Tab. 4 gives the initial conditions for the osculating orbit elements which are trans-
formed to mean element space via the first-order transformation given by Lyddane
(1963). The reduction in dimensionality obtained in case of the two body prob-
lem does not exist for the J2 perturbed dynamics because the mean and osculating
orbital elements are functions of all the orbital elements in general. Further, the
determinant of the Jacobian of the transformation between osculating and mean is
not constant over volume as is typically assumed when one applies the similarity
transformation, i.e. inertia tensor rotation [Schaub and Junkins (2010)]. This is
because of the averaged Hamiltonian used by the mean orbital elements, detailed
discussion on the nonconstant nature of the determinant of the Jacobian is presented
in our previous work [Weisman, Majji, and Alfriend (2014a)].

Table 4: Initial Conditions of Osculating Keplerian Elements

a (REarth) σa (REarth) M0 (rad) σM0 (rad)

Case 1 1.4322 0.25 0 0.02
Case 2 1.4322 0.25 0 0.02

e Ω (rad) i (rad) ω (rad)

Case 1 0.001 0.7854 0.7854 0.7854
Case 2 0.2 0.7854 0.7854 0.7854

The approximate PDF of the mean orbital elements at 0.5TU obtained from Monte-
Carlo simulations for the near circular orbit in the presence of J2 perturbation is
plotted in Fig. 8. This is compared with the exact analytical PDF computed from
the solution to Liouville’s equation using Brouwer-Lyddane theory, Fig. 7. Agree-
ment to plotting accuracy can be noted by figure inspection. Comparisons of other
conditional density functions can be carried out in the same fashion. We do not
present those results to conserve space. The conditional PDF for the perturbed
problem is qualitatively similar to the unperturbed two-body problem but, is not
identical (to within plotting accuracy). The J2 perturbation shifts the dominant
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Figure 7: Mean Results of Transformation of Variables Analysis for Nearly Circu-
lar Orbit
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Figure 8: Mean Results of Monte Carlo Analysis for Nearly Circular Orbit
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Figure 9: Mean Results of Monte Carlo Analysis for Eccentric Orbit
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Figure 10: Mean Results of Transformation of Variables Analysis for Eccentric
Orbit
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Mean Monte Carlo Joint PDF at t =3 TU
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Figure 11: Mean Results of Monte Carlo Analysis for Eccentric Orbit

Mean ToV Joint PDF at t =3 TU

Mean Semi−Major Axis (R
E
)

M
ea

n 
M

ea
n 

A
no

m
al

y 
(r

ad
)

1 1.2 1.4 1.6 1.8 2

1.5

2

2.5

3

3.5

4

Figure 12: Mean Results of Transformation of Variables Analysis for Eccentric
Orbit
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Osculating ToV Joint PDF at t =10.7692 TU
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Figure 13: Osculating Results of Transformation of Variables Analysis for Eccen-
tric Orbit after 3 Orbital Periods

mode (shown in red) to the left indicating a shift in the averaged mean anomaly
space of the entire ensemble of trajectories represented by the uncertainty volume,
at t = 0.5TU the red area is closer to the semi-major axis value of 1.2, Fig. 3. A s-
traightforward application of Brouwer’s theory will not work for some of the orbits
considered in this uncertainty analysis, due to the near zero eccentricity singular-
ity of the Delaunay elements used by the Brouwer. We demonstrate that the use
of Brouwer-Lyddane theory enables us to escape from these singularities since our
calculations are carried out in the Poincaré element space.

To examine the effects of nonlinearity, we now compare the exact analytical PDF
computed from the analytical orbit theory applied to an orbit with mean eccentricity
of e = 0.2. Using a propagation time of t = 0.5TU , an approximate (conditional)
PDF of the mean orbital elements generated by using Monte Carlo simulations is
shown in Fig. 9. This is compared with the analytical solution obtained using the
methods developed in this paper plotted in Fig. 10.

As opposed to some methods for uncertainty propagation, the proposed solution is
valid for all propagation times (over any number of orbital time periods). Un-
certainty propagation solutions based on the state transition tensors [Fujimoto,
Scheeres, and Alfriend (2012); Park and Scheeres (2006); Majji, Junkins, and
Turner (2008a)] require high order for accurate, long term propagation. Other
methods require accurate domain determination [Kumar, Chakravorty, and Junk-
ins (2010)] and adaptive weight function management [Terejanu, Singla, Singh,
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and Scott (2008)]. Figs. 11 and 12 present the approximate density functions us-
ing Monte Carlo simulations and the analytical solution for the mean elements at
time t = 3TU. Comparison of the approximate PDFs shows significant agreement
between the transformation of variables solution and the Monte Carlo analysis, as
it should since the Monte Carlo is, in essence, sampling from the transformation of
variables probability density function solution. Fig. 13 shows the propagation anal-
ysis using the transformation of coordinates solution to Liouville’s equation after 3
orbital periods.

8 Conclusion

In this paper, the transformation of variables technique was shown as an effective
means for transforming and propagating state uncertainty for the motion of a space
object subject to two-body acceleration only as well as Earth’s J2 perturbation.
The transformation of variables technique for the probability density function de-
scription and propagation was used in conjunction with canonical transformations
and Hamiltonian mechanics to exploit dynamics of the system and reduce the di-
mensionality of the problem during the propagation phase. After propagation, the
technique is then utilized to map the propagation probability density function to
the state domain of choice without loss of information even when the mapping is
nonlinear. The transformation of variables technique was shown to generate the
solution to Liouville’s equation which is the diffusion free reduction of the Fokker-
Planck equation for the time evolution of a state vector’s probability density func-
tion. The analytic solution of the propagated probability density function yielded
by the transformation of variables technique was shown to agree with the Monte
Carlo sampling solution using numerical integration.

The transformation of variables technique was demonstrated as an effective method
for taking advantage of a system’s behavior for state uncertainty propagation, i.e.
instead of numerically integrating the Liouville equation for two-body dynamics in
Cartesian space one can simply transform uncertainty into Keplerian element space
and use mean anomaly to propagate the uncertainty. Likewise, for the J2 perturbed
problem, one can utilize Brouwer-Lyddane mean element theory to propagate the
probability density function for mean mean anomaly, mean argument of perigee,
and mean right ascension of the ascending node then transform the probability
density function back into osculating space instead using numerical integration.
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