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Optimization of Nonlinear Vibration Characteristics for Seismic 

Isolation Rubber 

A. Takahashi1, T. Shibata2, K. Motoyama3 and K. Misaji4 

Abstract: A method for reducing the damage to a structure caused by an earthquake 

namely, using laminated rubber for seismic isolation is proposed, and the vibration 

characteristics of the rubber (which minimizes the seismic response of the structure 

during an earthquake) is optimized. A method called “Equivalent Linear System using 

Restoring Force Model of Power Function Type” (PFT-ELS) is applied to nonlinear 

vibration analysis of the rubber. In that analysis, a building with 15 layers of the laminated 

rubber is modeled. The seismic response of the building is analyzed, and the usefulness of the 

laminated rubber is demonstrated by comparing the seismic responses in the cases with 

and without the laminated rubber. In addition, the hysteresis restoring-force characteristic 

of the laminated rubber, which minimizes the seismic response of the building, was 

optimized by using a genetic algorithm (GA). Based on these results, the optimum 

restoring-force characteristic for different earthquakes was determined. As a result, it was 

clarified that the developed optimization method can determine the vibration characteristics of 

the laminated rubber for minimizing the damage to the structure in the design phase. 

Keywords: Seismic-isolation, laminated rubber, high-rise-building structure, PFT-ELS, 

seismic-response analysis, long-period earthquake. 

1 Introduction 

Seismic-isolation laminated rubber is used as a means of suppressing damage to 

structures caused by earthquakes. Placed between the ground and a building structure, it 

absorbs seismic energy by flexibly deforming in the horizontal direction. Seismic-

isolation laminated rubber has a characteristic called a “non-linear restoring force” 

(which depends on displacement amplitude), and comprehending the dynamic response 

reflected in that characteristic is a vital factor in the design of the rubber. Moreover, when 

designing a structure with seismic-isolation laminated rubber, the designer usually selects 

one rubber from existing rubbers provided by rubber manufacturers in consideration of 
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the kind of structure and its earthquake resistance. If the restoring-force characteristic of 

the selected rubber could be optimized, and thereby minimize the seismic response of the 

structure, it would make designing the rubber much easier.  

In the present study, a method called PFT-ELS (Equivalent Linear System using Restoring 

Force Model of Power Function Type) is used for analyzing the non-linear oscillation of 

seismic isolation laminated rubber. PFT-ELS has been used for calculating approximate 

responses of various non-linear-vibration systems [Kazuhito (1994), Koichi (1995), 

Koichi et al. (1996)]. By applying PFT-ELS to seismic-isolation laminated rubber, a 15-

layer model using that rubber is constructed. After that, the restoring-force characteristic 

of the rubber (which minimizes the seismic response of the structure) is optimized by 

using a generic algorithm (GA). In this manner, it is possible to design the rubber so that 

it minimizes the damage to a structure due to an earthquake.  

On the basis of these results, the optimum solution for the restoring-force characteristic 

during different earthquakes can be considered, and the effectiveness and usability of the 

optimization method is demonstrated. As a result, the vibration characteristics of the 

laminated rubber that minimize damage to a building were revealed by using the 

developed optimization method during the design stage. As examples of earthquakes, 

ones that occurred in El Centro, California, USA in 1940 and Hachinohe, Aomori 

prefecture, Japan in 1968 were used. 

2 Analysis method 

2.1  Equivalent Linear System using Restoring Force Model of Power Function Type 

(PFT-ELS) Method 

The analysis method used obtains a bone curve and area from a hysteresis restoring-force 

curve that was changed under displacement amplitude, creates a restoring force model of 

power function type (PFT-RFM, hereafter) equivalent to those values, and obtains a 

damping coefficient and dynamic spring constant of a seismic-isolation laminated rubber.  

In general, a single-degree-of-freedom system affected by an involuntary external force 

(acceleration y ) is expressed in terms of mass of a mass m, displacement x, and restoring 

force  xf  as the following equation: 

ymxfxm   )(                                                                                                  (1) 

Making this equation dimensionless gives the following equation: 
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where  XF  is dimensionless restoring force, 
sx  and 

sF  are displacement and restoring 

force under linear limits, 
s  is inherent angular frequency under linear limits, and 

0x  is 

displacement amplitude. The following equation is obtained by replacing the hysteresis-
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vibration system in Equation (2) with an equivalent-linear-vibration system: 

2

2

2

2

2
 d

Yd
XK

d

dX
H

d

Xd
eqeq                                                                             (3) 

where equivalent damping coefficient 
eqH  and equivalent spring constant 

eqK  are given 

as  
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where )( 0XG  is the area enclosed by the hysteresis loop with respect to the amplitude of 

displacement 
0X , )(XR  represents a hysteresis loop (sum curve) formed by an ascending 

branch and a descending branch for each angular displacement, and )(XP  is given as 

22

0 XXX  .  

In this case, as a basic hysteresis-loop model for calculating )( 0XG  and )(XR , a soft-

spring-type PFT-RFM (Fig. 1), which has a similarly shaped hysteresis loop to that of 

seismic isolation laminated rubber, is used. The basic equations for the soft spring type 

are given as follows. 
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Figure 1: Restoring- force model of with power function model (soft- spring type) 
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With regard to this restoring-force model, the area enclosed by the hysteresis loop )( 0XG  is given 

as 

1
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To find shape parameters a  and k  of the PFT-RFM in Equations (6), (7) and (8), 

vibration characteristics of seismic isolation laminated rubber are incorporated in the 

basic hysteresis-loop model under conditions (I) and (II) as follows:  

(I) The area enclosed by the hysteresis loop obtained from vibration tests and the area 

enclosed by the hysteresis loop given by the PFT-RFM were equalized. 

(II) The bone curve obtained by linking the peaks of the hysteresis loops obtained from 

the vibration tests was matched to the bone curve given by the PFT-RFM. 

The areas and peaks of the hysteresis loops obtained from the vibration tests are 

approximated by the least-squares method. By finding area 
0G  and peak 

0F  obtained from 

the functions, shape parameters a  and k  are obtained from the following equations. 
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That is, if the area of the hysteresis loop and bone curve is functionalized in terms of 

displacement amplitude 0X , [object] can be replaced with the PFT-RFM using  0X  and 

 0Xk  given by Equations (10) and (11). Therefore,  0XG  and  XR  in Equations (4) 

and (5) can be calculated, and equivalent damping coefficient 
eqH  and equivalent spring 

constant 
eqK  of the rubber are given as follows: 
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Substituting Equations (12) and (13) into Equations (14) and (15) makes it possible to 

calculate displacement amplitude 0x , non-linear damping coefficient  0xC , and dynamic 

spring constant  0xK  of the rubber. 
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Using  0xC  and  0xK , the equation of motion in the case that an involuntary external 

force is applied to a single-degree-of-freedom system is given as 

ymxxKxxCxm   )()( 00                                                                        (16) 
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Solving Equation (16) (displacement amplitude x0) by determining  0xC  and  0xK  for 

each hysteresis loop is known as the “equivalent-linear-system analytical method” using 

the PFT-RFM. 

Solving the above equation enables analysis of response in connection with systems 

possessing damping and spring properties depending on amplitude of displacement. This 

is known as the analytical method of equivalent linear system. 

2.2  Modeling of a High-rise Building Incorporating Seismic-isolation Rubber 

A high-rise (15-storey) building incorporating seismic isolation rubber is expressed as a 

16-degree-of-freedom spring-mass model. The model is shown in Fig. 2, and the 

specifications of the high-rise building are listed in Table 1 [The Architectural Institute of 

Japan (1989)]. In the figure, im  is the mass of the ith layer, ic  is the damping coefficient 

of the ith layer, ik  is the spring coefficient of the ith layer, bm  is the mass of a 

seismically isolated layer, bC  is the damping coefficient of the seismically isolated layer, 

and bK  is the spring coefficient of the seismically isolated layer. bC  and bK  are 

calculated by the PFT-ELS method. 

The equations of motion can be expressed by the following equation when an external 

force (acceleration y ) is applied to 16 degree of freedom system. 
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3 Seismic-isolation Laminated Rubber 

The laminated rubber used in this study has high damping coefficient, and its 

specifications are listed in Table 2. While under a vertical load, the rubber was deformed 

in the horizontal direction (i.e., shear deformation), and the static shear load was 

measured. The hysteresis restoring force loops given by these measurements are shown in 

Fig. 3. Using the mass of a high-rise building and the recommended long-term axial force 

to be applied to the laminated rubber, the PFT-RFM was applied to six types of laminated 

rubbers. 
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Table1: Specifications of high-rise building 

15th layer

14th layer

2nd layer

1st layer

15m

・・・

1515, kc

14m

1414 , kc

2m

22 , kc

1m

11, kc

bb KC ,

bm
Isolated 

layer

 

Figure 2: Schematic diagram of high-rise building structure 

 
Mass  

(×103 kg) 

Damping 

coefficient  

(kN･s / m) 

Spring coefficient  

(kN / m) 

15th Layer 712.4 10168.0 1293200.0 

14th Layer 745.1 9575.0 1217800.0 

13th Layer 749.8 11888.0 1512000.0 

12th Layer 752.5 12145.0 1544600.0 

11th Layer 755.3 12164.0 1547000.0 

10th Layer 760.0 12269.0 1560300.0 

9th Layer 762.7 12538.0 1594600.0 

8th Layer 770.2 12712.0 1616700.0 

7th Layer 770.2 12897.0 1640200.0 

6th Layer 772.9 13314.0 1693300.0 

5th Layer 775.7 13282.0 1689200.0 

4th Layer 775.7 13622.0 1732400.0 

3rd Layer 778.4 14199.0 1805800.0 

2nd Layer 781.2 17863.0 2271800.0 

1st Layer 781.2 44093.0 5607700.0 

Isolated layer 986.8 bC  bK  
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3.1  Functionalization 

The areas and peaks of the loops necessary to create the PFT-RFM were calculated, from 

the hysteresis restoring-force loops of the laminated rubber (Figure 3). The bone curve 

obtained from each peak and the area enclosed by the hysteresis loop were made dimensionless 

and approximated as functions by the least-squares method. The approximated functions for 

the area and bone curve, which depend on displacement amplitude X0, are shown in Table 

3. In this manner, shape parameters α and k of the PFT-RFM are obtained from Equations 

(10) and (11). Moreover, the damping coefficient and spring constant of the rubbers can 

be calculated from Equations (14) and (15). 

Table 2: Specifications of seismic isolation rubber used in this study 

Size and shape 

Rubber outside diameter 1500 (mm) 

Product height 298 (mm) 

Product gross weight 2.86 (ton) 

Vertical performance 
Vertical stiffness 17700 (×103kN/m) 

Recommended long-term axial force 21200 (kN) 
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Figure 3: Hysteresis loops of measured values 

4 Validation of Seismic-isolation-laminated-rubber Model 

4.1  Calculation of Discrete Values of Damping Coefficient and Spring Constant 

To validate the accuracy of the analysis results, discrete values of the damping coefficient 

and spring constant of the rubbers were obtained from the hysteresis loop in Figure 4 by 

using Equations (18) and (19) and evaluated in comparison with published analysis 

results [Tajima et al. (1965)]. 
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Here,   is loss angle, W  is the energy absorbed by the rubber in one period (area 

surrounded by the hysteresis loop), and W  is the elastic energy stored by the rubber 

(shaded triangular areas in the figure). 
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Here, ’C  is the discrete value of the damping coefficient, and ’K  is the discrete value of 

the spring constant.  

W

0X

0F

Restoring Force

Displacement

W

 

Figure 4: Method of calculating discrete values of damping coefficient and spring constant 

4.2  Comparison of Hysteresis Loops of Measured and Calculated Values 

Hysteresis loops of values calculated by the PFT-RFM are compared with the hysteresis 

loops of measured values in Figures 5 and 6 (dotted lines: measured values; solid lines: 

calculated values). The calculated values of loop 1 to loop 5 are approximately consistent 

with the corresponding measured values. However, the calculated values and measured 

values of loops 6 and 7 diverge slightly, but their peaks are consistent. 
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Figure 5: Hysteresis loop for seismic 

isolation rubber (Loop 1 ~ Loop 5) 

Figure 6: Hysteresis loop for seismic 

isolation rubber (Loop 6, Loop 7) 

4.3 Dependency of Damping Coefficient and Spring Coefficient on Displacement 

Amplitude 

The discrete (measured) values of the damping coefficient and spring constant obtained 

from the measured hysteresis loops described in the preceding section are compared with 

the continuous (analytical) values found by PFT-ELS in Figures 7 and 8, respectively. 

The PFT-ELS values are approximately consistent with the discrete values. Moreover, as 

mentioned above, although the ascending and descending branches of the measured and 

calculated loops 6 and 7 in Fig. 6 deviate, that deviation does not influence the damping 

coefficient or spring constant. The above results indicate that it is possible to apply the 

PFT-ELS method to analysis of nonlinear vibration of seismic-isolation rubber. 
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Figure 7: Damping coefficient 

dependence on amplitude 

Figure 8: Spring constant dependence 

on amplitude

5 Analysis of Seismic Response of a High-rise-building Model Incorporating 

Seismic-isolation Rubber 

The seismic response of a seismically isolated building model was analyzed as follows. 

The PFT-ELS method was applied to the seismic-isolation layer. The 1940 El Centro 

Earthquake (which acted in the east-west direction) was used as the seismic wave in the 

analysis (see Fig. 9). To confirm the effect of the seismic isolation, the results of the 

seismic-response analysis using the seismically isolated building model were compared 

with those obtained using a non-seismically isolated building model. The absolute 
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response acceleration of the first layer ( yx  1
) is shown in Fig. 10, and that of the 15th 

layer ( yx  15
) is shown in Fig. 11. The relative response velocity of the first layer 

(
01 xx   ) is shown in Fig. 12, and that of the 15th layer (

1415 xx   ) is shown in Fig. 13. It is 

clear from these results that the response of both layers diminishes with time in both the 

with- and without-isolation cases. 
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Figure 9: Input acceleration (Elcentro EW) 

-10

-5

0

5

10

0 10 20 30 40 50 60R
es

p
o

n
se

 A
cc

el
er

at
io

n
 [

m
/s

ec
2
]

Time [sec]

without Isolation

with Isolation

 

-10

-5

0

5

10

0 10 20 30 40 50 60R
es

p
o

n
se

 A
cc

el
er

at
io

n
 [

m
/s

ec
2
]

Time [sec]

without Isolation

with Isolation

 
 

 

 

-0.10

-0.05

0.00

0.05

0.10

0 10 20 30 40 50 60

R
es

p
o

n
se

 V
e
lo

c
it

y
 [

m
/s

ec
]

Time [sec]

without Isolation

with Isolation

 

-0.10

-0.05

0.00

0.05

0.10

0 10 20 30 40 50 60

R
es

p
o

n
se

 V
el

o
ci

ty
 [

m
/s

ec
]

Time [sec]

without Isolation

with Isolation

 
 

 

6 Optimization of Seismic-isolation Rubber by Using a Genetic Algorithm 

The restoring-force characteristic of seismic-isolation rubber that minimizes the response 

of a seismic-isolated structure during an earthquake was optimized by using a generic 

algorithm (GA) as follows, and the seismic response of the building model was analyzed 

Figure 10: Absolute response 

acceleration of 1st layer 

Figure 11: Absolute response 

acceleration of 15th layer 

Figure 12: Relative response velocity 

of 1st laye 

r 

Figure 13: Relative response velocity 

of 15th layer 
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by using the optimized restoring-force characteristics. These results are compared with 

response-analysis results before optimization. The seismic waves used in the 

optimizations were generated by the El Centro (E-W) and Hachinohe (E-W) earthquakes 

(Fig.16), and the restoring-force characteristics of seismic-isolation rubber were 

optimized for each seismic wave. 

6.1  Design Variables and Objective Function 

As explained in Section 2, the PFT-RFM was constructed by calculating the shape 

parameters from the bone-curve function and area function (Table 3). Constant multiples 

of these functions are defined as design variables as follows: 

   403

2

02

3

0100 AXAXAXAXF      2.00.5 ≦≦                                                       (20) 

   02

2

0100 XBXBXG              2.00.5 ≦≦                                                                (21) 

Bone-curve and area functions are calculated by combining design variables   and  , 

and the PFT-RFM is constructed. The design variables range from 0.5 to 2.0 in steps of 

0.1. The constructed PFT-RFM was used to analyze the seismic response of a seismic-

isolation-structure model shown in Fig. 2. Maximum response velocity and maximum 

response acceleration of the top layer were taken as objective functions (objective 

functions 1 and 2, respectively), and design variables that minimize these functions were 

identified by using the GA. 

6.2  Analysis Results 

First, the characteristics of the seismic-isolation rubber for the El Centro (E-W) 

earthquake were optimized. A Pareto chart and hysteresis loop for the optimized seismic-

isolation rubber are shown in Figures 14 and 15, respectively. The damping coefficient is 

plotted in Fig. 16, and the spring constant is plotted in Fig. 17. According to the 

optimization results, β = 0.6 and γ = 0.6 is the optimum combination for minimizing the 

maximum response velocity and maximum response acceleration of the top layer of the 

laminated rubber.  

The area of the hysteresis loop and the gradient of the bone curve decrease as compared 

to those values before the optimization. That is, after the optimization, the stiffness and 

damping coefficient of the rubber are decreased (Figs. 16 and 17). The seismic response 

of the rubber was re-analyzed by using the optimized restoring-force model, and the 

results were compared with those before the optimization. Response acceleration and 

response velocity of the top layer are plotted in Figures 18 and 19. It was thus confirmed 

that by optimizing the hysteresis restoring-force characteristic, it is possible to reduce the 

maximum response amplitude. 

Next, the characteristics of the seismic-isolation rubber for the Hachinohe (E-W) 

earthquake (1968) were optimized. Input acceleration is plotted in Figure 20, the 

hysteresis loop for the optimized rubber is shown in Figure 21, the rubber’s damping 

coefficient is plotted in Figure 22, and its spring constant is plotted in Figure 23. 

According to the optimization results, β = 0.8 and γ = 1.0 is an optimum combination for 

the earthquake in question. The area of the history loop is decreased as compared to that 

before the optimization; that is, only the damping characteristic is degraded (Figures 22 
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and 23). These results indicate that the optimization results depend on the input seismic 

wave. 

Next, the effect of optimization is confirmed by frequency characteristics. Acceleration 

spectrums of 15th layer for El Centro (E-W) earthquake and Hachinohe (E-W) 

earthquake are shown in Figures 25 and 26, respectively. In Fig. 25, the peak of the first 

order natural frequency (0.2[Hz]) of the structure reduced by about 30%, and the peak of 

the second order natural frequency (1.4[Hz]) was also reduced by about 60% (Fig. 25). 

Moreover, in Fig. 26, the peak of the first order natural frequency (0.2[Hz]) of the 

structure reduced by about 40%. From these results, it was found that the effect of 

optimization was the largest at the resonance peak. And, it was confirmed that the effect 

of optimization differs depending on the type of earthquake. 
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Figure 14: Pareto chart Figure 15: Hysteresis loop for seismic 

isolation rubber after optimization 

Figure 16: Damping coefficient 

dependence on amplitude 
Figure 17: Spring constant dependence 

on amplitude 
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Figure 18: Absolute response 

acceleration of 15th layer 

Figure 19: Relative response velocity 

of 15th layer 

Figure 20: Input acceleration 

(Hachinohe E-W) 

 

Figure 21: Hysteresis loop for seismic 

isolation rubber after optimization 

 

Figure 22: Damping coefficient 

dependence on amplitude 

 

 

Figure 23: Spring constant dependence 

on amplitude 

 

Figure 25: Acceleration spectrum 

(Elcentro EW) 

 

Figure 26: Acceleration 

spectrum (Hachinohe EW) 
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7 Conclusions 

Nonlinear-vibration characteristics of seismic-isolation rubber were modeled, and the 

PFT-ELS (power-function-type equivalent linear system using restoring-force model) 

method was applied to analyze the model. Next, the restoring-force characteristic of the 

seismic-isolation rubber that minimizes the behavior of a structure subjected to seismic 

waves with different characteristics was obtained by using a genetic algorithm. The 

findings of this study are summarized as follows. 

 The non-linear vibration characteristics of the seismic-isolation rubber (which 

depend on displacement amplitude) could be accurately obtained by using the PFT-

ELS method. 

 Two design variables (γ and β), which show the restoring-force characteristics of the 

seismic-isolation rubber, could be obtained by using a generic algorithm for two 

objective functions (namely, the minimum of the maximum response velocity of the 

top layer and the minimum of maximum response acceleration).  

 Restoring-force characteristics of the optimized rubber for minimizing the response 

of a high-rise building depend on the characteristics of the seismic wave. 

 The proposed PFT-ELS method can obtain the optimum restoring-force characteristic of 

the rubber that minimizes the response of a structure for a target earthquake. By utilizing 

this method, it is possible to optimize the design of a certain seismic-isolation rubber 

instead of simply selecting a suitable rubber from existing seismic-isolation rubbers in 

the conventional manner. 

 As a future schedule, at first，we would like to verify by comparing the analysis 

result shown in this paper with the experimental value. Next, we carry out similar 

verification against wind load too. 
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