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Atomic Exponential Basis Function Eup(x,ω) -
Development and Application
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Abstract: This paper presents exponential Atomic Basis Functions (ABF), which
are called Eup(x,ω). These functions are infinitely differentiable finite functions
that unlike algebraic up(x) basis functions, have an unspecified parameter - fre-
quency ω . Numerical experiments show that this class of atomic functions has
good approximation properties, especially in the case of large gradients (Gibbs
phenomenon). In this work, for the first time, the properties of exponential ABF
are thoroughly investigated and the expression for calculating the value of the basis
function at an arbitrary point of the domain is given in a form suitable for imple-
mentation in numerical analysis. Application of these basis functions is shown in
the function approximation example. The procedure for determining the best fre-
quencies, which gives the smallest approximation error in terms of the least squares
method, is presented.

Keywords: Exponential atomic basis function, Fourier transform, compact sup-
port, frequency.

1 Introduction

A special task in all numerical methods is the choice of basis functions. The most
common engineering problems are determined on the irregular area and have com-
plex boundary conditions and external action. The indentedness of the domain
almost excludes the practical application of conventional basis functions (algebraic
and trigonometric polynomials) [Zienkiewicz, Taylor, and Zhu (2013)].

A number of meshless methods have been developed for solving engineering prob-
lems. Among a few others, prominent meshless discretization techniques include
the Meshless Local Petrov-Galerkin (MLPG) Method. Various MLPG methods
were compared and shown to be promising contenders to the FEM in [Atluri and
Shen (2002)]. Remarkable successes of the MLPG method have been reported
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in solving the convection-diffusion problems [Lin and Atluri (2000)], for elasto-
static problems [Atluri, Han, and Rajendran (2004)], for elasto-dynamic problems
[Han and Atluri (2004)], and for atomistic/continuum simulation [Shen and Atluri
(2005)]. The MLPG method provides the flexibility in the choice of the test and
trial functions, and therefore makes it possible to construct various meshless imple-
mentations, by combining different trial and test functions. Meshless methods that
are based on radial basis functions (RBFs) have recently gained much attention in
many different applications in numerical analysis. Some applications using RBFs
for heat transfer problems and solution of the Navier-Stokes equations were re-
ported in [Mai-Duy (2004)], the numerical simulation of two-phase flow in porous
media in [Iske and Käser (2005)], dealing with transport phenomena in [Šarler
(2005)]. The concept of wavelet analysis was introduced in applied mathematics in
the late 1980s and recently there is a growing interest in developing wavelet-based
numerical algorithms in both the uniform and adaptive node distribution schemes
for the solution of partial differential equations (PDEs). Libre, Emdadi, Kansa,
Shekarchi, and Rahimian (2009) developed a wavelet based adaptive scheme for
solving nearly singular potential PDEs over irregularly shaped domains.

To obtain high-quality numerical solutions, it is important that the length of the
basis function support (area of the nonzero values) be small with regard to the en-
tire domain of the considered problem (compact support) and the basis functions
be sufficiently smooth so that their linear combination gives a good approximation
of the function from the associated solution space of the boundary value problem.
For example, the required high smoothness of the approximate solutions calls into
question the efficiency of spline or wavelet basis functions [Prenter (1989); Vasi-
lyev and Paolucci (1997)] because the continuity of derivation of approximate so-
lutions, i.e., fluxes, more commonly represents a physically significant result than
the basic variable that is being observed.

Therefore, a finite basis function of unlimited smoothness with a small support that
does not depend on the type and degree of the boundary value problem should be
chosen.

In this paper, we address this class of atomic basis functions [Rvachev and R-
vachev (1971); Rvachev and Rvachev (1979)], their properties and the method of
their use. In 1971, Rvachev and Rvachev defined for the first time atomic basis
functions (ABFs) as solutions of a particular type of differential-functional equa-
tions and opened the way for their use in numerical analysis. Atomic functions
are finite, infinitely differentiable basis functions that have the advantage of prac-
tical application of splines (compact support) and at the same time the property
of universality, which is characteristic of algebraic and trigonometric polynomials.
Atomic basis functions can be classified into three groups: algebraic, exponential
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and trigonometric functions. Atomic functions of algebraic type up(x) and Fupn(x)
are the most detailed that have been studied [Gotovac (1986); Gotovac and Kozulić
(2002); Kolodyazhny and Rvachev (2007); Rvachev and Rvachev (1979)]. In fact,
the operations for calculating the values of atomic functions at arbitrary points seem
quite complex and inconvenient for numerical applications. This is the most likely
reason that they are poorly represented in the analysis despite their good approxi-
mation properties and that the number of authors who use them in their numerical
models is not large. However, for practical solving of engineering problems, it
is enough to calculate the values of a basic function at a small number of points;
then, with specific formulas, the values of all required derivations, integrals, scalar
products of selected basis functions with derivatives, elementary functions, etc. can
be quickly and accurately calculated [Gotovac and Kozulić (2002)]. Applications
of Fup basis functions, as the most commonly used ABFs, are shown in problem-
s of signal processing [Kravchenko, Rvachev, and Rvachev (1995); Kravchenko,
Basarab, and Perez-Meana (2001)], initial value problems [Gotovac and Kozulić
(2002)] and problems of mathematical physics [Gotovac and Gotovac (2009)]. The
authors of this article have worked intensively on the development and application
of ABFs of algebraic type in solving problems of structural mechanics and have
therefore demonstrated their significant potential compared to conventional pro-
cedures with finite elements [Gotovac and Kozulić (2000); Kozulić and Gotovac
(2011)]. Research has led to the development of the effective adaptive Fup colloca-
tion method, which was successfully implemented in problems of fluid mechanics
and groundwater hydraulics [Gotovac, Andričević, and Gotovac (2007); Kozulić,
Gotovac, and Gotovac (2007); Gotovac, Kozulić, and Gotovac (2010)].

In modern numerical analysis, algebraic basis functions are almost exclusively
used, although most physical and engineering problems do not have solutions from
this vector space.

In analysing physical problems whose solutions are not from the class of algebraic
polynomials, there is a need for basis functions that can better describe the solution
function, that is, those that will belong to the chosen vector space. The idea of
choosing basis functions that correspond to the class of solution whose problems
we are solving is long established [Rvachev and Rvachev (1971); Gotovac (1986)]
but rarely implemented in practice. Engineering problems that exhibit large local
gradients and singularities require exponential basis functions. Classical examples
are the advective-dispersion (diffusion) equation and the heat conduction equation,
which describe transfer of mass and energy, respectively. To obtain quality numer-
ical solutions of such problems, the application of B-splines of exponential type
is suitable. These basis functions have not been sufficiently explored, and to date,
they are very rarely used in numerical analysis [Kadalbajoo and Patidar (2002);
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Konovalov and Kravchenko (2014); McCartin (1981); Radunović (2008)].

Encouraged by the good results achieved by ABFs of algebraic type, we have come
to the conclusion that it is worthwhile to explore ABFs of exponential type and to
bring them into numerically suitable form. This is the main task of this paper.

The following sections describe the basic (mother) ABF of algebraic and expo-
nential type. Section 2 shows a procedure for generating the function up(x), its
derivatives and the basic properties in a manner that is suitable for definition and
derivation from the mother basis function Eup(x,ω). In Section 3, the mother
exponential basis function Eup(x,ω) is derived together with its derivatives, im-
portant properties and procedure for use. Implementation of the ABF Eup(x,ω) in
numerical approximations of the given function is presented in Section 4. Finally,
conclusions are given in Section 5.

2 The mother function up(ξ ) of algebraic Abfs

2.1 Definition and basic properties of the function up(ξ )

The common characteristic of all ABFs is the possibility of effectively constructing
their Fourier Transformation (FT) - image. The function values (the original) and
also all associated values required for practical application can be calculated from
the FT. The procedure will be illustrated in the most studied ABF - up(ξ ) using
certain similarities with the B-spline.

Knowing B0(ξ ) spline

B0(ξ ) =

{
1 f or ξ ∈ [−1/2,1/2]
0 else

and its FT f0(t)

f0(t) =
∫ +∞

−∞

B0 (ξ ) · eitξ dξ =
∫ +1/2

−1/2
1 · eitξ dξ =

sin(t/2)
t/2

(1)

algebraic spline Bn(ξ ) of arbitrary degree n and its FT fn(t) can be constructed in
the following form:

Bn(ξ ) = B0(ξ )∗B0(ξ )∗ . . .∗B0(ξ )︸ ︷︷ ︸
n+1

fn(t) = f0(t) · f0(t) · . . . · f0(t)︸ ︷︷ ︸
n+1

(2)

The function Bn(ξ ) corresponds to the convolution of (n+1)B0(ξ ) splines, so its
support is a union of all supports of the convolution factors with the individual
length h0 = 1. Thus, hn = (n+1) ·h0.



Atomic Exponential Basis Function Eup(x,ω) - Development and Application 497

Obviously, as the degree of polynomial n increases, the length of the function
support increases too, and when n→ ∞, the corresponding length of the support
hn→ ∞.

A modified form of the expression (1) is used for the function up(ξ ) in [Gotovac
(1986); Gotovac and Kozulić (2002)] in a way that B0(ξ ) is summarized to half of
its support length (h0/2); thus, a second member in the convolution is obtained, and
then, this second member is again compressed to half of its support length (h0/4)
and so on.

up(ξ ) = B0(ξ )∗B0(2ξ )∗ . . .∗B0(2k
ξ )∗ . . .∗B0(2∞

ξ ) (3)

From the Paley-Wiener theorem [Gotovac and Kozulić (2002)] in the form
∫ +∞

−∞
B0

(2nξ )dξ = 1, it follows that the ordinates of each additional member are doubled.

B0(2k
ξ ) =

{
2k f or ξ ∈

[
−2−k−1,2−k−1

]
0 else

Support of the function up(ξ ) is the union of infinitely many segments, and yet, its
length is finite

hup =
∞

∑
k=0

1
2k = 2 → supp up(ξ ) = [−1,1]

In [Gotovac (1986)], it is shown that the support length can be presented as a mea-
sure of the set of all binary rational points 2−k,k = 0,1, . . . ,∞, whereas all other
points of the support like ±1/3,±4/7,±

√
2/2,±π/8, etc. form a set whose mea-

sure is - empty set. So, it is a compact support.

The consequence of repeated compression of the starting B0(ξ ) spline to half its
previous length increases the algebraic polynomial degree as shown in Fig. 1. The
FT of the basic atomic function up(ξ ) according to (1), (2) and (3) is

F0(t) =
∞

∏
j=1

sin(t/2 j)

t/2 j (4)

From (4), using numerical procedures, it is possible to determine function values
and the derivatives approximately according to formula

up(ξ ) =
1

2π

∫ +∞

−∞

e−itξ ·F0(t)dt

However, on the set of binary rational points

ξbr =−1+ k2−n, n ∈ N, k = 1, . . . ,2n+1 (5)
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Figure 1: Basis function up(ξ ) generation

The values and derivatives of the function up(ξ ) can be determined in the form of
rational numbers – i.e., exactly. The function values at other points of the support
are calculated with computer precision.
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About ABF up(ξ ) can be referred to as the perfect spline, which is differentiable an
infinite number of times, although it is not an analytical function in any point of its
support. Additionally, the finiteness is more expressive than in spline functions, and
the smoothness is less than that for conventional basic functions such as algebraic
and trigonometric polynomials.

The mother ABF up(ξ ) maintains a good property of finiteness of B-splines and
also possesses the important property of algebraic and trigonometric polynomials
– the universality of the vector space UP that they form.

2.2 Differential functional equation for the function up(ξ )

The Fourier transform in the form of (4) can be converted to a form that is more
suitable for describing the properties of the function up(ξ ). F (t/2) is calculated
from (4), and then the left side of equation (4) is divided by F(t/2), and the right
side is divided by ∏

∞
j=2

sin(t/2 j)
t/2 j , which gives

F0(t) =
sin(t/2)

t/2
·F0 (t/2) (6)

From the FT of function up(ξ ) written in the form (6), it is obvious that up(ξ )
possesses the quality of crushing (fragmenting); that is, any part of it contains the
whole function (holographic effect). If sin(t/2) =

(
eit/2− e−it/2

)
/(2i) is substitut-

ed in (6) and the resulting equation is multiplied by (−1), after arranging, follows

−it ·F0(t) = eit/2 ·F0 (t/2)− e−it/2 ·F0 (t/2) (7)

Using the inverse operator
(

1
2π

∫ +∞

−∞
e−itξ dt

)
for all members of the equation (7), a

differential functional equation of ABF up(ξ ) is obtained in the final form:

up′(ξ ) = 2 ·up(2ξ +1)−2 ·up(2ξ −1) (8)

On the left side of equation (8), there is a linear differential operator with constant
coefficients, and on the right side, there is a linear combination of compressed and
shifted ABFs up(ξ ).

Fig. 2 shows the function up(ξ ) and its first derivative. It is evident that it is an
even function and that its support is supp up(ξ ) = [−1,1].

The support of the function up(ξ ) is composed of two unit length characteristic
intervals ∆ξ0.

Characteristic points ξk are the boundary points of characteristic intervals (the point
of the origin and end points of the support ξ =±1).
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The function value at the origin up(0)= 1 is a consequence of the normed condition
selection, which determines the value of the integral

∫ +∞

−∞
up(ξ )dξ =

∫ 1
−1 up(ξ )dξ =

1 in the original domain or the value of the FT at the origin F0(0) = 1 in the image
domain.
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Figure 2: The function up(ξ ) and its first derivative

2.3 Derivatives of the function up(ξ )

Derivatives of the degree greater than n of the up(ξ ) function have a zero value at
binary rational points (5). This means that the Taylor series at these points is finite
and that the function up(ξ ) for binary rational points coincides with a polynomial
of nth degree, which is visible in Fig. 1.

The first derivative can be represented as a linear combination of shifted and com-
pressed functions up(ξ ), as shown in equation (8). By differentiating the basic e-
quation (8) and substituting the first derivative of the function up(ξ ) with the right
side of the starting equation (8), it is shown that the second derivative can also be
presented as a linear combination of shifted and compressed up(ξ ) functions:

up′′ (ξ ) = 8up(4ξ +3)−8up(4ξ +1)−8up(4ξ −1)+8up(4ξ −3)

By continuing the process of differentiation and replacing the first derivative from
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the basic equation, a general term for the derivative of the m-th degree is obtained:

up(m)(ξ ) = 2C2
m+1

2m

∑
k=1

δk ·up(2m
ξ +2m +1−2k) , m ∈ N

where C2
m+1 = m(m+1)/2 is a binomial coefficient, and δk are coefficients that

have a value of ±1 and determine the sign of the individual summand, which
changes according to the following recursive formulas:

δ2k−1 = δk, δ2k =−δk, k ∈ N, δ1 = 1

Figure 3 shows the function up(ξ ), its first four and seventh derivative. It can be
seen that the derivatives are made up of functions p(ξ ), which are “compressed”
on the interval with length 2−m+1 and which have ordinates multiplied by a factor
2C2

m+1 . A high degree derivative of the function up(ξ ) when m→ ∞ becomes a
series whose individual member corresponds to Dirac’s function.

2.4 The value of the function up(ξ ) at an arbitrary point

To calculate the values of the function up(ξ ) at points ξ ∈
[
−1+2−n,−1+2−n+1

]
,

it is necessary to know its values at points ξ ∈ [−1,−1+2−n]. According to [Go-
tovac (1986); Gotovac and Kozulić (2002)]:

up(ξ ) =
n

∑
l=0

up(l) (−1+2−n)

l!
(ξ +1−2−n)l−up

(
ξ −2−n)

Given that the Taylor expansion of the function up(ξ ) at binary rational points (5)
represents a polynomial of the nth degree, a special order for calculating the value
of the function up(ξ ) at arbitrary point ξ ∈ [0,1] was proposed in [Gotovac (1986)]
in the form:

up(ξ ) = 1−up(ξ −1) = 1−
∞

∑
k=1

(−1)1+p1+···+pk pk

k

∑
j=0

C jk (ξ −0, p1 . . . pk)
j (9)

where the coefficients C jk are rational numbers that are determined according to the
following formula:

C jk =
2 j( j+1)/2

j!
up(−1+2−(k− j)); j = 0,1, . . . ,k; k = 1,2, . . . ,∞

The values up
(
−1+2−(k− j)

)
are calculated as shown in [Gotovac (1986); Gotovac

and Kozulić (2002)]. Expression (ξ −0, p1 . . . pk) in (9) represents the difference
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between the real value of coordinate ξ and its binary presentation with k bits, where
p1 . . . pk are digits 0 or 1 of a binary development of the coordinate value ξ . There-
fore, the accuracy of the coordinate ξ and hence the accuracy of the function up(ξ )
in the arbitrary point, depends on the accuracy of an electronic computer. For some
n, the error of the calculated value of the function up(ξ ) at arbitrary point ξ and
the rest of the series in (9), where k = 1, . . . ,n, does not exceed the value of the
function up(−1+2−n).

2.5 Polynomial as a linear combination of shifted up(ξ ) functions

An arbitrary function, as a linear combination of the shifted up(ξ ) functions, can
be written as:

ϕ(ξ ) =
∞

∑
k=−∞

Ck ·up(ξ − k ·∆ξn) , k ∈ Z (10)

where ∆ξn = 2−n is a characteristic interval of the basis function. Particularly, if
the coefficient Ck is an algebraic polynomial of mth degree of the index k, i.e.,

Ck → (∆ξ
m
n ·∆ξn) ·C(m)

n (k) = ∆ξ
m
n ·∆ξn ·

m

∑
i=0

A(m,n)
m−i · k

m−i

m = 0,1, . . . ,n, n ∈ N
(11)

then the function ϕ(ξ ) from (10) is the algebraic polynomial of mth degree, where-
as n denotes the greatest degree of the polynomial that is contained in a vector space
UPn.

The coefficients A(m,n)
m−i are calculated using the following formulas:

A(m,n)
m = 1

A(m,n)
m−2i+1 = 0, i = 1,2, . . . , [m/2]

A(m,n)
m−2i =−

21−n

(m−2i)!

i−1

∑
l=0

A(m,n)
m−2l

(m−2l)!
(2i−2l)!

2n−1

∑
j=1

up
(

j
2n

)
j2(i−l)

(12)

For example, C(m)
2 (k) coefficients, for the monomials up to the second degree and

the basis function distribution shown in Fig. 4c) (that is, for n = 2), according to
(11), can be represented in a general form:

n = 2, m = 0, → C(0)
2 (k) = A(0,2)

0 · k0

m = 1, → C(1)
2 (k) = A(1,2)

1 · k1 +A(1,2)
0 · k0

m = 2, → C(2)
2 (k) = A(2,2)

2 · k2 +A(2,2)
1 · k1 +A(2,2)

0 · k0

(13)
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and after calculating the coefficients A(m,2)
m−i , i =,2, . . . , [m/2] for the associated m

according to (12)

C(0)
2 (k) = 1, C(1)

2 (k) = k, C(2)
2 (k) = k2− 16

9
(14)
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Figure 4: The basis function distribution for an accurate representation of the poly-
nomials of 0, 1 and 2 degrees

Using the coefficients (11) and (12) in the virtual domain and mapping the interval
∆ξn to the real length of the interval ∆x, linear combination (10) in the real domain
becomes

xm = ∆xm ·∆ξn ·
∞

∑
k=−∞

C(m)
n (k) ·up

(
x

2n∆x
− k

2n

)
(15)
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For example, algebraic polynomial P2(x) = a0 + a1x+ a2x2 in the real domain is
obtained using expressions (14) and (15) in the following form:

P2(x) = ∆ξ2 ·
∞

∑
k=−∞

[
a0 +a1 ·∆x · k+a2 ·∆x2 ·

(
k2− 16

9

)]
·up

(
x

22∆x
− k

22

)
2.6 Vector space of functions UPn

Polynomials of the nth degree can be represented as a linear combination of basis
functions obtained by moving the up(ξ ) function. The individual basis function
ϕk(ξ ) is obtained by moving the up(ξ ) function on the abscissa axis for the value
k ·2−n, so that:

ϕk(ξ ) = up
(
ξ − k2−n) , k ∈ Z, n = 0,1, . . .

The exponent n determines the highest polynomial degree that can be accurately
represented as a linear combination of basis functions ϕk(ξ ) according to (10).
The coefficient k determines a displacement of the function up(ξ ) with respect to
the origin of the global coordinate system with the length of a characteristic interval
∆ξn = 2−n so that it becomes a basis function ϕk(ξ ) (Fig. 4.); thus, k has the role
of a global index of the individual basis function.

As shown in Fig. 4, for an accurate representation of monomials ξ n on the interval
of length 2−n, 2n+1 basis functions are required, so in this case, the dimension of
vector space is dim(UPn) = 2n+1.

For an accurate representation of monomials ξ n+1, it is necessary to have 2n+2

basis functions, so vector space UPn+1 has a dimension of 2n+2. Therefore, the
linear vector space UPn+1 contains a space UPn because it is obtained by extending
UPn space with 2n+1 linearly independent vectors, i.e., displaced up(ξ ) functions.
Accordingly, as distinct from the space built out of basis splines, the function space
UPn is universal, i.e. :

UP0 ⊂UP1 ⊂ . . .⊂UPn ⊂UPn+1

This fact makes it possible to form an iterative procedure in which the solution from
the space UPn is used as a starting solution for searching the approximation in the
space UPn+1.

2.7 Approximation of the function that is an algebraic polynomial

Let the given function be f (x) =−1+4x−2x2,x ∈ [0,1]. We need to compute the
approximation of the function using a linear combination of basis functions shown
in Fig. 4a, 4b and 4c.
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Using the collocation method, the system of equations and the corresponding ap-
proximation are obtained.

a) For two collocation points, the length of a characteristic interval is ∆xa = 1. The
system of equations and the coefficients Ci, i = 0,1 are:[

1 0
0 1

]
·
[
C0
C1

]
=

[
f (0)
f (1)

]
→

[
C0
C1

]
=

[
f (0)
f (1)

]
=

[
−1
1

]
(16)

The approximation of the given function f (x) has the form f̃a(x) =C0 ·up(x)+C1 ·
up(x−1) and is shown in Fig. 5.

b) For three collocation points, the distribution of basis functions and collocation
points are shown in Fig. 4b. The length of a characteristic interval is ∆xb = ∆xa/2.
There are five unknown coefficients and only three collocation points. When spline
functions are used as an additional condition at the boundary, the first derivative
is used so that there are double collocation points at the boundary. In the case of
up(ξ ) basis functions, we obtain the following matrix As:

As =


−2 0 2 0 0
1/2 1 1/2 0 0
0 1/2 1 1/2 0
0 0 1/2 1 1/2
0 0 −2 0 2

 , AR =


1 −2 1 0 0

1/2 1 1/2 0 0
0 1/2 1 1/2 0
0 0 1/2 1 1/2
0 0 1 −2 1

 (17)

A system As in (17) is singular. In [Rvachev and Rvachev (1979)], the system is
preconditioned and solved by an iterative procedure.

The polynomials of the nth degree can accurately be described using the basis func-
tions of the vector space UPn as shown in the previous section. However, in addition
to ABF up(x), the vector space UPn contains the basis functions Fupn(x), [Goto-
vac (1986); Gotovac and Kozulić (2002); Rvachev and Rvachev (1979)], which can
also exactly describe polynomials up to the nth degree. Basis function Fupn(x) is
obtained as a result of a specific linear combination of up(x) functions. Addition-
ally, a smaller number of basis functions is needed when accurately describing the
polynomials of the nth degree on the characteristic interval than when using the
up(x) functions.

Because all derivations over the order n in all points must be equal to zero, addi-
tional equations, instead of known derivatives on the boundary, can be written with
the condition that the (n+1)th derivation of linear combinations of ABFs Fupn(x)
in the middle of the first and the last characteristic intervals are equal to zero.

Additional equations at the beginning and the end of the matrix formally coincide
with the corresponding operators of the finite differences. For the first five deriva-
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tions, the coefficients are as follows:

I. 1 −1
II. 1 −2 1
III. 1 −3 3 −1
IV. 1 −4 6 −4 1
V. 1 −5 10 −10 5 −1

(18)

For distribution of basis functions formation according to Fig. 4b (n = 1), the
second derivative must be equal to zero, so using (18) and replacing the first and
the last line in (17), matrix As becomes a regular matrix AR.

The right side vector is B = [0,−1/8,1/2,7/8,0]T , and the coefficients for linear
combination are C = [−3/2,−1/2,1/2,1/2,1/2]T . The resulting approximation
f̃b(x) is shown in Fig. 5.

c) Using the linear combination of ABFs distributed according to Fig. 4c (n = 2),
the algebraic monomials of the zero, first and second degree and the polynomi-
al obtained by their combination can be accurately described. Using the formula
∆xc = ∆xb/2 = ∆xa/4, the collocation method and additional equations from (18)
the values of required coefficients are obtained.

The matrix for calculating the coefficients, which – multiplied by the correspond-
ing basis functions from Fig. 4c – accurately describe the given function, has the
following form:

A =



−1 3 −3 1 0 0 0 0 0 0 0
1 −4 6 −4 1 0 0 0 0 0 0
−1 5 −10 10 −5 1 0 0 0 0 0

5/72 1/2 67/72 1 67/72 1/2 5/72 0 0 0 0
0 5/72 1/2 67/72 1 67/72 1/2 5/72 0 0 0
0 0 5/72 1/2 67/72 1 67/72 1/2 5/72 0 0
0 0 0 5/72 1/2 67/72 1 67/72 1/2 5/72 0
0 0 0 0 5/72 1/2 67/72 1 67/72 1/2 5/72
0 0 0 0 0 −1 5 −10 10 −5 1
0 0 0 0 0 0 1 −4 6 −4 1
0 0 0 0 0 0 0 −1 3 −3 1


(19)

and the coefficients of the linear combination are

C =
1

288
[−353,−236,−137,−56,7,52,79,88,79,52,7]T

A linear combination of the basis functions shown in Fig. 4c exactly describes a
given function f (x) as shown in Fig. 5.
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Figure 5: The function f (x) and its approximations f̃a(x), f̃b(x), f̃c(x)

3 “Mother” function Eup(ξ ,ω) of the exponential ABFs

3.1 Generation of the Fourier transform of the function Eup(ξ ,ω)

The FT of the Eup(ξ ,ω) function is constructed by a similar procedure applied on
the up(ξ ) function using the condition

∫ 1
−1 Eup(ξ ,ω)dξ = 1 on the corresponding

compact support supp Eup(ξ ,ω) = [−1,1].

Fig. 6 shows a graphical representation of the generation process for the function
Eup(ξ ,ω) using the convolution theorem. In this procedure, the support lengths
of exponential splines of the zero degree ϕ j (ξ ,ω) , j = 0,1,2, . . . are reduced ac-
cording to the law h = 2− j:

Eup(ξ ,ω) = ϕ0 (ξ ,ω)︸ ︷︷ ︸
sup=[−1/2,1/2]

∗ ϕ1 (ξ ,ω)︸ ︷︷ ︸
sup=[−1/4,1/4]

∗ . . .∗ ϕ j (ξ ,ω)︸ ︷︷ ︸
lim
j→∞

[−2− j−1,2− j−1]=0

(20)

where

ϕ j (ξ ,ω) =


ω · eω/2 j+1

eω/2 j −1
eωξ for ξ ∈

[
−2−( j+1),2−( j+1)

]
0 else

(21)

FT of the function Eup(ξ ,ω) from (20) corresponds to the product of an infinite
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Figure 6: Exponential basis function Eup(ξ ,ω) generation

number of Fourier transformations of compressed splines of zero degree (21):

F(t) =
∞

∏
j=1

ω

2sh(ω/2)
sh
(
ω/2+ i · t/2 j

)
ω/2+ i · t/2 j (22)



510 Copyright © 2016 Tech Science Press CMES, vol.111, no.6, pp.493-530, 2016

When the parameter ω approaches zero, expression (22) becomes expression (4).
Hence, exponential ABF Eup(ξ ,ω) becomes algebraic ABF up(ξ ) when param-
eter ω becomes zero. The inverse FT or the function Eup(ξ ,ω) itself, with the
satisfaction of the normed condition, is:

Eup(ξ ,ω) =
1

2π

∫
∞

−∞

F (t) · e−itξ dt (23)

By developing the right side of Eq. (23) in the Fourier series, the “original” of the
function Eup(ξ ,ω) can be determined.

The parameter ω has a role of frequency similar to trigonometric functions. Fig.
7 shows that the function Eup(ξ ,ω) is inclined to the left for negative values of
the frequency ω < 0, whereas for positive values, it is inclined to the right. In
the limiting case when ω → 0, the function Eup(ξ ,ω) becomes up(ξ ). Thus, the
vector space EUP is denser than space UP and UP⊂ EUP.

3.2 Differential functional equation for the function Eup(ξ ,ω)

Differential functional equation for the function Eup(ξ ,ω) is constructed from its
known Fourier transform (22), which can be expressed in the following form:

F(t) =
ω

2 · sh(ω/2)
· sh(ω/2+ it/2)

ω/2+ it/2
·F (t/2) (24)

In the following text, the basis function Eup(ξ ,ω) will also be denoted as y(ξ ,ω)
due to shortness of the writing.

ξ

E
u

p
(ξ

,
ω

)

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ω = 0

ω = −10 ω = +10

Figure 7: Function Eup(ξ ,ω) for different values of parameter (frequency) ω
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Multiplying equation (24) with ‘ω + it’ and by short rearranging, the differential
functional equation for the function y(ξ ,ω) yields the final form

y′ (ξ ,ω)−ω · y(ξ ,ω) = a · y(2ξ +1,ω)−b · y(2ξ −1,ω) (25)

where the coefficients a and b are

a = ω · e−ω/2/sh(ω/2) , b = a · eω (26)

In particular, when the value of the parameter ω = 0, coefficients a = 2, b = 2, so
that in this case, equation (25) is equivalent to equation (8).

The expression for the first derivative of y(ξ ,ω) directly follows from equation
(25)

y′ (ξ ,ω) = ω · y(ξ ,ω)+a · y(2ξ +1,ω)−b · y(2ξ −1,ω)

3.3 Derivatives of the function Eup(ξ ,ω)

Because on the left side of the differential functional equation (25) there is a mem-
ber that contains a function y(ξ ,ω), it is not possible, as it is in expression (8) for
the up(ξ ) function, to express derivations directly through the compressed func-
tions on the right side of the equation. However, it is still achieved by applying the
appropriate differential operator, [Gotovac (1986); Gotovac and Kozulić (2002);
Rvachev and Rvachev (1979)], which converts the function y(ξ ,ω) into a combi-
nation of derivatives from the zero to the m-th order:

Lm =
m

∏
j=0

(
d/dξ −2 j

ω
)

(27)

On the right side of the expression, similar to the ABF up(ξ ) (Fig. 3), only a linear
combination of compressed basis functions appears (Fig. 8b). So, according to
Eq. (27), the general form for an arbitrary derivative of the y(ξ ,ω) function is
determined by the following equation:

Lmy(ξ ,ω) = 2m(m+1)/2 ·
2m+1

∑
j=1

D(m)
j y

(
2m+1

ξ −2 j+2m+1 +1,ω
)

(28)

Coefficients D(m)
j are calculated using the following recursive formula [Gotovac

(1986)] for m > 0:

D(m)
j = D(0)

k ·D
(m−1)
l j = 1, . . . ,2m+1; k = 1,2; l = 1, . . . ,2m (29)
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where D(0)
k are defined by coefficients from equation (26), i.e.,

D(0)
1 = a; D(0)

2 =−b (30)

From expressions (28)–(30), it is obvious that the first derivative of the function
y(ξ ,ω) is the sum of two components. The first component (Fig. 8a) is the zero
derivative of the function y(ξ ,ω) or the function itself multiplied by a coefficient,
which in this case is just a parameter ω . The second component (Fig. 8b) is a
linear combination of compressed and displaced functions y(ξ ,ω) similar to the
first derivative of the function up(ξ ).
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1/4 1/2 3/4 1.0

ξ

Eup'( ,ξ ω  =      +)

+

=

a)

b)

c)

ξ

ξ

ϕ0

ϕ1

ϕ0 ϕ1

Figure 8: a) ϕ0 = ω · y(ξ ,ω), b) ϕ1 = a · y(2ξ +1)− b · y(2ξ −1), c) The first
derivative of the function Eup(ξ ,ω)

By continuing the process of derivation, it follows that the derivative of the function
y(ξ ,ω) of the mth order is obtained as a linear combination of the function deriva-
tives up to the order (m−1) and the compressed and displaced function y(ξ ,ω),
similar to the mth derivative of the function up(ξ ).
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3.4 Relationship between basis functions Eup(ξ ,ω) and exponential polyno-
mials e2mωξ

By successive moving of just one finite basis function Eup(ξ ,ω) along a real ax-
is, the base of the vector space EUPn is formed. Arbitrary function ϕ(ξ ) can be
represented as a linear combination of functions from the vector space EUPn

ϕ(ξ ) =
∞

∑
k=−∞

C(m)
n (k) ·Eup(ξ − k ·∆ξn,ω) , k ∈ Z, n ∈ N (31)

where C(m)
n (k) are unknown coefficients of the linear combination, and ∆ξn = 2−n

is a characteristic displacement of the basis function by the abscissa axis.

For a linear combination (31) to represent an exponential monomial e2mωξ , it is
necessary and sufficient that for the given n ∈ N and by applying a differential
operator (27) on the expression (31), the linear combination on the right side is
annuled. Hence, according to Eq. (28), it follows that the coefficients C(m)

n (k) on
the interval [k ·2−n,(k+1) ·2−n] must satisfy the following equation

2n+1

∑
k=1

D(n)
k C(m)

n (k) = 0, n ∈ N (32)

where the coefficients D(n)
k are determined by expressions (29) and (30). Hence,

m = 0,1, . . . ,n is the exponential polynomial degree, similar to the vector space
UPn, whereas n is the highest degree of the exponential polynomial contained in
the selected vector space EUPn.

The coefficients of linear combination C(m)
n (k) from Eq. (31) are the roots of the

characteristic equation of linear recursion (32).

For example, for n = 0 (m = 0) (Fig. 9a), according to expression (32), the follow-
ing recursion is obtained

a ·C(0)
0 (k)−a · eω ·C(0)

0 (k−1) = 0

Its solution is sought in the form of C(0)
0 (k) = λ k. From the corresponding charac-

teristic equation λ k− eω ·λ k−1 = 0, λ = eω or C(0)
0 (k) = eωk/A(0)

0 is obtained.

So, the exponential monomial of zero degree e20ωξ has the final form

e20ωξ =
1

A(0)
0

∞

∑
k=−∞

eωk ·Eup
(
ξ − k/20,ω

)
, k ∈ Z (33)

where the coefficient A(0)
0 is calculated from the expression (33) for x = 0 and for

n = 0 is A(0)
0 = Eup(0,ω) = λ0.
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Analogously, for n = 1 (m = 0,m = 1), (Fig. 9b), a linear recursion is obtained
whose roots are

λ1 = eω/2; λ2 = eω

so the exponential monomials of the zero and the first degree can be expressed as
a linear combination of the functions from the vector space EUP1 in the following
way

e20ωξ =
∞

∑
k=−∞

e20(ω/2)k

A(0)
1

·Eup(ξ − k/2,ω) , k ∈ Z

e21ωξ =
∞

∑
k=−∞

e21(ω/2)k

A(1)
1

·Eup(ξ − k/2,ω) , k ∈ Z

where

A(0)
1 = e−ω/2 ·Eup(1/2,ω)+Eup(0,ω)+ eω/2 ·Eup(−1/2,ω)

A(1)
1 = e−ω ·Eup(1/2,ω)+Eup(0,ω)+ eω ·Eup(−1/2,ω)

Generally, the exponential function e2mωξ ,m = 0,1, . . . ,n,n ∈ N on the interval
∆ξn = 2−n can be accurately represented by a linear combination of 2n+1 basis
functions Eup(ξ ,ω) mutually displaced by ∆ξn in the form the Eup(ξ − k2−n,ω)
functions

e2mωξ =
∞

∑
k=−∞

eω·k·2m−n

A(m)
n

·Eup
(

ξ − k
2n ,ω

)
where

A(m)
n =

2n−1

∑
i=−(2n−1)

ei·ω·2m−n ·Eup
(
− i

2n ,ω

)
or in the real area of coordinate x:

e2mωx =
∞

∑
k=−∞

eω·∆x·k·2m−n

A(m)
n,x

·Eup
(

x− k
2n ,ω ·∆x

)
(34)

where

A(m)
n,x =

2n−1

∑
i=−(2n−1)

ei·ω·∆x·2m−n ·Eup
(
− i

2n ,ω ·∆x
)

(35)

So, a binary increase in the number of basis functions in the linear combination
on the interval of length 2−n allows the development of an exponential function of
degree m = 0,1, . . . ,n.
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Figure 9: Development of exponential monomials of 0, 1 and 2 degrees by

3.5 Example: Approximation of exponential polynomial function

The given function is f (x) = −230 · e0.6·x + 304 · e1.2·x− 65 · e2.4·x,x ∈ [0,1]. Ap-
proximation of the function is sought in the form of a linear combination of basis
functions shown in Fig. 9a), 9b) and 9c).

a) Using the collocation method and the associated frequency ωa = 0.6 for ∆xa = 1,
the system of equations and the coefficients Ci = 1, i = 0,1 are obtained:[

λ0 0
0 λ0

]
·
[
C0
C1

]
=

[
f (0)
f (1)

]
→

[
C0
C1

]
=

1
λ0
·
[

f (0)
f (1)

]
=

1
λ0

[
9

−126.278

]
(36)

Approximation of the function f (x) in the form f̃a(x) = C0 · Eup(x,ωa) +C1 ·
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Eup(x−1,ωa) is shown in Fig. 10.

b) For three collocation points, the distribution of basis functions is shown in Fig-
ure 9b). The length of a characteristic interval is ∆xb = ∆xa/2, and the associated
frequency is ωb = 2 ·ωa = 2 ·0.6= 1.2. For three collocation points and two bound-
aries, conditional equations have a similar coefficient matrix as in Eq. (17). The
obtained system is singular. The used vector space contains exponential polynomi-
als up to the first degree. The first and the last equation should be replaced with the
second derivative of EFup1 (x,ω), [Gotovac (1986); Gotovac and Kozulić (2002);
Rvachev and Rvachev (1979)], which are also contained in a vector space formed
by the basis functions Eup(x,ω). For ABF, Eup(x,ω) can be written as alternative
equations, similar to the approach described in Section 2.7 for ABF up(x)

I. e0ω −eω

II. e0ω −2eω e2ω

III. e0ω −3eω 3e2ω −e3ω

IV. e0ω −4eω 6e2ω −4e3ω e4ω

V. e0ω −5eω 10e2ω −10e3ω 5e4ω −5e5ω

(37)

When ω→ 0, the coefficients from (37) correspond to the coefficients in (18). The
resulting approximation f̃b (x) is shown in Fig. 10.

c) The linear combination of ABF of exponential type arranged according to Fig.
9c) accurately describes the exponential monomial of zero, first and second degree,
or an exponential polynomial created by their combination. Using ∆xc = ∆xb/2 =
∆xa/4, the frequency ωc = 21 ·ωb = 22 ·ωa, the collocation method and additional
equations from (37), the values of required coefficients are obtained.

The linear combination of basis functions shown in Fig. 9c) exactly describes the
given function f (x) as shown in Fig. 10.

The linear combination of basis functions arranged with displacement ∆x = h/4 ac-
curately approximates any algebraic polynomial up to the second degree as shown
in Section 2.7 because of the universality of the vector space. The same is valid for
the exponential ABF.

So, for ∆x = h/4 = 1/4 and frequency ω = 2.4, exponential monomials e(2.4/4)·x,
e(2.4/2)·x, e2.4·x and any of their linear combinations can be represented exactly.
Thus, the given function f (x) fully coincides with approximation f̃c(x) as shown in
Fig. 10.

3.6 The values of the function Eup(ξ ,ω) at the origin ξ = 0 and ξbr

By integrating the differential functional equation (25) in the range from ξ =−1 to
ξ = 0, [Gotovac (1986); Rvachev and Rvachev (1979)], the formula for numerically
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Figure 10: The function f (x) and its approximations f̃a(x), f̃b(x), f̃c(x)

calculating the value of the function Eup(ξ ,ω) at the origin is obtained:

Eup(0,ω) =
ω

2 · sh(ω/2)
·F (iω/2) = λ0 (38)

The expression for calculating the values of the function Eup(ξ ,ω) in the binary
rational points (5) is derived in Ref. [Rvachev and Rvachev (1979)]:

Eup
(
−1+ k ·2−m,ω

)
=

m

∑
p=0

αp ·F
(

i ·ω
2m+1−p

)
·

k

∑
r=1

D(m)
r · eω(2k−2r+1)/2m+1−p

m = 0,1, . . . ,N; p = 0, . . . ,m;k = 1,2,3 . . . ,2m+1; r = 1, . . . ,k

(39)

Coefficients D(m)
r are determined by the expressions (29) and (30), and the integral

operator αp derived in [Gotovac (1986); Rvachev and Rvachev (1979)] is deter-
mined by the following formula:

αp =
ω−m

∏
m
p=0,p6= j (2p−2 j)

, j = 0, . . . ,m; for m = 0→ α0 = 1

The member F
( i·ω

2m+1−p

)
in (39) represents the Fourier transforms of the character-

istic values of the variables:

F
(

iω
2 j+1

)
= λ0 ·

2 · sh(ω/2)
ω

·
j

∏
k=1

(
2 · sh(ω/2)

ω
· ω/2+ it/2k+1

sh(ω/2+ it/2k+1)

)
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In this way, with (39), values of the function Eup(ξ ,ω) in binary rational points
ξbr can be determined in a way that they depend only on the value of the function
Eup(ξ ,ω) at the origin ξ = 0 from expression (38).

For example, the values of the function Eup(ξ ,ω) at the binary rational points for
m = 1 are:

Eup
(
−1

2

)
=

e−ω/2

eω/2 +1
·λ0, Eup(0) = λ0, Eup

(
1
2

)
=

eω

eω/2 +1
·λ0

3.7 Values of the function Eup(ξ ,ω) and the nth order derivatives at an arbi-
trary point

The value of the function Eup(ξ ,ω) at an arbitrary point is determined by the
series of a special form that is constructed based on the fact that the development
of the function Eup(ξ ,ω) into a Taylor series at the binary rational points ξbr
contains exponential polynomials analogous to the function up(ξ ), which contains
algebraic polynomials:

y(ξ )=
∞

∑
k=0

(−1)p0+p1+...+pk+1 · pk ·eω·(p0+p1+...+pk+1)
k

∑
j=0

A jk

(aω

ω

) j
·y
(
−1+

1
2k− j

)
(40)

The values for y
(
−1+2−k+ j

)
are determined according to [Gotovac (1986);

Rvachev and Rvachev (1979)], whereas coefficients A jk are rational expressions
determined by:

A jk =
1

∏
j−1
i=0 (2i+1−1)

j

∑
m=0

(−1)m ·2m·(m−1)/2 ·
m−1

∏
i=0

2−i
(
2 j−2i

)
2i+1−1

·eω·2 j−m·(ξ+(2k−1)/2k)

If the arbitrary point is displayed in binary form ξ = p0, p1, . . . , pk, where p0, p1,
. . . , pk are the bits or digits 0 or 1 of the binary development of the coordinate ξ

value, then the accuracy of the function Eup(ξ ,ω) at an arbitrary point depends
on the accuracy of an electronic computer. For that level of accuracy, a very small
number of members in Eq. (40) are required.

It is understood that only the value at the origin λ0 = Eup(0,ω) must be calculated
numerically according to (38).

Using expressions (28)–(30) to (40), the expression for the nth order derivative of
the function Eup(ξ ,ω) at an arbitrary point is derived:

y(n)(ξ ) =
n

∑
i=0

ω
n−i ·D(i−1)

r ·2i·(i−1)/2 · y
(
2i ·ξ −2 · r+2i +1

)
·

i−1

∏
k=0

(
2n−k−1

)
2k+1−1
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where n is the derivation order D(−1)
r = 1 (by definition), whereas the coefficients

D(i)
r are defined by expressions (29) and (30), and r is an integer value defined by

r = FLOOR
[
(ξ +1) ·2i−1 +1

]
4 ABF Eup(x,ω) implementation

4.1 Basis functions distribution

An ABF of exponential type in relation to the algebraic basis functions contains the
parameter ω or, analogous to trigonometric functions, the frequency.

Vector space EUPn formed by ABF Eup(x,ω) with compact support supp Eup(x,
ω) = [−∆x0,∆x0] has certain similarities to the vector space of trigonometric func-
tions. Development of the unit value in both spaces is possible only in the case
ω0 = 0, where

ω ∈ {ωk} , k ∈ Z.

Function sinh(ω,x) = (eωx− e−ωx)/2 is composed of an exponential function with
positive and negative frequencies. Thus, the vector space that contains the function
sinh(ω,x) should also contain the basis functions with positive and negative fre-
quencies, as in Fig. 11b).

The odd indices are assigned to negative values of frequencies and even to posi-
tive ones. Approximation of a given function f (x), x ∈ [A,B], where the domain
is divided into n intervals x0, can be described by a linear combination of basis
functions Eup

(
x/
(
2k∆xk

)
− i/2k,ωk

)
mutually displaced per ∆xk = ∆x0/2k in the

form:

f (x) =
n∗2k+1−1

∑
i=1−2k

C(k)
i ·Eup

(
x

2k∆xk
− i

2k ,ωk

)
, k = 0,1,2, . . . (41)

If k is finite, the function f (x) is approximated so that from the selected initial value
x, the length of interval xk and the associated frequency ωk are determined.

Because the frequencies ωk, k = 0,1,2, . . . are unknown in advance, it is necessary
to choose a criterion and to construct an algorithm for the best frequency selection.

The achieved accuracy of approximation ε (the difference between the given func-
tion f (x) and approximation f̃ (x)) is compared with a given accuracy ε∗, according
to the following expression:

ε = ‖ f (x)− f̃ (x)‖ ≤ ε
∗
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Figure 11: Distributions of the basis functions: a) up(x) and b) Eup(x,ω1)

The numerical procedure can be realized in different ways. Regardless of the ap-
proach, a global system of equations according to (41) is formed. The approxima-
tion can be searched for by the chosen number of basis functions and the associated
frequency. Another way is based on the residuua method, in which a partial con-
tribution of a particular frequency to an entire approximation is solved. Hence,
a successive approximation of the difference between the given function and the
current sum of the approximations of the residuua functions is performed.

The distribution of basis functions Eup
( x

2·∆x −
i
2 ,±ω1

)
, i = −1,0,1,2,3 for fre-

quency ω1 =∓0.4 and the length of a characteristic interval ∆x1 = L/2 is shown in
Fig. 11b).

The basis functions are inclined to the right or to the left, depending on the sign of
the frequency ω1. If the value of the frequency tends to zero, the basis functions
become even and correspond to the algebraic ABF up

( x
2·∆x − i/2

)
, i =−1,0,1,2,3

on Fig. 11a).
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4.2 Approximation of the given exponential function eωx

Let the function be given on segment AB in the form f (x) = e10(x−1),x ∈ [0,1].
The function approximations are searched using two characteristic intervals x and
the basis functions distribution according to Fig. 11b). The given function has an
exponential character, and frequency ω has a value of 10 (only positive values of
frequencies).

Using the collocation method, coefficients Ci, i = −1,0,1,2,3 of linear combina-
tions of up

( x
2·∆x − i/2

)
and Eup

( x
2·∆x −

i
2 ,ω = 10

)
basis functions are calculated

and presented in Table 1.

Coefficients Ci with odd indices are equal to zero (see Table 1) because the corre-
sponding basis functions do not contribute to the approximation. The given func-
tion has only positive frequency, so basis functions with a negative frequency must
remain neutral so that the approximation is not spoiled. Approximation with the
algebraic basis functions has a known oscillating character, whereas approximation
obtained with exponential basis functions corresponds exactly to the given func-
tion.

Table 1: Coefficients of the linear combinations

Ci

i −1 0 1 2 3

Ci−Alg. 0.2433 0.0 −0.2433 0.5 1.2433
Ci−Exp. 0.0 0.0291 0.0 640.7983 0.0

In general, the function to be approximated can include a frequency that is not
known in advance by the sign or the value. Therefore, it is necessary to construct a
method for determining the frequency of the basis functions Eup(x,ω) that gives
the best approximation.

4.3 Determination of the best frequency

The approximation of the given function f (x) is searched using the collocation
method in the form of a linear combination of exponential basis functions that
contain an unknown frequency ω .

To determine the best frequency ω , it is necessary to calculate the eigenvalues
ωi, i = 1,2, . . . ,n of the system matrix. For example, for a given function f (x) =
−tgh((x−3/4)/0.02) ,x ∈ [0,4] and selected interval ∆x, five equations are ob-
tained, and the eigenvalues of the corresponding coefficient matrix are illustrated
on Fig. 13.
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Figure 12: Comparison of approximations with the given function using algebraic
and exponential basis functions with frequency ω = 10

Hence, to determine the frequency ω that gives the best approximation, in a certain
sense, appropriate additional criteria in the physical or some other sense, have to
be chosen.

We selected the criterion of the least squares method for deviation between the
given function and its approximation on each characteristic interval ∆x:

n−1

∑
k=0

∫ [
f (x)− f̃ (x)

]2dx = min (42)

where f (x) is the given function, f̃ (x) is an approximation of the function, and n is
the number of characteristic intervals ∆x in the domain AB.

Using Eq. (42), the frequencies ωi, i = 1, . . . ,5 are checked, and the one that gives
the smallest square deviations is selected.

In this paper, a less economical though simpler method is selected. Generally,
when the given function is not an algebraic polynomial or exponential function, the
frequency step ∆ω is selected, and starting from zero, the value of the last square
deviation of the approximation with respect to the given function is determined
according to (42).

The dependence between deviation and the frequency of the basis functions is
shown in Fig. 14. The presented dependence is similar in the approximations
of various functions. So, starting from zero, the deviation suddenly begins to rise
and decline rapidly, thus achieving the local minima.
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The absolute minimum, if not registered at ω = 0, is in the area of a very slight
change of the deviation square dependent on ω , as shown in Fig. 13. The linear
combination of basis functions Eup(x,ω) with a calculated frequency ω > 0 gen-
erally gives a better approximation than the analogous algebraic atomic functions.

If the given function f (x) is a polynomial P1(x), the algorithm for determining the
best frequency finds the value ω = 0 because the deviation square is then LSS≡ 0,
which corresponds to an absolute minimum.

Additionally, in the case of the exponential polynomials, e.g., f (x) = e10(x−1), the
best frequency ω = 10 is obtained by the proposed algorithm because LSS ≡ 0,
which determines the absolute minimum of the deviation square of the approxima-
tion f̃ (x) from the given function f (x).

4.4 Approximation on the uniform grid

The function f (x) = TANGH ((x−4/3)/0.02) ,x ∈ [0,4] is analysed. It is neces-
sary to find an approximation by the linear combination of algebraic ABFs in the
form of:

f̃ (x)alg =
2n+1

∑
i=−1

Ci ·up
(

x
2 ·∆x

− i
2

)
(43)

and exponential ABFs in the form:

f̃ (x)exp =
2n+1

∑
i=−1

Ci ·Eup
(

x
2 ·∆x

− i
2
,ωn

)
(44)

where n is the number of characteristic intervals on the length of the domain L =
4.0, and i is the counter of the basis functions and collocation points except bound-
ary points, which are double collocation points.
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The numerical experiments were performed for the five different interval lengths
∆x = L/n, where n = 16,32,64,128,256.

A comparison of the given function and its approximations according to Eq. (43)
is shown in Fig. 14 in columns a1)–a5).

In the first four variants, the approximation oscillations are extremely expressive
and are present even in the fifth variant for ∆x = L/256. Oscillations occur when
using any basis functions of the algebraic type.

An attempt is made to eliminate the negative effect of the algebraic functions us-
ing basis functions of exponential type. Columns b1)–b5) in Figure 14 show the
approximations according to (44) for the same resolutions as in columns a1)–a5).
An incomparably better approximation can be seen. However, for each variant, the
most appropriate frequency ω should be previously determined. The frequency ω

is the same for all basis functions in the linear combination for selected number of
intervals n according to (44).

According to the chosen criteria of least deviation squares between the approxima-
tion and the given function, the dependence between the deviation square and the
frequency is shown in columns c1)–c5).

The algorithm for finding the best frequency is set only on the non-negative fre-
quency values. If the frequency value is negative, it is controlled by the coefficients
of the linear combination.

The effect of the exponential basis functions frequency impact on the approxima-
tion is visible already at n = 8 in Fig. 14 b1) with respect to a1). The frequency is
directly related to the length of the interval ∆x, and in all terms, the product ∆x ·ω
appears.

The value of this product remains constant in all variants c1)–c5) and is approxi-
mately 2.243. In other words, it is sufficient to accurately calculate the frequen-
cy for the largest ∆x, and for the smaller values of ∆x, the frequency value is
ωk+1 =

∆xk
∆xk+1

·ωk, or in the case of diadic resolution increasing:

ωk+1 = 2k ·ω1, k = 0,1, . . .

4.5 Approximation by levels (Multilevel Approximation)

Another approach to obtain approximations of the given function is a multilevel
approach. We consider the function from the previous section.

In the zero step, the function approximation f̃0 (x) is subtracted from the given
function f (x) = f0(x), and the new function f1(x) is obtained. Fig. 15 b) compares
the function f1(x) with a prescribed accuracy, for example, ε =±0.02. If accuracy
is not satisfied, the approximation f̃1(x) of the function f1(x) is searched (see Fig.



Atomic Exponential Basis Function Eup(x,ω) - Development and Application 525

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_up(x)

Exact

a1)

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_up(x)

Exact

a2)

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_up(x)

Exact

a3)

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_up(x)

Exact

a4)

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_up(x)

Exact

a5)

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_Eup(x,ω)

Exact

b1)

n = 16
∆x = 1/4

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_Eup(x, ω)

Exact

b2)

n = 32
∆x = 1/8

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_Eup(x, ω)

Exact

b3)

n = 64
∆x = 1/16

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_Eup(x, ω)

Exact

b4)

n = 128
∆x = 1/32

x

f(
x
)

0 1 2 3 4
-2

-1

0

1

2

Aprox_Eup(x, ω)

Exact

b5)

n = 256
∆x = 1/64

ω
0 1 2 3 4 5

0

2

4

6

8

10

f(ω)

c1)

ω = 4.486
LSS = 0.9483962

ω
0 2 4 6 8 10

0

20

40

60

80

100

f(ω)

c2)

ω = 8.672
LSS = 0.6417805

ω
0 4 8 12 16 20

0

20

40

60

80

100

f(ω)

c3)

ω = 17.918
LSS = 0.15864

ω
0 8 16 24 32 40

0

20

40

60

80

100

f(ω)

c4)

ω = 35.821
LSS = 0.0552461

ω
0 16 32 48 64 80

0

20

40

60

80

100

f(ω)

c5)

ω = 71.64
LSS = 0.0802669

Figure 14: The approximations of the given function f (x): a1)–a5) by algebraic
ABFs; b1)–b5) by exponential ABFs; c1)–c5) finding the minimum of the devia-
tions square depending on the frequency ω



526 Copyright © 2016 Tech Science Press CMES, vol.111, no.6, pp.493-530, 2016

X
0 1 2 3 4

0

f (x)
5

∼
f (x)
5

f
(x

)
5

5
 ,
 f

(x
)

∼

-1

-0.5

0

0.5

1

f (x)0

f
(x

)
0

0
 ,

 f
(x

)
∼

f (x)0

∼

-1

-0.5

0

0.5

∼
f (x)
1

f (x)
1

f
(x

)
1

1
 ,
 f

(x
)

∼

0

0.5

f
(x

)
2

2
 ,
 f

(x
)

∼ ∼
f (x)
2

f (x)
2

0

∼
f (x)
3

f (x)
3

f
(x

)
3

3
 ,

 f
(x

)
∼

0

f (x)
4

∼
f (x)
4f

(x
)

4
4

 ,
 f

(x
)

∼

a)

b)

c)

d)

e)

f)

ω = 4.49

ω = 7.01

ω = 12.91

ω = 34.03

ω = 77.06

ω = 101.00

|ε|  = 0.02

Figure 15: Given function f (x), function approximation f̃ (x) and residuua f (x)−
f̃ (x) by levels a)–f)



Atomic Exponential Basis Function Eup(x,ω) - Development and Application 527

15 b)). Then, a comparison of the difference f1(x)− f̃1(x) and accuracy ε follows,
and the procedure is repeated until it reaches the requested accuracy, as shown in
Fig. 15 f).

The final approximation of the function f (x) is obtained as the sum of the individual
approximations at every level

f̃ (x) =
m

∑
k=0

f̃k(x), m ∈ N

where the individual approximation is in fact a linear combination of the basis
functions with corresponding frequency ωk determined according to the procedure
described in Section 4.3:

f̃k(x) =
2nk+1

∑
i=−1

Ci ·Eup
(

x
2 ·∆x

− i
2
,ωk

)
The starting grid n0 is chosen arbitrarily, and the next is twice as dense, i.e., n1 =
2 ·n0, or generally

nk = 2k ·n0; k = 0,1,2, . . .

For example, in Fig. 15, the initial grid n0 = 16 is used, and the corresponding
frequency ω0 = 4.486 is calculated.

In this multilevel approximation method, approximately twice as many basis func-
tions are needed than in the procedure using uniform grid described in Section 4.4
for the same accuracy of approximation.

However, this multilevel procedure is analogous to the procedure that is used in the
adaptive Fup collocation method [Gotovac, Andricevic and Gotovac (2007)]. In
fact, at higher levels, only collocation points at which the residuum is higher than
the prescribed accuracy are considered, whereas the other points do not have to be
taken into consideration. Fig. 15 shows that such a criterion leads to an adaptive
procedure, which saves CPU time and drastically reduces the number of collocation
points at higher levels. We leave the development of an adaptive procedure for
the presented Eup basis functions to future research in the development of new
non-stationary algorithms. Thus, in this section, each level is observed with all
collocation points as a non-adaptive algorithm.

5 Conclusion

In this paper, the current knowledge regarding mother ABF function up(x) is once
more synthesized. The approximation properties and expressions for the required
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mathematical operations are presented in a simpler, more understandable and user-
friendly way. Using this approach, the basic atomic basis function of exponential
type Eup(x,ω) is studied in detail [Gorškov, Kravčenko and Rvačev (1994)]. New
expressions for calculating the values of the function, its derivatives and, of particu-
lar importance, the rules (elements) for its practical use are derived. The procedure
for determining the frequency ω that gives the best approximation should especial-
ly be noted. The application of exponential ABF is shown in a few examples of
the function approximations. The numerical results show excellent approximation
properties of these basis functions, especially in the case of sharp gradient changes
of the given function. Future research includes further development of the expo-
nential ABF theory in the form of new EFup basis functions that will significantly
improve the approximation properties of the Eup functions in the same way that
algebraic Fup basis functions do for up functions. These more efficient exponen-
tial basis functions will be a basis for further development of the adaptive EFup
collocation method, which can be applied in non-stationary problem algorithms of,
e.g., mass and heat conduction [Gotovac, Andricevic and Gotovac (2007)].
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