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A Piecewise Linear Isotropic-Kinematic Hardening Model
with Semi-Implicit Rules for Cyclic Loading and Its

Parameter Identification

M. Ohsaki1, T. Miyamura2 and J. Y. Zhang3

Abstract: A simple constitutive model, called semi-implicit model, for cyclic
loading is proposed for steel materials used for structures such as building frames
in civil engineering. The constitutive model is implemented in the E-Simulator,
which is a software package for large-scale seismic response analysis. The con-
stitutive relation is defined in an algorithmic manner based on the piecewise linear
combined isotropic-kinematic hardening. Different rules are used for the first and
subsequent loading states to incorporate characteristics such as yield plateau and
Bauschinger effect of rolled mild steel materials. An optimization method is al-
so presented for parameter identification from the results of cyclic and monotonic
loading tests. Therefore, the proposed model is readily applicable to practical e-
lastoplastic analysis of building frames. Accuracy of the model is demonstrated in
an example of a cantilever subjected to various types of cyclic loading.

Keywords: Combined isotropic-kinematic hardening, Piecewise linear harden-
ing, Steel material, Parameter optimization, Cyclic load

1 Introduction

In the design process of building frames, accurate estimation of elastoplastic re-
sponses is very important, because such structures are supposed to dissipate seismic
energy through plastic deformation. Elastoplastic responses of building frames are
usually simulated using macro models such as plastic hinges and fiber elements.
However, owing to recent progress of computer technology and due to increasing
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demands for accurate estimation of seismic responses, finite element analysis using
solid elements has been extensively investigated [Ohsaki, Miyamura, Kohiyama,
Hori, Noguchi, Akiba, Kajiwara, Ine (2009)].

A software package called E-Simulator is under development at the National Re-
search Institute of Earth Science and Disaster Prevention (NIED), Japan. E-simula-
tor is a parallel finite element analysis software package for precisely simulating
collapse behaviors of building and civil structures [Miyamura, Yamashita, Akiba,
Ohsaki (2015); Miyamura, Ohsaki, Kohiyama, Isobe, Onda, Akiba, Hori, Kajiwara,
Ine (2011)], and it is based on a commercial software package called ADVEN-
TURECluster [Allied Engineering (2015)]. We developed a constitutive model for
large-scale analysis of steel building frames, and its prototype has been successfully
used in a detailed and large-scale simulation of a steel frame discretized into solid
elements of about 19 million degrees of freedom [?Miyamura, Yamashita, Akiba,
Ohsaki (2015)]. In this paper, we present the details of the constitutive model.

In the field of mechanical engineering and material science, various constitutive
models, including Armstrong-Frederic (AF) model [Armstrong and Frederick (1966)],
multi-layer model [Besseling (1958)], and bounding surface model [Dafarias and
Popov (1975)], have been developed for simulating cyclic elastoplastic behavior
of various types of steel materials. By contrast, in the field of civil engineering,
rolled mild steel materials are widely used. One of the important and distinct prop-
erties of these materials is the existence of a sharp yield plateau, which leads to
different characteristics between the first and subsequent loadings [Ucak and T-
sopelas (2011); Rodzik (1999)]. Yoshida (2000) developed a viscoplastic model
for simulation of cyclic responses of a material exhibiting yield plateau. Yoshida
and Uemori (2002) and Shen, Tanaka, Mizuno, Usami (1992) presented constitu-
tive models using combined isotropic-kinematic hardening and bounding surfaces
for simulation of Bauschinger effect. However, they did not explicitly distinguish
the first and subsequent loadings. Recently, Ucak and Tsopelas (2011) developed
a cyclic model that can simulate yield plateau using the AF model and a bounding
surface.

Ohno and Wang (1993) proposed an evolution rule of backstress for accurate sim-
ulation of dynamic recovery and ratcheting behavior, and derived the consistent
tangent operator for implementation to a finite element analysis code [Kobayashi
and Ohno (2002)]. In contrast to complex evolution rules, for which derivation of
consistent tangent operators is complicated [Mühlich and Brocks (2003); Diegele,
Jansohn, Tsakmakis (2000)], linear isotropic-kinematic hardening model has a very
stable algorithm of consistent tangent based on analytical solution of consistency
condition [Kossa and Szabó (2009); Auricchio and sa Veiga (2003); Romashchenko,
Lepikhin, Ivashchenko (1999)]. Therefore, our constitutive model based on linear
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hardening can be applied to a large-scale simulation of steel structures.

Most of the existing studies on constitutive models of steel materials are intended
to develop explicit evolution rules of stresses and strains in reference to the physi-
cal behavior of the material idealized as a continuum. There is another direction of
research for developing an implicit constitutive relation, which is not defined based
on an explicit differential equations of stresses, strains, and internal variables, but
instead, defined in a heuristic and algorithmic manner. For example, Furukawa and
Yagawa (1998) used a neural network for modeling implicit constitutive relation of
a visco-elastoplastic material subjected to uniaxial cyclic loading. However, a com-
pletely implicit relation between the stress rates and strain rates cannot be obtained
generally for multiaxial loading, because such relation depends on the loading his-
tory. Note that the terms explicit and implicit are not related to those for solution al-
gorithm of differential equations as discussed in [Ellsiepen and Hartmann (2001)].
In the field of civil engineering, there are many macro (phenomenological or phys-
ical) models such as plastic hinges and fiber models for simulating cyclic plastic
behavior of beams, columns, and braces [Uriz, Filippou, Mahin (2001); Kim and
Lee (2001); Ishizawa and Iura (2006)]. Composite beam elements have also been
developed [Bradford and Pi (2012)].

In this paper, an intermediate implicit and explicit model, called semi-implicit mod-
el, is presented for rolled mild steel materials. The purpose of this paper is summa-
rized as follows:

1. Present a simple constitutive model for cyclic behavior of steel material used
for civil engineering exhibiting yield plateau and Bauschinger effect.

2. Present an algorithm that can be used for finite element analysis with solid
elements.

3. Present an optimization algorithm for identification of material parameters.

The constitutive relation is defined in an algorithmic manner based on the piece-
wise linear combined isotropic-kinematic hardening. Different rules are used for
the first and subsequent loading states. We also present an efficient optimization
method, based on a heuristic approach called tabu search (TS) [Glover (1989);
Ohsaki (2010)], for parameter identification from the material test results. The ac-
curacy of the constitutive model is discussed in examples of a cantilever subjected
to symmetric and asymmetric cyclic loads.
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2 Overview of J2 plasticity

In this section, we summarize the basic equations of J2-plasticity for completeness
of the paper.

Let σσσ and εεε denote the stress and strain tensors, respectively. In the elastic range,
the relation between σσσ and εεε is defined by the linear elastic isotropic constitutive
tensor CE as

σσσ = CE : εεε. (1)

Let s and e denote their deviatoric components; i.e.,

s = σσσ − 1
3
(trσσσ)I, e = εεε− 1

3
(trεεε)I, (2)

where I is the second-order identity tensor, and tr( ·) is the trace of a tensor. The
equivalent stress σ̂ corresponding to the deviatoric stress s is defined as

σ̂ =

√
3
2
‖s‖, (3)

where ‖ · ‖ is the norm of a tensor.

We use the von Mises type (J2) yield criterion. The deviatoric components of back-
stress tensor, which defines the center of yield surface, is denoted as ααα . Thus the
relative stress ξξξ is given as

ξξξ = s−ααα, (4)

and σ̄ is defined using the norm of ξξξ :

σ̄ =

√
3
2
‖ξξξ‖. (5)

The deviatoric component of plastic strain-rate tensor is denoted as dp, and the
equivalent plastic strain ēp at time t is given as

ēp =
∫ t

0

√
2
3
‖dp(τ)‖dτ. (6)

The yield condition is given as follows, by comparing σ̄ with the radius κ of yield
surface:

f (σσσ) = σ̄ −κ(ēp) = 0. (7)
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We use associated flow rule for rate form of stress-strain relation. Let ˙( ·) indicate
differentiation with respect to time t, although rate-dependency is not considered
in the constitutive relation. The deviatoric component of plastic strain-rate tensor
is obtained from

dp = ˙̄epn, (8)

where n is the unit normal vector of the yield surface defined as

n =
ξξξ

‖ξξξ‖
. (9)

Properties of isotropic hardening and kinematic hardening are defined by HI(ēp)
and HK(ēp), respectively. For isotropic hardening,

κ(ēp) = κ0 +HI(ēp), (10)

where κ0 is the initial value of κ . The evolution rules for isotropic hardening and
kinematic hardening are defined as

κ̇ = H ′I ˙̄ep, (11a)

α̇αα =

√
2
3

H ′Kdp =

√
2
3

H ′K ˙̄epn, (11b)

where ( ·)′ denotes differentiation with respect to the equivalent plastic strain.

We use the standard procedure of the elastic predictor-radial return for stress inte-
gration [Simo and Taylor (1985)]. The values at the ith incremental step of analysis
is denoted by the subscript ( ·)i. The elastically predicted (trial) value of σ̄ at the
(i+1)th step is denoted by σ̄ trial

i+1 . Then the consistency condition is written as

g(∆ēp
i+1) =−κ(ēp

i+1)+ σ̄
trial
i+1 −

[
3µ∆ēp

i+1 +HK(ē
p
i+1)−HK(ē

p
i )
]
= 0, (12)

where µ is the shear modulus. The increment ∆ēp
i+1 of ēp is obtained from (12)

analytically for the piecewise linear hardening model, and ēp is updated as

ēp
i+1 = ēp

i +∆ēp
i+1. (13)

3 Piecewise linear semi-implicit constitutive model

3.1 Semi-implicit constitutive model

In most of the constitutive models, the evolution rules of state variables including εεε

and σσσ are defined using the internal variables such as κ and ααα , for which evolution
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rules are given. These rules are regarded to be explicit, because all variables are
updated using differential equations. For example, when the input variables are ēp,
˙̄ep, σσσ , ε̇εε , κ , and ααα , and the output variables are σ̇σσ , κ̇ , and α̇αα , the explicit rule is
symbolically written as follows:

(σ̇σσ , κ̇, α̇αα) = ΦE(ēp, ˙̄ep,σσσ , ε̇εε,κ,ααα). (14)

A steel material is intrinsically a polycrystal material, and continuum model is an
approximation of a complex discrete behavior. Therefore, it is difficult to describe
all properties of complex behavior explicitly using differential equations.

By contrast, a rule is said to be implicit, if it is not defined using explicit equations
and differential equations. Furukawa and Yagawa (1998) developed an implicit
rule for visco-elastoplastic material using a neural network. For a simple uniaxial
problem in one-dimensional stress space, the input variables are the viscoplastic
strain εvp, stress σ , backstress α , and the parameter R for isotropic hardening. The
output variables are ε̇vp, α̇ , and Ṙ. Hence, the implicit mapping is symbolically
written as

(ε̇vp, α̇, Ṙ) = ΦΦΦI(ε
vp,σ ,α,R). (15)

They trained the network using a numerical simulation of an existing explicit rule
with a specified strain rate in the uniaxial deformation. Therefore, the model is
effective for uniaxial model.

For a rate independent plasticity problem in multi-axial stress state, it may not be
possible to develop a completely implicit model considering all possible states of
the variables and all cases of loading/unloading conditions. Therefore, it is natural
to utilize reliable hardening rules defined by differential equations.

An intermediate approach that is a combination of the explicit and implicit rules
can be constructed, i.e., some variables are updated explicitly and the others are
updated implicitly. This approach is called a semi-implicit constitutive model. In
the present paper, a semi-implicit constitutive model for a rate independent plas-
ticity problem is proposed. It is based on the conventional explicit constitutive
model using the piecewise linear isotropic and kinematic hardening rules with J2
flow rules. The explicit constitutive model is extended to the semi-implicit one by
introducing several implicit rules depending on internal variables such as the max-
imum equivalent stress experienced so far, equivalent plastic strain at the previous
unloading point, etc., which are represented by a vector a. Then, the semi-implicit
rule is written as

(σ̇σσ , κ̇, α̇αα) = ΦSI(ēp, ˙̄ep,σσσ , ε̇εε,κ,ααα;a). (16)



A Piecewise Linear Isotropic-Kinematic Hardening Model with Semi-Implicit Rules 309

This rule is based on the explicit isotropic-kinematic hardening rule, and variables
in the vector a are updated using implicit or algorithmic rules. Note that other
existing explicit constitutive models such as AF model [Armstrong and Frederick
(1966)] and Ohno-Wang model [Ohno and Wang (1993)] have parameters that can
be regarded as state variables with implicit update rules; i.e., the parameters defin-
ing the size of the surface of critical state of Ohno-Wang model and the ratio of
dynamic recovery of AF model can be included in the vector a as internal vari-
ables.

3.2 Implicit modeling of isotropic-kinematic hardening

It is convenient to use an isotropic or kinematic hardening model with von Mises
yield criterion, because the consistency condition (12) is solved analytically. How-
ever, a simple isotropic or kinematic model cannot predict accurately the cyclic
responses observed in physical tests of steel materials. Therefore, we present a for-
mulation based on piecewise linear combined isotropic-kinematic hardening with
implicit rules. Different rules are used for the first and subsequent loading states.
Since ēp increases monotonically even in cyclic loading state, we introduce a pa-
rameter ēp

0 to record the starting point of ēp for each different loading state. The
increment of ēp from ēp

0 is denoted by

ēp
d = ēp− ēp

0, (17)

and the hardening properties become functions of ēp
d.

The total hardening coefficient H ′(ēp
d) is given as the sum of isotropic hardening

H ′I(ē
p
d) and kinematic hardening H ′K(ē

p
d):

H ′(ēp
d) = H ′I(ē

p
d)+H ′K(ē

p
d). (18)

Let coefficients cI and cK denote the ratios of the isotropic and kinematic hardening
effects, respectively, satisfying

cI + cK = 1. (19)

Accordingly, H ′(ēp
d) is defined as

H ′(ēp
d) = cKH ′(ēp

d)+ cIH ′(ē
p
d). (20)

Since H ′(ēp
d) is a piecewise constant function of ēp

d, the pure isotropic and kinematic
hardening models are defined by (cI,cK) = (1.0,0.0) and (0.0,1.0), respectively.

For example, Fig. 1 shows the relation between Cauchy stress and logarithmic s-
train obtained from cyclic uniaxial loading experiments of two rolled mild steel
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Figure 1: Uniaxial cyclic stress-strain relations of two typical steel materials in
civil engineering; (a) SN400, (b) SS400 [Yamada, Imaeda, Okada (2002)].

materials called SS400 and SN400 in Japanese specification, which are widely used
for building frames [Yamada, Imaeda, Okada (2002)]. The relation up to the sec-
ond loading is illustrated in Fig. 2. The following properties can be observed from
the experimental results:

1. There exists a wide yield plateau, especially for SS400, in the first plastifica-
tion (initial yielding); however, no clear yield plateau exists in the subsequent
plastifications.

2. Yielding in the second plastic loading (first compressive plastification at ‘C’
in Fig. 2) occurs at a smaller absolute value of stress than the first tensile
loading (‘A’) due to Bauschinger effect. Furthermore, the difference between
the stresses at first unloading (‘B’) and second loading (‘C’) is smaller than
twice of the initial yield stress at ‘A’; however, the yield stress gradually
increases in the subsequent loading cycles due to isotropic hardening.

3. The stress-strain curves converge to the same loop within a constant range of
specified strain; i.e., the material yields at almost the same stress, implying
that cyclic isotropic hardening effect is insignificant for this material. Note
that the proposed constitutive model can be modified if cyclic hardening with
constant magnitude of strain is not negligible.

From the observations of the physical tests, we need at least two types of stress-
strain curves, as shown in Fig. 2, to accurately describe the properties of the rolled
mild steel materials; one for the first plastic loading with a yield plateau and the



A Piecewise Linear Isotropic-Kinematic Hardening Model with Semi-Implicit Rules 311

strain
st

re
ss

second loading

first loading

A
B

C

Figure 2: Illustration of two different plastic loading states in uniaxial cyclic load-
ing.

other for the subsequent plastic loading without yield plateau with smooth curva-
ture.

Moreover, as observed in the experimental results, isotropic hardening and kine-
matic hardening have different coefficients in different loading states. Therefore,
the following heuristic and implicit rules are proposed:

1. In the first plastic loading, we use an artificial negative value of the ratio cI
for isotropic hardening with positive H ′ to simulate the shrinkage of the yield
surface as illustrated in Fig. 3.

2. For the subsequent plastic loadings, we have to consider two cases based
on the equivalent stress σ̂ and the maximum value σ̂max experienced in the
preceding loading history:

• If σ̂ < σ̂max, then cI should have a very small positive value, because
isotropic hardening effect is insignificant.

• If σ̂ ≥ σ̂max, then neither isotropic nor kinematic hardening effect can
be ignored; hence, cI and cK have values around 0.5.

The contribution of yield plateau and Bauschinger effect can be simulated using the
AF model, where the back stress ααα is decomposed to m components as

ααα =
m

∑
i=1

ααα i. (21)

The evolution of ααα i is defined as

α̇αα i =

√
2
3

H ′i d
p−ζi ˙̄ep

ααα, (22)
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Figure 3: Illustration of artificial shrinkage of yield surface; circle A: true initial
yield surface, circle B: artificial initial yield surface that is a little smaller than the
true one, circle C: yield surface with small radius κ and nonzero backstress.

where H ′i is the hardening coefficient that is a function of the equivalent plastic
strain. The ratio between kinematic and isotropic hardening is controlled by the
parameter ζi. However, the shrinkage of yield surface after initial yielding cannot
be effectively controlled using the AF model, because ααα initially vanishes and the
second term in (22) is negligibly small in the state of first yielding. To overcome
this difficulty, Ucak and Tsopelas (2011) developed an approach combining AF
model and a bounding surface model.

In our model, the shrinkage of yield surface is controlled by the conventional frame-
work of J2-plasticity, for which a stable stress integration algorithm has been devel-
oped. We introduce a small interval of ēp with large H ′ and negative cI just below
the yield plateau at the first plastic loading; i.e., the yield stress is a little smaller
than the true value in experiment, and a small artificial plastic region exists below
the initial yielding. The process of shrinkage is illustrated in Fig. 3, where circle A
is the true initial yield surface, circle B is the artificial initial yield surface that is a
little smaller than the true one, and circle C is the yield surface with small radius
κ and nonzero backstress. In this way, the size κ of the yield surface is reduced
during the first yielding.

To summarize, there are three stress-strain curves in out constitutive model for
rolled mild steel materials: curve 1 for the first plastic loading and curves 2 and 3
for the subsequent loadings; and three sets of ratios of hardening: {c(1)I ,c(1)K } for the
first loading, and {c(2)I ,c(2)K } and {c(3)I ,c(3)K }, respectively, for the cases σ̂ < σ̂max

and σ̂ ≥ σ̂max in the subsequent loadings. Note that c(i)I + c(i)K = 1.0 (i = 1,2,3)
always holds.
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3.3 Radial return mapping

In the proposed semi-implicit constitutive model, a set of piecewise constant values
are used for H ′ in (20). Suppose the computation has converged at the ith incre-
mental step of analysis. The radial return mapping algorithm for updating stresses
and plastic strains at an integration point at the (i+ 1)th step of analysis, with the
given increment ∆εεε i+1 of stain, is summarized in Algorithm 1 below. Procedures
for updating the parameters for the semi-implicit constitutive model are also shown
in the algorithm.

Algorithm 1: Radial return mapping

Step 1: Elastic predictor
Compute the trial stress as

σσσ
trial
i+1 = σσσ i +CE

i+1 : ∆εεε i+1, (23)

where CE
i+1 is the elastic constitutive tensor.

Compute ssstrial
i+1 = σσσ trial

i+1−
1
3(tr σσσ trial

i+1)I by (2), ξξξ
trial
i+1 = ssstrial

i+1−ααα i by (4), σ̄ trial
i+1 =√

3
2
‖ξξξ trial

i+1‖ by (5), and n by (9).

Step 2: Plastic corrector
To compute increment ∆ēp

i+1 of the equivalent plastic strain, we have the
following two cases depending on the state of σ̄ trial

i+1 :

Case 1: If σ̄ trial
i+1 < κ(ēp

i ), then the material is in elastic state and we have

∆ēp
i+1 = 0. (24)

Furthermore, if the material is in plastic state at the ith step, then elastic
unloading occurs, and we record the previous equivalent plastic strain
as

ēp
0 = ēp

i . (25)

Case 2: If σ̄ trial
i+1 ≥ κ(ēp

i ), then the material is in plastic loading state and
correction should be carried out to satisfy the consistency condition.
To select the proper hardening curve and coefficients, we consider the
following cases:

1. First plastic loading (curve 1):

H = H1, cI = c(1)I , cK = c(1)K ; (26)
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2. Subsequent loading:

H = H2, (27)

and

(a) σ̂i < σ̂max (curve 2):

cI = c(2)I , cK = c(2)K ; (28)

(b) σ̂i ≥ σ̂max (curve 3):

cI = c(3)I , cK = c(3)K . (29)

∆ēp
i+1 can then be computed by solving (12) analytically [Simo and

Taylor (1985)].

Step 3: State updater
Update ēp

i+1, ααα i+1, si+1, and σσσ i+1 as

ēp
i+1 = ēp

i +∆ēp
i+1, (30)

κi+1 = κi +H ′I(ē
p
i )∆ēp

i+1, (31)

ααα i+1 = ααα i +

√
2
3

H ′K(ē
p
i )∆ēp

i+1n, (32)

si+1 = ααα i+1 +

√
2
3

κ(ēp
i+1)n, (33)

σσσ i+1 = si+1 +
1
3
(tr σσσ

trial
i+1)I. (34)

If σ̂i+1 computed from (3) is larger than the currently recorded maximum
value σ̂max in the loading history, then update σ̂max as

σ̂
max = σ̂i+1 =

√
3
2
‖si+1‖. (35)

If the stresses obtained from Algorithm 1 satisfy the equilibrium equations at each
node, then the (i+ 1)th step of the analysis converges; otherwise, calculate a new
increment of strain by considering the unbalanced forces and apply the algorithm
again.
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Figure 4: Stress-strain curve under asymmetric uniaxial cyclic loading.

3.4 Response to asymmetric cyclic loading

It is well known that simulation of responses to asymmetric cyclic loading is more
difficult than that to symmetric loading. Fig. 4 illustrates a stress-strain relation of
an asymmetric uniaxial cyclic loading. The solid lines are the correct stress-strain
relations, while the dashed lines are the ‘wrong’ relations due to improper modeling
of hardening effect:

• In the process of reloading after no plastic loading in the opposite direction,
the stress-strain path returns onto the extension of the stress-strain curve ex-
perienced in the previous plastic loading. Thus, after unloading at ‘A’ in
Fig. 4 and reversal of direction at ‘B’, the stress-strain curve returns to ‘A’,
and follows the original curve to ‘D’. Hence, curve ‘AC’ shown in dashed
line is inappropriate.

• When plastification occurs after unloading at ‘E’, plastic strain accumulates
between ‘F’ and ‘G’, and the stress-strain hysteresis loops are open so that
they resemble a creep effect under a large number of plastic loading cycles
[Chaboche (2008)]. Thus, the reloading occurs at ‘I’ that is a different point
from the unloading point ‘E’, and stress-strain relation follows curve ‘IJ’
which is different from the original curve. However, if the plastic defor-
mation between ‘F’ and ‘G’ is small, the stress-strain path returns onto the
original curve, i.e., it follows the curve ‘IEK’.
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Figure 5: History of stress under cyclic loading.

In order to accurately simulate the responses to asymmetric loading, we use σσσ and
ēp at the preceding unloading points as the internal parameters. Let σσσ (− j) and ēp

(− j)
denote the values of σσσ and ēp at the jth previous unloading point as illustrated in
Fig. 5. The following procedures are added after Case 1 in Step 2 of Algorithm 1:

σ(−1) := σi,

ep
(−1) := ep

i ,

σ(− j−1) := σ(− j), j = 1,2, . . . ,

ep
(− j−1) := ep

(− j), j = 1,2, . . . .

(36)

The stress-strain relation depends on the variable vector a in (14) consisting of
σσσ (−1), σσσ (−2), ēp

(−1), ēp
(−2), σ̂max, and an integer indicating the current curve number.

To simulate responses against asymmetric cyclic loading, the following Algorithm
2 is added at the end of Case 2 in Step 2 of Algorithm 1:

Algorithm 2: Simulation of responses to asymmetric loading
If the material is currently in plastic state, then consider the following two cases:

1. If the material is in elastic state at the previous step, and the norm of dif-
ference between the current stress σσσ i and the stress σσσ (−1) at the previous
unloading point is smaller than a specified small positive value Da

σ ; i.e.,

‖σσσ i−σσσ (−1)‖ ≤ Da
σ , (37)

then reloading occurs without plastic loading in the opposite direction; hence,
we set

ēp
0 = ēp

(−2), (38)
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and update

ēp
(− j) := ēp

(− j−1), j = 1,2, . . . ,

σ(− j) := σ(− j−1), j = 1,2, . . . ,
(39)

so as to follow the curve of the previous plastic loading as illustrated as the
path A→B→A→D in Fig. 4.

2. If the difference between the equivalent plastic strains ēp
(−1) and ēp

(−2) at the
two successive previous unloading points is smaller than a specified small
positive value Dēp ; i.e.,

ēp
(−1)− ēp

(−2) ≤ Dēp , (40)

and the difference between the current stress σσσ i and the stress σσσ (−2) at the
second previous unloading points is smaller than a specified small value Db

σ ,
as illustrated in Fig. 5; i.e.,

‖σσσ i−σσσ (−2)‖ ≤ Db
σ , (41)

then the plastification in the opposite direction is negligibly small. Therefore,
we set

ēp
0 = ēp

(−3)+(ēp
i − ēp

(−2)), (42)

and update

ēp
(− j) := ēp

(− j−2), j = 1,2, . . . ,

σ(− j) := σ(− j−2), j = 1,2, . . . ,
(43)

so as to follow the previous plastic loading curve.

According to Algorithm 2, the yield plateau does not appear at reloading after un-
loading from the plateau even if the equivalent plastic strain is very small. However,
as noted in Ucak and Tsopelas (2011) and Rodzik (1999), the yield plateau remain-
s if the equivalent plastic strain is small enough. Therefore, the following rule is
added:

Algorithm 3: Simulation of unloading from yield plateau
Use curve 1 if ēp ≤ ēYP, where ēYP is a parameter representing the bound for the
accumulated width of the yield plateau for the cyclic loading.
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Figure 6: Illustration of union of initial yield surface and shrunk surface.

However, the size of yield surface has been shrunk after first yielding. Therefore,
the stress of reloading at the yield surface is smaller than the real value after slightly
experiencing plastic deformation in opposite direction. To prevent this unrealistic
situation, we use the union of initial and shrunk surfaces as the yield surface as
illustrated in Fig. 6 until ēp exceeds ēYP.

In the following applications, Algorithms 1–3 are implemented in the material li-
brary of the E-Simulator. The accuracy and stability of the algorithms have been
confirmed through various numerical experiments including the seismic response
analysis of a model with about 19 million degrees of freedom [?Miyamura, Ya-
mashita, Akiba, Ohsaki (2015)].

4 Parameter identification from material test

This section proposes an identification method for the parameters of the semi-
implicit constitutive model using results of cyclic uniaxial material tests. The
parameters to be identified, which are the variables of an optimization problem,
include the initial yield stress, the hardening coefficients of the piecewise linear
stress-strain curves, and the ratios of isotropic-kinematic hardening. The square
error between analysis and experiment results is minimized to find the optimal pa-
rameter values.

4.1 Problem description

The hardening curve is divided into several intervals with respect to ēp
(− j). Let ēp

[i]
denote the value of ēp at the end of the ith interval. Then, the ith interval is defined
by

ēp
[i−1] ≤ ēp ≤ ēp

[i], (44)
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Figure 7: Piecewise linear relation between equivalent plastic strain and equivalent
stress for a monotonic loading with constant hardening coefficient h[i] in the ith
interval.

with ēp
[0] = 0. In the following, we use h instead of H ′ for simple presentation

of variables. The strain hardening coefficient in the ith interval is denoted by h[i],
which is assumed to have a constant value in each interval as illustrated in Fig. 7.
Note that ēp should be replaced by ēp

d in (17) in a reloading process.

Let n(k) (k = 1,2,3) denote the number of intervals in the kth loading curve. The
values ēp(k)

[i] (i = 1, . . . ,n(k)) are fixed. The ratios c(k)I (k = 1,2,3) of isotropic hard-
ening and the initial yield stress σ0

y are also considered as variables. The hardening
coefficients of curve 3 are the same as those of curve 2, and the constant values
c(2)I and c(3)I are used for all intervals of curves 2 and 3, respectively. The ratio c(1)I

represents the artificial negative value before initial yielding, and c(2)I is used for
the remaining intervals of curve 1. Therefore, we have the following n1 + n2 + 4
variables:

σ
0
y ,

c(1)I ,c(2)I ,c(3)I ,

h(k)[i] (i = 1, . . . ,n(k); k = 1,2),

(45)

which are represented by a vector x. Note that the elastic modulus is identified from
the initial stiffness only. Fixed values are assigned for Da

σ , Db
σ , and Dēp .

Let σ̃(ti) and ẽ(ti) denote the stress and strain at time step ti of cyclic uniaxial test.
We carry out cyclic uniaxial analysis of a single element with the same history of
the forced strain as the experiment to obtain the uniaxial stress σ̂ a(ti) and strain
e(ti) at time step ti.

We minimize the error between σ̂ a(ti) and σ̃(ti) defined as

E(x) =

√
1
|P| ∑

i∈P
[σ̂ a(ti)− σ̃(ti)]2, (46)
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where the summation is carried out in the set of steps P in plastic loading state.

Constraints are given, as follows, so that the hardening coefficient is a non-increasing
function of the equivalent plastic strain:

h(k)[i] ≥ h(k)[i+1], (k = 1,2; i = 1, . . . ,n(k)). (47)

The first interval of curve 1 has a negative value of c(1)I to simulated the Bauschinger
effect. If yield plateau exists, it is represented by the second interval of curve 1
(coefficient h(1)[2] ), and the hardening after yield plateau is represented by the coeffi-

cients h(1)[i] (i≥ 3). In this case, the constraint h(1)[2] ≥ h(1)[3] is not given.

Since the optimization problem is highly nonlinear, we discretize the variables into
integer values, and use TS [Glover (1989)], which is a heuristic approach. Let xi

represent one of the parameters to be identified. The upper and lower bounds of
xi are denoted by xU

i and xL
i , respectively, which are assigned as shown in Tab. 1.

Each variable is discretized into s equally spaced values xi j ( j = 1, . . . ,s) as

xi j = xL
i +

j−1
s

(xU
i − xL

i ), ( j = 1, . . . ,s). (48)

The algorithm of TS is summarized as follows:

Step 1 Assign an initial seed solution for x, and initialize the tabu list T to be
empty.

Step 2 Generate neighborhood solutions of the current seed solution and move to
the best feasible solution x∗ among them that is not included in the list T .

Step 3 Add x∗ to T . Remove the oldest solution in T if the length of the list
exceeds the specified limit.

Step 4 Accept x∗ as the next seed solution and go to Step 2 if the number of
steps is less than the specified limit; otherwise, output the best solution and
terminate the process.

The neighborhood solutions are generated using a random number τ ∈ [0,1]. Each
variable is increased by 1 if τ ≥ 2/3, decreased by 1 if τ < 1/3, and is not modified
if 1/3≤ τ < 2/3.

In order to improve accuracy, TS is carried out from several different initial random
seeds, after re-defining the upper and lower bounds of variables, as follows, around
the best solution of each trial. Let xk

i denote the ith variable of the kth optimal
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solution. To reduce the range of search region, the bounds of xi are reassigned to
xU∗

i and xL∗
i as

xU∗
i = xk

i +
xU

i − xL
i

s
, xL∗

i = xk
i −

xU
i − xL

i

s
(49)

Each parameter is discretized again into s integer values in a similar manner as (48),
and TS is carried out again from several different random seeds.

4.2 Parameter identification using cyclic test

In the following, the units of length and force are mm and N, respectively. The
parameters are identified from the uniaxial cyclic material test of SS400 [Yamada,
Imaeda, Okada (2002)] as shown in Fig. 1(b). We cannot identify the hardening
coefficients beyond yield plateau of curve 1, because the first unloading occurs
from the yield plateau in Fig. 1(b). Furthermore, we fix the hardening coefficient
at yield plateau, and only the hardening coefficient in the small interval at the first
yielding is considered as variable; i.e, n1 in (45) is 1. The number of intervals in
the subsequent stress-strain relation is seven; i.e., n2 = 7 in (45). We have twelve
variables in total including σ0

y , c(1)I , c(2)I , and c(3)I .

Optimization using TS is carried out for identification of parameters. Values of the
fixed parameters are set as

• Elastic modulus: 1.7505×105 N/mm2

• Poisson’s ratio: 0.3

• Hardening coefficient h(1)[2] for the yield plateau: 100.0 N/mm2.

• Equivalent plastic strains at the boundaries of intervals:

– Curve 1: {ēp(1)
[1] , ēp(1)

[2] }= {0.0000315,1.0}

– Curves 2 and 3: {ēp(2)
[1] , . . . , ēp(2)

[7] }= {0.0015,0.0044,0.01,0.018,0.025,
0.05,1.0}

The variables are discretized into s = 20 values. The numbers of neighborhood
solutions and total steps for TS are 12 and 50, respectively. The length of tabu list
is large enough so that each solution is selected only once. TS is carried out from
five different initial random seeds to find five approximate solutions. Parameters are
re-discretized to 20 values around each approximate solution, and TS is carried out
again from five different random seeds. The five approximate solutions, denoted by
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Table 1: Bounds of parameters.

Lower bound Upper bound
c(1)I −20.0 −10.0
c(2)I 0.0 0.2
c(3)I 0.3 0.8
h(1)[1] 1.0×104 21.0×105

h(2)[1] 1.0×104 21.0×105

h(2)[2] 1.0×104 21.0×105

h(2)[3] 5000.0 15000.0

h(2)[4] 1000.0 5000.0

h(2)[5] 100.0 5000.0

h(2)[6] 100.0 5000.0

h(2)[7] 100.0 5000.0
σ0

y 260.0 270.0

Opt k (k = 1, . . . ,5), obtained as the best solution after the second step are listed in
Tab. 2.

Among five solutions, Opt 3 has the smallest value of E(x), and its stress-strain re-
lation is plotted in dotted line in Fig. 8. The solid line shows the experimental result
by Yamada, Imaeda, Okada (2002). As seen from the figure, the numerical results
have high accuracy of simulating cyclic uniaxial loading of the steel material.

In the following examples of a cantilever, materials for flange and web are classified
as SS400; however, they are fabricated from different lots, and only monotonic test
results are available. We use the well-known fact that the plot of equivalent stress
with respect to accumulated value of ēp under cyclic deformation resembles the plot
with respect to ēp under monotonic deformation [Yamada, Imaeda, Okada (2002)].
Hardening properties of curve 1, after removing the yield plateau, are used for
identifying the parameters h(2)[i] (i = 1, . . . ,7) and σ0

y for flange and web. For the

cyclic properties, the parameter values of Opt 3 in Tab. 2 are used for for c(1)I , c(2)I ,
c(3)I , and h(1)[1] . The same cyclic pattern as Fig. 1(b) is applied to a single element,
and the error between the accumulated plastic strain and the experimental result is
minimized using the same approach as cyclic loading.

The results for flange and web are listed in Tab. 3. The monotonic stress-strain
relation for flange and web are plotted in Figs. 9(a) and (b), respectively, where
solid lines are the experimental results, and dotted lines are the numerical results
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Table 2: Results of second step of parameter identification by TS.

Opt 1 Opt 2 Opt 3 Opt 4 Opt 5
c(1)I −14.921 −19.921 −16.816 −13.342 −17.8684
c(2)I 0.0010263 0.0013421 0.00150000 0.000500 0.0005
c(3)I 0.58289 0.63553 0.61447 0.56184 0.66711
h(1)[1] 1.7053×105 1.5579×105 1.5579×105 1.6526×105 1.2526×105

h(2)[1] 8.2105×104 1.0737×105 7.4737×104 6.5263×104 5.5789×104

h(2)[2] 1.3973×104 3.0526×104 3.3684×104 3.2632×104 3.0526×104

h(2)[3] 1.3973×104 5763.2 9394.7 7763.2 9868.4

h(2)[4] 3465.5 5002.6 3534.2 3055.3 4339.5

h(2)[5] 3465.5 2485.5 1995.5 2691.8 2176.1

h(2)[6] 3465.5 2176.1 1995.5 2691.8 2176.1

h(2)[7] 3465.5 1943.9 1196.1 2691.8 912.37
σ0

y 270.13 265.61 265.18 268.71 263.24
E(x) 23.721 11.475 10.528 16.232 11.272

corresponding to Opt 2-1 for flange and Opt 2-5 for web. It can be observed from
the figures that good approximation has been achieved.

5 Illustrative example and FE analysis of cantilever

We demonstrated in the previous section that the proposed semi-implicit consti-
tutive model has high accuracy in simulation of cyclic uniaxial loading for rolled
mild steel materials in civil engineering. In this section, we first demonstrate the
necessity of implementation of Algorithms 2 and 3 in simulation of cyclic loading.
Cyclic analysis is carried out for a cantilever as shown in Fig. 10 as an example to
show the accuracy of the proposed model used for structural analysis.

5.1 Cyclic analysis of single element

To illustrate the importance of implementation of Algorithms 2 and 3 for cyclic
loading, we consider a simple example with only one hexahedral solid element.
The parameters for Algorithms 2 and 3 are given as

• Small bounds for Algorithm 2:
Da

σ = 5.0, Db
σ = 15.0, Dēp = 0.004

• Threshold plastic strain of the yield plateau for Algorithm 3: ēYP = 0.005
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Figure 8: Stress-strain relation of for the cyclic uniaxial material test of SS400
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Figure 9: Stress-strain curves for flange and web after identification of hardening
coefficients and yield stresses from uniaxial material test, corresponding to Opt 3;
(a) flange, (b) web.
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Figure 11: Cyclic behavior with reloading from yield plateau; (a) monotonic load-
ing, (b) reloading without loading in the opposite direction, (c) reloading at small
equivalent plastic strain after loading in the opposite direction, (d) reloading at large
equivalent plastic strain after loading in the opposite direction, (e) reloading at large
equivalent plastic strain without loading in the opposite direction, (f) reloading at
large equivalent plastic strain after slight loading in the opposite direction.
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Table 3: Results of parameter identification of curve 2 and yield stress of flange
and web using monotonic uniaxial tests.

Opt 2-1 Opt 2-2 Opt 2-3 Opt 2-4 Opt 2-5
h(2)[1] 86447.3 89342.1 89342.1 86973.6 88815.7

h(2)[2] 29526.3 28473.6 29947.3 28052.6 28473.6

h(2)[3] 11348.6 10851.3 11277.6 10851.3 10993.4

h(2)[4] 2777.63 2759.21 2667.10 2740.78 2678.94

Flange h(2)[5] 2678.94 2752.63 2594.73 2657.89 2678.94

h(2)[6] 2584.21 2584.21 2594.73 2605.26 2584.21

h(2)[7] 848.552 859.868 825.921 871.184 882.500
σ0

y 279.736 278.684 273.947 279.210 279.210
E(x) 5.78927 6.13947 7.22870 6.02356 6.01854
h(2)[1] 86184.2 86973.6 88815.7 88026.3 87763.1

h(2)[2] 26473.6 26894.7 27842.1 26789.4 26263.1

h(2)[3] 5877.63 5806.57 6517.10 5877.63 5877.63

h(2)[4] 5006.57 4951.31 4877.63 5006.57 4877.63

Web h(2)[5] 2784.21 2763.15 2700.00 2678.94 2784.21

h(2)[6] 2121.05 2089.47 1994.73 2100.00 2110.52

h(2)[7] 1046.18 1034.86 1000.92 1012.23 1023.55
σ0

y 325.000 325.000 323.947 325.000 325.000
E(x) 2.89199 2.89152 3.07475 2.90781 2.87298

Note that the width of yield plateau in the monotonic loading test is about 0.02 for
flange and 0.026 for web. The values of Da

σ and Db
σ are about 1.8 % and 5.4 % of

the yield stress, and Dēp is about 2.3 times as large as the yield strain. It has been
confirmed that the numerical results below are not sensitive to these values.

Fig. 11(a) shows a monotonic stress-strain relation of an element subjected to nor-
mal stress, which has a clear yield plateau. Fig. 11(b) shows the cyclic behavior
involving unloading from the yield plateau. It is seen that the yield plateau is traced
after reloading without loading in the opposite direction. Fig. 11(c) demonstrates
the loading in the opposite direction after unloading from the yield plateau. The
value of ēp at the unloading point is 0.0014532, which is less than ēYP. Therefore,
yield plateau exists in the opposite direction. The stress-strain relation follows the
dotted line if Algorithm 3 is not used.
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Figure 12: Loading patterns for the cantilever.

If unloading occurs at ēp = 0.0064503, which is larger than ēYP, the yield plateau
disappears and the stress-strain relation exhibits Bauschinger effect as shown in
Fig. 11(d), which confirms the effectiveness of using multiple curves. If unloading
and reloading occurs at ēp = 0.0064503 in the same direction without loading in the
opposite direction, the stress-strain curve follows curve 2 as shown in Fig. 11(e).
However, if loading is experienced in the opposite direction, then yields plateau
disappears as shown in Fig. 11(f).

5.2 Cyclic analysis of cantilever

To demonstrate the effectiveness of the proposed constitutive model for analysis of
structures in building engineering, we carry out elastoplastic cyclic analysis of a
cantilever consisting of rolled wide-flange section H-244×175×7×11 as shown in
Fig. 10. The web and flange are made of the same material SS400 with different
yield stresses. The left end of cantilever is clamped, and forced vertical displace-
ment is given at the right end. The average deflection angle θ of the beam is defined
by dividing the tip displacement δ by the beam length L = 800 mm.

Yamada, Imaeda, Okada (2002) conducted physical experiments under three differ-
ent loading patterns RH1, RH2, and RH3 described in terms of deflection angles as
shown in Fig. 12. The loading pattern RH1 is symmetric, RH2 gradually deflects in
one direction, and RH3 is asymmetric. The cantilever is discretized using hexahe-
dral finite elements with quadratic interpolation function. The flanges and web are
divided into three layers as shown in Fig. 13. Each element has 20 nodes, and the
total numbers of elements and nodes are 2700 and 14167, respectively. Sufficiently
small increment is used to simulate the history of complex behavior of the material
using the semi-implicit constitutive model. The total number of incremental steps
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Figure 13: Finite element mesh of the cantilever.
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Figure 14: Relation between average deflection angle and bending moment for
loading pattern RH1; solid line: analysis, dotted line: experiment.

for the loading patterns RH1, RH2, and RH3 are 555, 362, and 443, respectively.

We use the parameter values identified in Sec. 4. For the symmetric loading pattern
RH1, the relation between the deflection angle and the bending moment at the fixed
end is shown in Fig. 14, where the solid and dotted lines, respectively, correspond
to numerical and experimental results. The numerical analysis reproduces the be-
havior of the cantilever with good accuracy in the subsequent cycles, although the
strength is slightly larger than the experimental result.

For the more complex loading patterns RH2 and RH3, the numerical results to-
gether with the experimental results are respectively plotted in Figs. 15(a) and (b).
As seen from the figures, the responses evaluated using the proposed model has
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Figure 15: Results of asymmetric loading patterns; solid line: analysis, dotted line:
experiment; (a) RH2, (b) RH3.
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Figure 16: Results of simple hardening rules for loading pattern RH3; solid line:
analysis, dotted line: experiment; (a) isotropic, (b) kinematic.

good accuracy for even these asymmetric loading patterns. It should be noted here
that the constitutive parameters are identified using only the cyclic and monoton-
ic material tests, and no tuning has been made in view of the results of cantilever
subjected to three different loading conditions.

For comparison purpose, we also carried out numerical analysis for RH3 using sim-
ple isotropic and kinematic hardening rules, respectively, where the bilinear hard-
ening models are used and the hardening coefficient is equal to 1/100 of the elastic
modulus. The numerical results for the two cases are shown in Fig. 16, also with
the experimental results for reference. It is obvious from Figs. 15(b) and 16 that
the proposed constitutive model has much higher accuracy than simple isotropic or
kinematic hardening model in simulation of behavior of the cantilever subjected to
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a symmetric cyclic loading. Obviously, the expansion of yield surface cannot be
simulated by the kinematic hardening model, while the isotropic hardening cannot
simulate the Bauschinger effect.

6 Conclusions

An intermediate implicit and explicit constitutive model, called semi-implicit mod-
el, has been proposed for the rate-independent elastoplastic constitutive models of
rolled mild steel materials used in the field of civil engineering. The model simu-
lates the behaviors of steel materials subjected to cyclic loading, while existence of
yield plateau and Bauschinger effect is considered.

The constitutive model has been implemented in the E-Simulator, which is a soft-
ware package for large-scale seismic response analysis and is currently under devel-
opment at the National Research Institute of Earth Science and Disaster Prevention
(NIED), Japan. The accuracy and stability of the prototype of the constitutive mod-
el have already been confirmed through various numerical experiments including
the seismic response analysis of a model with about 19 million degrees of freedom.

The constitutive relation is defined in an algorithmic manner based on the piecewise-
linear combined isotropic-kinematic hardening. Different rules are used for the first
and subsequent loading states to consider the wide yield plateau in the first loading,
and a rule is also included for simulating reloading after unloading from the yield
plateau. Moreover, the Bauschinger effect is simulated by shrinkage of the yield
surface using a negative ratio for isotropic hardening.

The conventional formulations of radial return mapping for predictor-corrector in-
cremental algorithm and the consistent tangent stiffness proposed in [Simo and Tay-
lor (1985)] can be used without any modification incorporating explicit solution of
the consistency condition. Therefore, the proposed model can be implemented eas-
ily by simply adding the new hardening functions to an existing and reliable code,
and very stable computation without divergence can be achieved in the framework
of J2-plasticity.

An optimization approach using TS has been presented for identification of the con-
stitutive parameters from uniaxial material tests. The ratio of isotropic hardening
as well as the parameter values for modeling Bauschinger effect is identified from
a cyclic material test. The hardening coefficient as function of plastic strain can
be identified from uniaxial material test, if cyclic test is not available, utilizing the
accumulated equivalent plastic strain under cyclic analysis. Hence, the proposed
approach can be widely used in a practical situation, because cyclic test is much
more difficult than monotonic test.

The accuracy of the model has been demonstrated through numerical examples of a
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cantilever subjected to three different types of cyclic loads. It has been shown that
the elastoplastic responses under complex asymmetric cyclic loads can be simulat-
ed accurately using the proposed model without any specific tuning for the struc-
tural model; only material tests for identification of the parameters are needed for
accurate estimation of elastoplastic cyclic responses.
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