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A Finite Element Procedure for Analysis of
Chemo-Mechanical Coupling Behavior of Hydrogels

Wei Wei1,2, Qingsheng Yang1,3

Abstract: Chemo-mechanical coupling behavior of materials is a transformation
process between mechanical and chemical energy. In this paper, based on the
coupled chemo-mechanical constitutive equations and governing equations during
isothermal process, the equivalent integral forms of chemo-mechanical coupling
governing equations and corresponding finite element procedure are obtained by
using Hamilton’s principle. An isoparametric plane element for chemo-mechanical
coupling is associated into ABAQUS finite element package through user element
subroutine UEL. The numerical examples exhibit that the ionic concentration varia-
tion can cause mechanical deformation and mechanical action can produce redistri-
bution of ionic concentration for hydrogels. It is proved that the present developed
chemo-mechanical coupling finite element procedure can be utilized to model the
coupling behavior of hydrogels effectively.

Keywords: Hydrogel; Chemo-mechanical coupling; Hamilton’s principle; Cou-
pled finite element method.

1 Introduction

The hydrogel is a kind of intelligent soft polymer materials generally composed of
crosslinked polymer network, solvent and ions, with physical properties of swelling
with water absorption, and dehydration shrinkage. Under the external field (such
as heat, electricity, magnetism, chemistry, light, etc), the hydrogel can exchange
energy and substance and produce a large mechanical response exhibiting obvious
multi-field coupling characteristics, and that is the thermo-electro-chemo-mechanical
coupling behavior.

According to the responses under different external environmental stimulus, hydro-
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gels can be divided into temperature-sensitive, pH-sensitive, electrical-sensitive,
bio-response and pressure-sensitive types, etc [Ullah, Othman, Javed, Ahmad, and
Akil (2015)]. Over the past decades, it has rapid development in fundamental
and applied research for hydrogels. Due to such characteristic behaviors, many
hydrogel-based networks have been designed and fabricated to meet the needs of
industrial and medical fields etc. At present, the hydrogels have been used in wide
fields, such as tissue engineering [Thankam and Muthu (2015); Nawrotek, Tylman,
Rudnicka, Balcerzak, and Kaminski (2016)], biological and food Engineering [Gre-
gorova, Saha, Kitano, and Saha (2015); Wu, Degner, and McClements (2014)], ac-
tuators and sensors [Rivero, Molina, Rivarola, and Barbero (2014); Ionov (2014)],
drug delivery [Li, Fan, Ma, Zhu, Luo, Liu, and Chen (2014); Sagiri, Singh, Ku-
lanthaivel, Banerjee, Basak, Bat-tachrya, and Pal (2015)], contact lenses [Maulvi,
Soni, and Shah (2015); Filipecki, Sitarz, Kocela, Kotynia, Jelen, Filipecka, and
Gaweda (2014)], packers in oilfields [Gu, Liu, Chai, Li, and Sun (2014); Tong-
wa and Bai (2014)], and wound dressings [Zheng, Xue, Wei, Li, Xiao, and Guan
(2014); Gonzalez, Ludueña, Ponce, and Alvarez (2014)].

Due to the wide applications of hydrogels, it is an important practical significance
to study their physical properties and multi-field coupling characteristics. The
phenomenological continuum mechanics is an effective way to study the coupled
problem. Grimshaw, Nussbaum, Grodzinsky, and Yarmush (1990) proposed an
electrochemical coupling equation to describe the swelling of a polymer dielec-
tric gel. De, Aluru, and Johnson (2002), De and Aluru (2004) employed electro-
chemo-mechanical model to develop equilibrium expansion and dynamic behav-
ior of the pH-responsive hydrogel. Kang, Dai, Shen, and Chen (2008) established
electro-chemo-mechanical coupling model and studied the dynamic behavior of the
swelling or shrinkage for the pH-sensitive gel. Wallmersperger and co-workers pre-
sented a coupled electro-chemo-mechanical equation and finite element method for
polyelectrolyte gels, and applied a fully coupled electro-chemo-mechanical mod-
el to analyze the effect of electrical and chemical stimulation on hydrogels, re-
spectively [Wallmersperger, Kröplin, and Gülch (2004); Wallmersperger and Ball-
hause (2008); Ballhause and Wallmersperger (2008)]. Li and co-workers developed
an electro-chemo-mechanical model with Poisson-Nernst-Planck (PNP) equations,
and studied the influences of the ionic strength in surrounding solution on the distri-
bution of the diffusive ions concentration and electric potential as well as the defor-
mation for the pH-stimulus-responsive hydrogel [Li, Ng, Yew, and Lam (2005); Li,
Ng, Yew, and Lam (2007); Li and Yew (2009)]. Additionally, Li (2009) published
a monograph on the fundamental theory modeling and numerical simulation of the
smart hydrogels, and systematically documented the response behaviour of the s-
mart hydrogels to various environmental stimuli. Yang and co-workers introduced
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the chemical effect into the free energy, to build thermo-electro-chemo-mechanical
coupled constitutive equations for hydrogels. The coupled finite element program
was presented to analyze chemo-mechanical coupling problems [Yang, Liu, and
Meng (2009); Yang, Qin, Ma, Lu, and Cui (2010)]. Yang, Ma, and Shang (2013)
analyzed chemo-mechanical coupling behavior of hydrogel composite beams by
using the general form of free energy density function for a neutral hydrogel.

In recent years, many studies aimed to develop a finite element method for large
deformation of hydrogels based on a nonlinear continuum theory. Hong, Zhao,
Zhou, and Suo (2008); Hong, Liu, and Suo (2009) formulated a theory of the
coupled mass transport and large deformation with the free-energy function and
implemented this approach in ABAQUS to analyze examples of swelling-induced
deformation, contact, and bifurcation in polymeric gels. Duda, Souza, and Fried
(2010) presented a theory about a mechanical deformation and a migration of a
chemical species by employing the principle of virtual power, to study the poly-
mer network swelling with the influences of mechanical and chemical interactions.
Marcombe, Cai, Hong, Zhao, Lapusta, and Suo (2010) developed a theory of con-
strained swelling for the pH-sensitive hydrogel and a network of polymers in equi-
librium with an aqueous solution and mechanical forces. Zalachas, Cai, Suo, and
Lapusta (2013) investigated the large and inhomogeneous deformation and creasing
instability by using the developed nonlinear field theory and finite element method
for pH-sensitive hydrogels. Lucantonio, Nardinocchi, and Teresi (2013) used the
finite element software package COMSOL to perform several numerical simula-
tions for transient swelling-induced large deformations in polymeric gels. Ding,
Liu, Hu, Swaddiwudhipong, and Yang (2013) studied inhomogeneous deformation
in the temperature-sensitive hydrogel with many meaningful numerical results us-
ing a user-supply subroutine in ABAQUS. Duan, Zhang, An, and Jiang (2013) and
Toh, Liu, Ng and Hong (2013) used the built-in thermo-mechanically coupled finite
elements to simulate the transient diffusion and swelling kinetics of polymeric gels
by adopting an analogy between diffusion and heat transfer in solids in ABAQUS.
Chester, Di Leo, and Anand (2015) summarized the theory in Chester and Anand
(2011) for fluid diffusion and large deformations of non-ionic elastomeric gels.
Several illustrative numerical simulations are applied to demonstrate the correct-
ness of the numerical implementation described in detail with ABAQUS software.
Bouklas, Landis, and Huang (2015) implemented a mixed finite element method in
ABAQUS by introducing a finite bulk modulus in the nonlinear continuum theory
proposed by Hong, Zhao, Zhou, and Suo (2008), with specific attention to the nu-
merical stability issues associated with the Ladyzhenskaya–Babuska–Brezzi (LBB)
condition for spatial discretization.

In this paper, starting from the laws of thermodynamics, by establishing a phe-
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nomenological free energy density function and introducing the definition of chem-
ical potential in classical physical chemistry, continuum mechanics approach is
developed to derive chemo-mechanical coupled constitutive equations and gov-
erning equations during isothermal process. By employing Hamilton’s principle,
the equivalent integral forms of chemo-mechanical governing equations and cor-
responding finite element equations are derived. To implement the finite element
calculation, a user element subroutine UEL in ABAQUS package is developed and
an isoparametric plane element for chemo-mechanical coupling behavior is pro-
grammed. Physical properties of hydrogels in chemo-mechanical coupling field
are analyzed by means of typical numerical examples.

2 Basic equations

2.1 Governing equations of the chemo-mechanical coupling problem

In this section, based on the laws of thermodynamics, the chemo-mechanical cou-
pled constitutive equations and governing equations during isothermal process are
summarized.

It is assumed that the medium (volume V , boundary Γ) is subjected to the chemical
and mechanical stimuli simultaneously, and therefore there exists a mutual cou-
pling effect between two fields. For example, the changes of ion concentration
can induce the osmotic pressure during the mixed diffusion process with ions and
mediums. The chemo-mechanical coupling problem needs to satisfy the gener-
al mass, momentum and energy conservation equations, and every physical field
should comply with their governing equations and boundary conditions.

The governing equation of mechanical field is

σi j, j + fi = ρ üi (in V ) (1)

The natural (stress) boundary condition and forced (displacement) boundary con-
dition are

σi jn j = ti (on Γt), ui = ūi (on Γu) (2)

The gradient equation of mechanical field is

εi j =
1
2
(ui, j +u j,i) (3)

where σi j is stress; εi j is strain; fi is unit volume force; ui is displacement; t̄i is the
applied surface force on the boundary; ūi is specified displacement on the boundary;
Γt is specified force boundary; and Γu is specified displacement boundary.
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In classical physical chemistry [Levine (2002)], the chemical potential is expressed

as µ = µ0+R∗T ln
c0 + c

c0
, where µ0 is the chemical potential in the reference state;

R∗ is the universal gas constant; T is the reference temperature; c0 is the ion con-
centration; and c is the increment of the ionic concentration. A partial derivative
with respect to concentration yields ∂ µ/∂c = R∗T/(c0 + c). For a small increment
of the concentration, we have c0 + c ≈ c0. Thus, the Fick’s second law describing
the non-steady diffusion process can be represented by

τ0ξi,i + µ̇ = 0 (in V ) (4)

where ξi is the diffusion flux of ions, and τ0 = R∗T/c0. The natural (chemical
flux) boundary condition and forced (ion concentration) boundary conditions for
chemical field are

ξini = ξ n (on Γξ ), c = c̄ (on Γc) (5)

where Γξ and Γc are the boundaries subjected to the ion flux and concentration,
respectively; ξ n is the given ion flux on the boundary Γξ ; and c̄ is the given concen-
tration increment on the boundary Γc. The gradient equation for chemical diffusion
is given by

ξi =−ϕi jc, j (6)

where ϕi j is the chemical diffusion coefficient of ions in medium.

According to the law of thermodynamics, and omitting the electrostatic effect in
the electrostatic field of the constituents, the differential form of the total internal
energy density composed of the elastic energy, the chemical energy and thermal
energy is formulated as Yang, Liu, and Meng (2009)

dŪ = T dS+σi jdεi j +
N

∑
α=1

µ
αdcα (7)

where T is temperature; S is entropy; and α denotes the number of ion species.

The classic form of Helmholtz free energy is defined by

A = Ū−T S (8)

According to Eqs. (7) and (8), the differential form of Helmholtz free energy in the
system in chemo-mechanical coupling field can be expressed as

dA = dŪ−T dS−SdT = σi jdεi j +
N

∑
α=1

µ
αdcα −SdT (9)
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where three terms on the right side represent the incremental form of energy con-
tribution in mechanical field, chemical field and temperature field, respectively.

Considering an isothermal process, namely the temperature increment dT = 0, the
canonical equations in chemo-mechanical coupling can be obtained as follows

σi j =
∂A
∂εi j

, µ
α =

N

∑
α=1

∂A
∂cα

(10)

Taking the small strain and the small concentration increment as the independent
variables, respectively, the Helmholtz free energy during the isothermal process can
be expanded by using Taylor’s series

A≈ A(ε0,c0)+

(
∂A
∂εi j

)
εi j +

N

∑
α=1

(
∂A
∂cα

)
cα +

1
2

(
∂ 2A

∂εi j∂εkl

)
εi jεkl

+
1
2

N

∑
α=1

N

∑
β=1

(
∂ 2A

∂cα∂cβ

)
cαcβ +

N

∑
α=1

(
∂ 2A

∂εi j∂cα

)
εi jcα

(11)

where ε0,c0 are the strain and the concentration in the initial state, respectively. It
is assumed that the material parameters can be defined as

ci jkl =

[
∂ 2A

∂εi j∂εkl

]
, s =

[
∂ 2A

∂cα∂cβ

]
, Rα

i j =−
[

∂ 2A
∂εi j∂cα

]
(12)

where ci jkl is the stiffness coefficient under constant concentration; s is the chemical
potential coefficient of ions under constant strain; and Rα

i j is the chemo-mechanical
coupling coefficient.

According to Eqs. (10)–(12), and omitting the quadratic terms, a linear constitutive
relation At the equilibrium state in coupled chemo-mechanical field can be given
as

σi j =
∂A
∂εi j

=

(
∂ 2A

∂εi j∂εkl

)
εkl +

N

∑
α=1

(
∂ 2A

∂εi j∂cα

)
cα = ci jklεkl−

N

∑
α=1

Rα
i jc

α (13)

µ
α =

N

∑
α=1

∂A
∂cα

=

(
∂ 2A

∂εi j∂cα

)
εi j +

N

∑
α,β=1

(
∂ 2A

∂cα∂cβ

)
cα =−Rα

i jεi j +
N

∑
α=1

scα (14)

It is noted that in classic physical chemistry, chemical potential and ionic concen-
tration have logarithmic relations. However, the present linear constitutive equa-
tion is still reasonable when the concentration transformation is even small. The
coupling coefficients in constitutive equations can be achieved through theoretical
derivation and regular mechanical experiments [Qin and Yang (2008)].
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For the medium bathed in a solution, only one of ions plays a dominant role, Eqs.
(13) and (14) can be simplified as

σi j = ci jklεkl−Ri jc (15)

µ =−Ri jεi j + sc (16)

Eqs. (15) and (16) are fully coupled equations in chemical and mechanical field,
respectively. The hydrogel is essentially a porous media containing interstitial fluid.
The deformation in porous media is controlled by complete stress corresponding to
external loading and superposition value in pore-fluid pressure. The effective stress
[Terzaghi, Peck, and Mesri (1996)] is

σ
′
i j = σi j− pδi j (17)

where σ ′i j is the effective stress; σi j is the complete stress; p is the equivalent
pressure in pore-fluid corresponding to σi j in the initial configuration; and δi j is
Kroneker delta.

Comparing the constitutive relation Eq. (15) with the effective stress Eq. (17), it
is found that pδi j = Ri jc is the pressure caused by ionic diffusion. The theory of
thermodynamics [Flory and Rehner (1943a,b)] considered that the pressure causing
swelling in hydrogels consists of three parts: mixing pressure in polymer and so-
lution, elastic deformation pressure of the chains in polymer network, and osmotic
pressure pion caused by the concentration difference of ions inside and outside the
colloid. This paper only considers the osmotic pressure caused by concentration d-
ifference of ions inside and outside the hydrogel derived from the Donnan osmotic
pressure. The osmotic pressure caused by concentration difference is

p = pion = R∗T c (18)

By using this equation, we can obtain the chemo-mechanical coupling coefficient
Ri j = R∗T δi j.

A partial derivative with respect to concentration for Eq. (16) leads to chemical
potential coefficient s = R∗T/(c0 + c). If the concentration undergoes a very small
increment, it can be approximately considered as s = R∗T/c0. Thus the chemo-
mechanical coupling constitutive equations during isothermal process can be writ-
ten as

σi j = ci jklεkl−R∗T cδi j (19)

µ =−R∗T εm +
R∗T
c0

c (20)

where εm is the volume strain in the system.



40 Copyright © 2016 Tech Science Press CMES, vol.112, no.1, pp.33-58, 2016

2.2 The hamilton’s principle and finite element procedure

The Hamilton’s principle can be used to derive governing equations and natural
boundary conditions for the fully chemo-mechanical coupled theory. The power
generated by the kinetic energy density [Mindlin (1974)] in the system is

K̇ =
1
2

∫
V

u̇iüiρdV (21)

and its variation is

δ

∫ t2

t1
K̇dt =

∫ t2

t1
δ K̇dt =

∫
V

{∫ t2

t1

dui

dt
d (δ u̇i)

dt

}
ρdV

=
∫

V

{
[u̇iδ u̇i]

t2
t1−

∫ t2

t1
üiδ u̇idt

}
ρdV

(22)

Because ui(t1) and ui(t2) are known, there is δui(t1) = δui(t2) = 0. Thus Eq. (22)
becomes

δ

∫ t2

t1
K̇dt =−

∫ t2

t1

∫
V

ρ üiδ u̇idV dt (23)

The total Hamilton’s action [Qian (1980)] is

Θ =
∫ t2

t1

{∫ t2

t1

(
K̇−U̇

)
dt
}

dt (24)

where U is total potential energy in the system. The rate of potential energy can be
read

U̇ =
∫

V
(ψ̇(εi j,c)+Pc− fiu̇i)dV −

∫
Γ

(t̄iu̇i− τ0ξ nc)dΓ (25)

where V is the volume in region; Γ is the surface in region; ψ is a generalized free
energy density in the system, δψ̇ = σi jδ ε̇i j + µ̇δc; and Pc is the chemical diffusion

power of ions, Pc =−
1
2

τ0ξic,i [Yang, Qin, Ma, Lu, and Cui (2010)].

According to Hamilton’s principle, we have

δΘ =
∫ t2

t1

{∫ t2

t1

(
δ K̇−δU̇

)
dt
}

dt

=
∫ t2

t1

{∫ t2

t1

[
0−
(∫

V
(δψ̇ +δPc)dV −

∫
V

fiδ u̇idV

−
∫

Γ

t̄iδ u̇idΓ+
∫

Γ

(τ0ξ̄nδc)dΓ

)]
dt
}

dt = 0

(26)
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That is

δΘ =
∫ t2

t1

{∫ t2

t1

[∫
V
−(σi jδ u̇i, j + µ̇δc− τ0ξiδc,i− fiδ u̇i)dV

+
∫

Γ

(t̄iδ u̇i− τ0ξ̄nδc)dΓ

]
dt
}

dt

=
∫ t2

t1

{∫ t2

t1

[∫
V

(
−Ci jklεklδ ε̇i j−R∗T cδ ε̇m−R∗T ε̇mδc− τ0ċδc

+τ0ξiδc,i)dV +
∫

V
fiδ u̇idV +

∫
Γ

t̄iδ u̇idΓ−
∫

Γ

τ0ξ̄nδcdΓ

]
dt
}

dt

(27)

Using Gauss theorem

−
∫

V
σi jδ u̇i, jdV =−

∫
Γ

σi jn jδ u̇idΓ +
∫

V
σi j, jδ u̇idV∫

V
ξiδc,idV =

∫
Γ

ξiniδcdΓ −
∫

V
ξi,iδcdV

(28)

we can obtain that

δΘ =
∫ t2

t1

{∫ t2

t1

[∫
V
((σi j, j + fi)δ u̇i +(−τ0ξi,i− µ̇)δc) dV

+
∫

Γ

(
(t̄i−σi jn j)δ u̇i + τ0

(
ξini− ξ̄n

)
δc
)
dΓ

]
dt
}

dt = 0
(29)

It is noted that δ u̇i, δc are independent variables, and the governing equations and
the natural boundary conditions can be obtained in the mechanical and chemical
field, respectively. In other words, Eq. (29) is equivalent to the governing Eqs. (1)
and (2) and the natural boundary conditions (4) and (5) completely. Eq. (29) is the
weighted residual form of the natural boundary conditions and governing equations
in two physical fields. This means that the present chemo-mechanical coupling
theory is completely closed.

The Eq. (27) can be written for the following form

δΘ =
∫ t2

t1
{δΘ1 +δΘ2}dt = 0 (30)

where

δΘ1 =
∫ t2

t1

[∫
V

(
−Ci jklεklδ ε̇i j +R∗T cδ ε̇m + fiδ u̇i

)
dV +

∫
Γ

t̄iδ u̇idΓ

]
dt = 0 (31)

δΘ2 =
∫ t2

t1

[∫
V
(R∗T ε̇mδc− τ0ċδc− τ0ϕi jc, jδc,i)dV −

∫
Γ

τ0ξ̄nδcdΓ

]
dt = 0 (32)
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Therefore, it can be obtained that∫
V

(
δ ε̇i jCi jklεkl−δ ε̇mR∗T c−δ u̇i fi

)
dV −

∫
Γ

δ u̇it̄idΓ = 0 (33)∫
V
(c0δcε̇m−δcċ−δc,iϕi jc, j)dV −

∫
Γ

δcξ̄ndΓ = 0 (34)

To produce the finite element equations, the displacement and concentration incre-
ment are interpolated by

uuu = NNNuuuuuueee, ccc = NNNcccccceee (35)

where NNNuuu,NNNc are the shape functions of displacement and concentration, respec-
tively; and uuueee,ccceee are the nodal displacement and concentration vectors, respective-
ly.

uuueee = (u1v1 . . .unvn)
T , ccceee = (c1 . . .cn)

T (36)

where superscript T is the vector transpose. Substituting discrete forms of the
displacement and concentration increment, we can get

E

∑
e=1

∫
V
(δ u̇uueeeT BBBT

uuuCCCBBBuuuuuueee−R∗T δ u̇uueeeT BBBT
mNNNcccccceee−δ u̇uueeeT NNNT

uuu fff )dV

−
E

∑
e=1

∫
Γ

δ u̇uueeeT NNNT
uuu tttdΓ = 0 (37)

E

∑
e=1

∫
V
(c0δccceeeT NNNT

ccc BBBmu̇uueee−δccceeeT NNNT
ccc NNNcccċcceee−δccceeeT BBBT

ccc ϕϕϕBBBcccccceee)dV

−
E

∑
e=1

∫
Γ

δccceeeT NNNT
ccc ξξξ nnndΓ = 0 (38)

Where CCC is the elastic constant matrix; BBBuuu is the mechanical strain matrix; BBBm is
the strain matrix of volume strain; BBBc is the strain matrix of concentration gradient;
and ϕϕϕ is the coefficient matrix of chemical diffusion. The independence of δ u̇uueeeT

and δccceeeT yields

E

∑
e=1

∫
V

BBBT
uuuCCCBBBuuudV uuueee−R∗T

E

∑
e=1

∫
V

BBBT
mNNNcccdV ccceee =

E

∑
e=1

∫
V

NNNT
uuu fff dV +

E

∑
e=1

∫
Γ

NNNT
uuu tttdΓ

(39)

c0

E

∑
e=1

∫
V

NNNT
ccc BBBmdV u̇uueee−

E

∑
e=1

∫
V

NNNT
ccc NNNcccdV ċcceee−

E

∑
e=1

∫
V

BBBT
ccc ϕϕϕBBBcccdV ccceee =

E

∑
e=1

∫
Γ

NNNT
ccc ξξξ nnndΓ

(40)
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Thus, the finite element equations of chemo-mechanical coupling can be get

KKKsuuueee−R∗T MMMccceee = FFFs (41)

c0MMMTu̇uueee−XXXċcceee−KKKcccceee = FFFc (42)

Where

KKKs =
E

∑
e=1

∫
V

BBBT
uuuCCCBBBuuudV , MMM =

E

∑
e=1

∫
V

BBBT
mNNNcccdV , MMMT =

E

∑
e=1

∫
V

NNNT
ccc BBBmdV

FFFs =
E

∑
e=1

∫
V

NNNT
uuu fff dV +

E

∑
e=1

∫
Γ

NNNT
uuutttdΓ , XXX =

E

∑
e=1

∫
V

NNNT
ccc NNNcccdV

KKKccc =
E

∑
e=1

∫
V

BBBT
ccc ϕϕϕBBBcccdV , FFFc =

E

∑
e=1

∫
Γ

NT
c ξξξ nnndΓ

(43)

A linear difference method can be performed in the time domain. In ∆t = tn+1− tn,
the linear interpolations are

u̇uueee =
∂uuue

∂ t
=

uuue
nnn+1−uuue

nnn

∆ttt
, ċcceee =

∂ccceee

∂ ttt
=

ccceee
nnn+1− ccce

nnn

∆ttt
(44)

Applying the formulas of ue = θue
n+1 +(1− θ)ue

n and ce = θce
n+1 +(1− θ)ce

n in
which θ is the interpolation parameter, substitution of equations above into E-
qs. (41) and (42) leads to

KKKs
[
θue

n+1 +(1−θ)ue
n
]
−R∗T MMM

[
θccce

n+1 +(1−θ)ccce
n
]
= FFFs (45)

c0MMMT ue
n+1−ue

n

∆t
−XXX

ce
n+1− ce

n

∆t
−KKKc

[
θccce

n+1 +(1−θ)ccce
n
]
= FFFc (46)

When θ = 1, the fully implicit method can be used to produce relatively smooth
results, and not to result in shock phenomena [Smith and Griffths (2003)]. It is
concluded that(

KKKs −R∗T MMM
c0MMMT −XXX−KKKc∆t

){
∆uuu
∆ccc

}
=

{
−KKKsssue

n +R∗T Mce
n +FFFs

∆tKKKcccce
n +∆tFFFc

}
(47)

The matrix form can be written as(
KKKuuuuuu KKKuuuccc

KKKcccuuu KKKcccccc

){
∆uuu
∆ccc

}
=

{
−KKKsssue

n +R∗T Mce
n +FFFs

∆tKKKcccce
n +∆tFFFc

}
t

(48)

where

KKKuu =
E

∑
e=1

∫
V

BBBT
uuuCCCBBBuuudV (49)
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KKKuc =−R∗T
E

∑
e=1

∫
V

BBBT
mmmNNNcccdV (50)

KKKcu = c0

E

∑
e=1

∫
V

NNNT
c BBBmmmdV (51)

KKKcc =−
E

∑
e=1

∫
V

NNNT
ccc NNNcccdV −∆t

E

∑
e=1

∫
V

BBBT
ccc ϕϕϕBBBcccdV (52)

3 The verification and application of the user element subroutine UEL

The hydrogel is really a porous medium composed of the solid skeleton and pore-
fluid. The structure of the applicable hydrogel is relatively complex, and nonunifor-
m deformation behavior will be produced under the chemo-mechanical coupling.
Numerical methods are widely used for solving coupled chemo-mechanical prob-
lems for hydrogels owing to great difficulties to obtain analytical solutions.

To implement the finite element equations derived, the user element subroutine
UEL is developed by using the software ABAQUS, and an isoparametric plane
eight-node element for chemo-mechanical coupling is programmed. Here a few
examples can be applied to verify the accuracy of the user element subroutine UEL
programmed.
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50 mm

Figure 1: Schematic of the model.

3.1 Example 1

As a first example, there is a 20× 50 (mm)2 hydrogel plane in which BC boundary
is constrained and AB boundary is contact with the solution as shown in Fig. 1.
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The material parameters of the hydrogel are listed in Table 1 [Loret, Simoes, and
FMF (2005)]. The initial concentration of the hydrogel is c0 = 250 mol/L. Three
cases are studied here. Case 1: a uniform force q = 1 × 10−4 N/mm is applied
on the left side AB; Case 2: a solution concentration cw = 500 mol/L is applied
on the right side CD; Case 3: the uniform force q = 1 × 10−4 N/mm on the left
side AB and the concentration cw = 500 mol/L on the right side CD are applied
simultaneously.

Table 1: Material parameters of the hydrogel plane.

Parameter Value
Young’s modulus E 1.08 MPa

Poisson’s ratio v 0.1
Diffusion coefficient D 4.9E-10 m2/s

Atmospheric constant R∗ 8.314 J/(mol · K)
Absolute temperature T 298 K

As seen from Figs. 2 and 3, the concentration at points B and G in Fig. 2 and the
concentration at points D and M in Fig. 3 increases quickly during the initial time
in coupling state, respectively, and then the increasing trend of the concentration
slows down gradually. After the time t = 6000 s, concentration values do not
change, which proves that the whole system reaches the force equilibrium state and
the diffusion equilibrium state at t = 6000 s.
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Figure 2: The concentration at AB side
in coupling state versus time.
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Figure 3: The concentration at CD side
in coupling state versus time.

Furthermore, the concentration at points E, F and A in Fig. 2 and the concentration
at points H, N and C in Fig. 3 decreases quickly in coupling state, respectively, and
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then the decreasing trend of the concentration gradually slows down too. However,
the concentration eventually changes to a constant value after the equilibrium state.
At the equilibrium state, the maximum and minimum of the concentration on the
left side AB lie in point B and point A as shown in Fig. 2, respectively. Besides, the
maximum and minimum of the concentration on the right side CD locate in point
D and point C in Fig. 3, respectively. Thus, it is observed that the variation of the
concentration is different between the upper and lower parts of plane because of
the constraint effect on the bottom side BC. At the equilibrium state, the point of
maximum concentration is located in the lower left corner point B, and the point
of minimum concentration is located in the lower right corner point C in the whole
plate.

Therefore, the variation of the concentration versus time is dissimilar in different
sample positions. There exist various points with increasing and decreasing con-
centration, respectively. The diffusion phenomenon of the external concentration
can lead to concentration redistribution inside the whole plane. If somewhere the
concentration increases, inevitably the concentration decreases in another position
during which the mechanical energy and chemical energy can be transformed into
each other. That is to say, a new balance state would be reached gradually with
increase of time.

As seen from Figs. 4 and 5, the variation of the concentration at each point on AB
and CD sides is dissimilar in three cases. Yet, concentration values in coupling
state lie between those in two other states, which confirms the chemo-mechanical
coupling behavior obviously. Additionally, it is shown that physical effective prop-
erties are changed due to the chemo-mechanical coupling in the hydrogel plate,
which influences the behaviors of diffusion and deformation simultaneously.
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Figure 4: The concentration at AB side
in three cases side.
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three cases.
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(a) (b) (c) (d)

Figure 6: Deformations of the hydrogel plane at the equilibrium state in three cases.
(a) Undeformed mesh in t = 0 s; (b) Deformed mesh with uniform force q on the
left side AB only; (c) Deformed mesh with uniform force q and concentration cw

simultaneously; (d) Deformed mesh with concentration cw on the right side CD
only.

Fig. 6(a) shows the undeformed gridding mesh of the hydrogel plane with con-
straint conditions at the initial time in Abaqus software. By the way, every subfig-
ure (a) for all figures below in this paper represents the initial undeformed gridding
mesh with constraint conditions, respectively. In Fig. 6(b)–(d), the invariant black
gridding lines in each subfigure indicate the original reference body, which is sim-
ilar to the following figures in this paper. The hydrogel plane presents coupled
deformation when concentration and force are applied simultaneously in Fig. 6(c),
which coincides with the literature in Wallmersperger,

Wallmersperger, Kröplin, and Gülch (2004). As seen from the example, there exists
obvious coupling phenomena in chemical and mechanical field under the combina-
tion of force and concentration in hydrogels. Changes of concentration can cause
mechanical deformation of the medium, and mechanical stimulations can lead to
concentration redistribution too.

3.2 Example 2

Let us consider the second example. As shown in Fig. 7, there is a simply sup-
ported rectangular hydrogel bar in its middle whose upper side is contact with the
solution. The values of material parameters for the list {E,R∗,T,ν} in our simula-
tion for the transient swelling problem are taken from the Table 1 in example 1, and
to that list we replace the value {D} for simulation of the transient response. It is
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assumed that the initial concentration in hydrogel is c0 = 250 mol/L, and the exter-
nal concentration is considered as cw = 600 mol/L. In addition, we have chosen a
value D = 6.749× 10−10 m2/s, with the length BC = 20 mm, and the height AB =
0.5 mm described in the literature in Lucantonio, Nardinocchi, and Teresi (2013).

0
c

wc
A

B C

D

20 mm

0.5 mm

Figure 7: Schematic of the rectangular hydrogel bar.

Fig. 8(a)–(d) shows the swelling-induced bending at different times. As time
goes on, diffusion will be conducted from a high concentration to a low concen-
tration. The hydrogel bar is absorbed slowly inducing a differential volume expan-
sion which bends downward towards a maximum curvature in subfigure (b). Then,
the bar tends to recover its original configuration, and it slowly returns back in
subfigure (c). Finally,

(a) t = 0 s (b) t = 1000 s

(c) t = 2500 s (d) t = 4000 s

Figure 8: Deformations of the hydrogel bar at different times.

when the time t = 4000 s, the system reaches the equilibrium state. Then, a new
straight and steady configuration is reached in subfigure (d). The extent to swelling
is greater than the configuration in the initial state obviously. It is illustrated that
there exactly exists chemo-mechanical coupling process in the rectangular hydro-
gel bar. The deformation process is consistent with the literature in Lucantonio,
Nardinocchi, and Teresi (2013).

3.3 Example 3

Hydrogels have a significant advantage over conventional microfluidic devices ow-
ing to their ability to undergo abrupt volume changes in response to the surrounding
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environment without the requirement of an external power source. In a variety of
microfluidic devices in engineering fields, we can utilize chemo-mechanical cou-
pling characteristics to design the hydrogel valve. By changing the concentration,
the swelling degree of the hydrogel can be used to adjust the opening and closing
of flow in the hydrogel valve.

The third example is considered as shown in Fig. 9. There is a rectangular hydrogel
plate in which AB, AD, and CD sides are constrained, respectively, and BC side
is contact with the solution. The concentration of external solution is cw = 500
mol/L, and the concentration inside the hydrogel plate is c0 = 200 mol/L. Hydrogel
parameters are shown in Table 1.
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w
c

20 mm

Figure 9: Schematic of the hydrogel valve.

(a) t = 0 s (b) t = 1200 s

(c) t = 2500 s (d) t = 4800 s

Figure 10: Deformations of the hydrogel valve at different times.

As shown in Fig. 10(a)–(d), because the solution concentration cw is greater than
c0, diffusion will be conducted from a high concentration to a low concentration.
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As time goes on, the extent to absorption of the solution on BC side increases
gradually so as to result in the greater expansion degree. When the time t = 4800
s, the system reaches the equilibrium state, as shown in subfigure (d). According to
the reversible deformation for hydrogels, this device can be designed as a hydrogel
valve, which was shown to be in agreement with the literature in Romero, Dario
Arrua, Alvarez Igarzabal, and Hilder (2013).

3.4 Example 4

Next, the fourth example is considered as shown in Fig. 11, with a free expansion
square hydrogel plate whose four sides are contact with the solution, respectively.
We assume that the initial concentration in hydrogel is c0 = 300 mol/L, and cw =
600 mol/L for external concentration. Moreover, the values of material parameters
for the list {E,ν ,R∗,T} are taken from the Table 1. We have selected a value D =
5 × 10−9 m2/s, and the side length in initial time is taken as 20 mm shown in the
literature from Chester and Anand (2011).
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Figure 11: Schematic of the square hydrogel plate.

Fig. 12 shows contours of the hydrogel plate after a few different times: (a) 0 s; (b)
1000 s; (c) 2100 s; and (d) 3200 s. As time progresses, the initially square specimen
is no longer square-this is because of the faster swelling near the corners due to the
enhanced fluid flux from the two edges. Finally, the system reaches the equilibrium
state in the time t = 3200 s, and then the square hydrogel plate turns into a swelling
square plate again whose configuration is bigger than original configuration in ini-
tial time. The course of deformation is consistent with the literature in Chester and
Anand (2011).
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(a) t = 0 s (b) t = 1000 s

(c) t = 2100 s (d) t = 3200 s

Figure 12: Deformations of the hydrogel square plate at different times.

3.5 Example 5

In engineering fields, many functional components are needed to creat microchan-
nels for local flow regulation in microfluidic systems. Here, we can design a hy-
drogel groove channel to implement the adjustment of local flow. By changing the
concentration, the flow inside the groove can be controlled by the extent of expan-
sion or contraction of the hydrogel.

As a final example, we consider a hydrogel groove shown in Fig. 13. The solu-
tion concentration inside the hydrogel is c0 = 200 mol/L, and the concentration in
groove is considered as cw = 550 mol/L. Hydrogel parameters are shown in Table 1.
As shown in Fig. 14(a)–(d), when cw is greater than c0, due to the concentration
gradient between the external solution and the internal solution, diffusion will be
proceeded from a high concentration to a low concentration. The greater extent to
solution absorption on inner sides, the greater the expansion degree is. When t =
4500 s, the system reaches the equilibrium state. By changing the concentration
value the hydrogel groove could realize expansion and recovery deformations so as
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Figure 13: Schematic of the hydrogel groove.

(a) t = 0 s (b) t = 1300 s

(c) t = 2800 s (d) t = 4500 s

Figure 14: Deformations of the hydrogel groove at different times.

to adjust the flow inside the groove meantime.

Thus, we can clearly confirm the correctness and accuracy of the user element sub-
routine UEL programmed by representative numerical examples. In the meantime,
with the benefit of articles [Dong, El-Gizawy, Juhany, and Atluri (2014a,b)], the
locking phenomenon of lowest order isoparametric elements are effectively avoid-
ed, which greatly overcomes the shortcomings of mesh distortion, while maintain-
ing both efficiency and generalization of the chemo-mechanical element devel-
oped. Moreover, it is illustrated that the theory of chemo-mechanical coupling
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proposed and the application of finite element method are greatly convincible.

4 Conclusions

In this paper, starting from the laws of thermodynamics and the definition of the
chemical potential, continuum mechanics approach is developed to derive chemo-
mechanical coupled constitutive equations and governing equations during isother-
mal process. With the Hamilton’s principle, the equivalent integral forms of chemo-
mechanical governing equations and corresponding finite element equations can
be derived in chemo-mechanical coupling system. The closeness of the chemo-
mechanical coupling theory and mutual coupling effect between chemical system
and mechanical system are validated.

By using the user element subroutine UEL in ABAQUS FE package, several numer-
ical examples of chemo-mechanical coupling behavior are analyzed in hydrogels
under different boundary conditions. It is proved that the changes of concentration
can cause shape deformation of the hydrogel, and mechanical effect can also induce
concentration redistribution. The chemo-mechanical coupling process is actually a
process during which the mechanical energy and the chemical energy can be con-
verted to one another. At equilibrium state, the mechanical energy and the chemical
energy achieve an overall balance with each other. In addition, the detailed discus-
sions on the numerical examples validate the rationality and effectiveness of the
present theory and method.

Although the behavior of deformation has small elastic properties with present the-
ory, the deformation results and processes are similar to the typical examples in sev-
eral publications related to the numerical implementation with the finite deforma-
tion theory. Consequently, we can provide a valuable enrichment and supplement
which can assist in the exploration and characterization in research methodology
applicable to more general physical and mechanical problems for hydrogels. Next,
by complementing and having an even deeper understanding of the knowledge of
present theory, hopefully our goal is to enhance present theory to areas of the finite
deformation theory, which is the research’s direction.
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