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Abstract: Fault tolerant technology has greatly improved the reliability of modern 

systems on one hand and makes their failure mechanisms more complex on the other. 

The characteristics of dynamics of failure, diversity of distribution and epistemic 

uncertainty always exist in these systems, which increase the challenges in the reliability 

assessment of these systems significantly. This paper presents a novel reliability analysis 

framework for complex systems within which the failure rates of components are 

expressed in interval numbers. Specifically, it uses a dynamic fault tree (DFT) to model 

the dynamic fault behaviors and copes with the epistemic uncertainty using Dempster-

Shafer (D-S) theory and interval numbers. Furthermore, an approach is presented to 

convert a DFT into a dynamic evidential network (DEN) to calculate the reliability 

parameters. Additionally, a sorting method based on the possibility degree is proposed to 

rank the importance of components represented by interval numbers in order to obtain the 

most critical components, which can be used to provide the guidance for system design, 

maintenance planning and fault diagnosis. Finally, a numerical example is provided to 

illustrate the availability and efficiency of the proposed method. 

Keywords:  Reliability analysis, dynamic fault tree, interval numbers, dynamic evidential 

network, epistemic uncertainty. 

1 Introduction 

Reliability is an important performance measure for modern systems. For fast technology 

innovation, performance of these systems has been greatly improved with the wide 

application of high technology on one hand, but on the other hand, the functional 

requirement and modernization level of modern systems are increasing, which makes 

them become more and more complex and raises some challenges in system reliability 

analysis and maintenance. These challenges are displayed as follows. (1) Failure 

dependency of components. Modern engineering systems are becoming increasingly 

complex, which makes components interact with each other. So dynamic fault behaviors 

should be taken into account to construct the fault model for reliability evaluation. (2) 

The life distributions of components are different. Modern systems include a variety of 

components, and they may have different life distributions. Some classical static 

modeling techniques, including reliability block diagram model [Lisnianski (2007)], fault 
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tree (FT) model [Rahman, Varuttamaseni, and Kintner-Meyer (2013)], and binary 

decision diagrams model [Shrestha and Xing (2008)] have been widely used to model 

static systems. But these models assume that all components follow the exponential 

distribution. However, in the engineering practice and real-time applications, different 

components may have different distributions. For complex systems, a mixed life 

distribution should be used to evaluate these systems. (3) There are a large number of 

uncertain factors and uncertain information. Many complex systems have adopted a 

variety of fault tolerant technologies to improve their dependability. However, high 

reliability makes it impossible to collect sufficient fault data. Additionally, it is very 

difficult or costly to obtain sufficient fault data at the beginning of the design process 

because designers cannot spend too much time collecting them in the competition market. 

So, in the case of the small sample data, the traditional methods based on the probability 

theory are no longer appropriate for complex systems. Aiming at these challenges 

mentioned above, many efficient evaluation methods have been proposed. For the 

dynamic failure characteristics, Markov model [Yevkin (2005); Chen, Zheng, Luo 

(2016)], temporal fault tree [Kabir, Walker and Papadopoulos (2014)], DFT [Dugan, 

Bavuso and Boyd (1992)], and dynamic Bayesian networks [Wu, Liu and Zhang (2015); 

Khakzad (2015)] have been proposed to capture the above mentioned dynamic failure 

behaviors. However, Markov Chain has an infamous state space explosion problem and 

the ineffectiveness in handling uncertainty. Temporal fault tree (TFT) introduces some 

temporal gates to capture the sequencing of events and do some quantitative analysis by 

mapping a TFT into a discrete-time Bayesian network. However, quantitative analysis is 

an approximate method and requires huge memory resources to store the conditional 

probability table, which faces a dilemma that computational accuracy contradicts the 

computation complexity. Furthermore, TFT cannot cope with the challenge (2). Kabir 

proposes a method which combines expert elicitation and fuzzy set theory with TFT to 

evaluate dynamic complex systems with limited or absent exact quantitative data [Kabir, 

Walker and Papadopoulos (2016)]. Nevertheless, it is an extremely difficult task to 

specify the appropriate membership functions of the fuzzy numbers in advance and its 

application contains the assumption of exponentially distributed failure probability for 

components. So, this method cannot deal with the challenge (2). DFT is widely used to 

model the dynamic systems as the extensions of the traditional static fault trees with 

sequence- and function-dependent failure behaviors. Ge et al. present an improved 

sequential binary decision diagrams method for highly coupled DFT where different 

dynamic gates often coexist and interact by repeated events [Ge, Lin and Yang (2015)]. A 

new approach was proposed by Merle et al. to solve DFT with priority dynamic gate and 

repeated events [Merle, Roussel and Lesage (2015)]. Chiacchio et al. presented a 

composition algorithm based on a Weibull distribution to address the resolution of a 

general class of DFT [Chiacchio, Cacioppo and D'Urso (2013)]. However, these methods 

assume that all components obey to the same distribution and cannot handle the challenge 

(2) either. Furthermore, these methods, which are usually assumed that the failure rates of 

the components are considered as crisp values describing their reliability characteristics, 

have been found to be inadequate to cope with the challenge (3). Therefore, fuzzy sets 

theory has been introduced as a useful tool to handle the challenge (3). The fuzzy fault 

tree analysis model employs fuzzy sets and possibility theory, and deals with ambiguous, 
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qualitatively incomplete and inaccurate information [Mahmood, Ahmadi and Verma, 

(2013); Mhalla, Collart and Craye (2014); Kabir, Walker and Papadopoulos (2016)]. To 

deal with the challenge (1) and (3), fuzzy DFT analysis has been introduced [Li, Huang 

and Liu (2012); Li, Mi and Liu (2015)] which employs a DFT to construct the fault 

model and calculates the reliability results based on the continuous-time BN under fuzzy 

numbers. However, these approaches cannot handle the challenge (2). For this purpose, 

Mi et al. proposed a new reliability assessment approach which used a DFT to model the 

dynamic characteristics within complex systems and estimated the parameters of different 

life distributions using the coefficient of variation (COV) method [Mi, Li and Yang 

(2016)].  

Motivated by the problems mentioned above, this paper presents a novel reliability 

analysis approach of complex systems based on DEN considering epistemic uncertainty. 

It pays attention to meeting above three challenges. In view of the challenge (1), it uses a 

DFT to capture the dynamic failure mechanisms. For the challenges (2) and (3), a mixed 

life distribution is used to analyze complex systems, and the COV method is employed to 

estimate the parameters of life distributions for components with interval numbers. 

Furthermore, relevant reliability parameters can be calculated by mapping a DFT into a 

DEN in order to avoid the aforementioned problems. At last, a simple example is used to 

demonstrate the proposed method. 

The rest of the paper is organized as follows. Section 2 presents the construction of fault 

tree model and parameters estimation of components distributions. In section 3, the basic 

concept of DEN is introduced and the conversion process from a DFT to a DEN is also 

provided; Reliability results are calculated, and a sorting method based on the possible 

degree is proposed in section 4. In section 5, a simple example is used to demonstrate the 

proposed method. Finally, conclusions are made in section 6. 
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Figure 1:  Parameters estimation of Weibull distribution based on the COV method 

2 Fault Tree Analysis (FTA) 

2.1  Model Construction of a Fault Tree 

FTA is a logical and diagrammatic method for evaluating the failure probability of an 

accident. Fault tree includes various events, logic gates and other corresponding symbols. 

A significant failure or undesirable event is usually referred to as a top event since it 

appears at the top of the fault tree. Depending on the function of the logic gates, logic 

gates can be divided into static logic gates and dynamic logic gates. Static logic gates 
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mainly include AND gate, OR gate and NOT gate while dynamic logic gates mainly 

include priority AND (PAND) gate, the function dependency (FDEP) gate, and spare (SP) 

gate, etc. Fault tree, including dynamic gates is a DFT, which extends static fault tree and 

can model the dynamic behaviors of system failure mechanisms, such as the function 

dependency events, spare gate, and the priorities. In the actual engineering, the first task 

is to construct the suitable fault tree model of the complex system. The construction of a 

fault tree usually requires a deep understanding of the system and its components. It 

usually includes the following steps: (1) Analyze the system configuration and fault 

mechanism and collect corresponding data derived from system design, operation data, 

and equipment technical specification. (2) Select and determine the top event. (3) Find 

the direct causes of the top event occurrence and connect the input events to the output 

events with the appropriate logic gates according to the logical relationship between these 

events. (4) Analyze each input event connected to the top event. If the event can also be 

further decomposed, we can define this event as the next level output event. (5) Repeat 

steps (2) to (4),  and decompose step by step down until all input events can no longer be 

decomposed. 

2.2  Parameters Estimation of Components Distributions 

2.2.1 Parameters estimation for Exponential Distributions based on Fuzzy Sets Theory 

In the practical engineering, the exponential distribution is applied widely in the reliability 

analysis, especially in the electronic equipment reliability assessment. The exponential 

distribution is a simple distribution with only one parameter. For a component whose lifetime 

follows an exponential distribution, the distribution function is ( ) 1 ( )F t exp t   , where λ is a 

distribution parameter. For fast technology innovation, the performance of complex 

systems such as reliability and stability has been greatly improved with the wide 

application of high technology on one hand, but on the other hand, the complexity of 

technology and structure increasing significantly raise challenges in system reliability 

evaluation and maintenance. Furthermore, high reliability of the systems causes the lack 

of sufficient fault data and epistemic uncertainty. So, it is difficult to estimate precisely 

the failure rates of the basic events, especially for complex systems. In the paper, a hybrid 

method combined with expert elicitation through questionnaires and fuzzy sets theory is 

used to estimate the failure rates of the components which follow the exponential 

distribution [Duan, Zhou, Fan (2015)]. 

2.2.2 Parameters Estimation for Weibull Distributions based on the COV Method  

The failure rate of a component with an exponential distribution is constant, which is 

usually not the case, and it will change over time. Weibull distribution first introduced by 

Waloddi Weibull in 1951, is widely used in reliability engineering and elsewhere due to 

its versatility and relative simplicity. For two-parameter Weibull distribution ( , , )F t   , 

the distribution function is  

1 { ( ) }, 0
( ) ( )

0                      t 0

texp t
F t P T t




   

   


                                                                               (1) 



 

 

 

Reliability Analysis for Complex Systems                                                                        21 

where η is the scale parameter and β is the shape parameter.It has two parameters: shape 

parameter β and scale parameter η. The shape parameter, is also known as the Weibull 

slope. This is because the value of β is equal to the slope of the line in a probability plot. 

Different values of the shape parameter can have marked effects on the behaviour of the 

distribution. A change in the scale parameter has the same effect on the distribution as a 

change of the abscissa scale. In the practice engineering, it is a formidable task to assess 

two parameters of Weibull distribution at the same time using expert elicitation and fuzzy 

sets theory. Vast use of the COV method in engineering shows that it is easy for 

engineering applications. When the reliable lifetime of system components is available, 

the COV method can be employed to assess the parameters of their lifetime distributions 

[Mi, Li and Yang (2016)]. Fig. 1 shows the parameters estimation of Weibull distribution 

based on the COV method. 

To meet the above challenge (3), we can get an approximate range of components’ 

lifetime by incorporating the accelerated life test data, field failure data and experts 

evaluation. Accordingly, the lifetime of a component can be expressed as a bounded 

interval variable TY, and 

[    T ]Y U
LT T                                                                                                                     (2) 

where TL and TU are the lower and upper bounds of component lifetime respectively. 

Then the standard deviation of lifetime variable can be represented as 

=
U

L

U
L

T T

T T
V




                                                                                                                        (3) 

The mean value of Weibull distribution is ( ) (1 1/ )E T     and variance is 
2 2( ) [ (1 2 / ) (1 1/ )]Var T         [Chen and Fang (2012); Mi, Li and Yang (2016)]. 

The coefficient of variation of Weibull distribution is 
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                                                                (4) 

where 1

0
( )     ( 0)xx e dx  


   . 

For Weibull distribution, the reliable lifetime tR, which is the lifetime of a system when 

system reliability equals to R, is given by 

1

( ln ( ))wb
Rt R t                                                                                                                 (5) 

When the reliable lifetime tR and the lifetime variable TY are known, the parameters of 

Weibull distribution can be calculated by Eq. (2) - (5). 
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3 D-S theory and DEN 

3.1  D-S theory 

D-S theory is a theory of uncertainty that was first developed by Dempster [Dempster 

(1967)] and extended by Shafer [Shafer (1976)]. The idea of using D-S theory in 

reliability analysis was introduced by Dempster and Kong [Dempster, Kong (1988)]. D-S 

theory, a less restricted extension of probability theory is usually used to deal with 

epistemic uncertainty. The frame of discernment Θ is the set of all hypotheses for which 

the information sources can provide evidence. A basic probability assignment (BBA) on 

a frame of discernment Θ is a function m : 2 [0,1]   which maps beliefs masses on 

subsets of events as follows: 

2

( ) 0

( ) 1
x

m

m x

 







                                                                                                                 (6) 

The two important measures of uncertainty provided by D-S theory are called belief and 

plausibility functions. They are defined by: 

,
( ) ( )

Y X X
Bel X m Y

 
                                                                                                   (7) 

,
( )( )

Y X X
m YPl X

 
 、Y

                                                                                            (8) 

Belief function implies the summation of the possibility of all the subsets of hypotheses Y, 

which means the total trust of hypotheses Y. Plausibility function implies the level of 

suspicion. The interval [Bel(X), Pl(X)] represents the uncertainty of X. According to the 

above analysis, for X  , there are following results: 

( ) 1 ( )
( ) ( )
( ) ( ) ( )

Pl X Bel X
Bel X Pl X
Bel X P X Pl X

 

 

                                                                                                (9) 

3.2  DEN 

Evidential Network (EN) based on graph theory and D-S theory. It is a promising 

graphical tool for representing and managing uncertainty [Helton, Johnson, Oberkampf 

and Sallaberry (2006)]. It is composed of nodes and directed arcs, in which nodes 

represent variables, directed arcs represent logical relationships between the nodes. EN 

model is represented by G = ((N, A), M), where (N, A) represents the graph, N={N1,···,Nl} 

is a set of nodes, A is a set of node’s arcs and M represents the belief distribution 

dependent relationship between the variables. DEN is based on a static EN and a 

temporal dimension [Philippe, Christophe (2008)]. It includes the initial network and the 

temporal transition network. Each time slice corresponds to a static evidence network, 

and the time slices are made up of a directed acyclic graph ,T T TG V E  and the 

corresponding conditional probabilities. The TV  and TE are respectively nodes of time T 

and directed arcs. A directed arc links two variables belonging to different time slices and 
tmp
TE is used to denote the temporal transition network of time slices. Then tmp

TE can be 

determined by 
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1

0 0

{( , ) | , }
tmp

T TTE a b a V b V

T T T N T

  

   
 (10) 

where 0T is the initial network. 

In the DEN, the present state of the time slice T only depends on the present state and the 

previous state, 

0
( | ,..., ) ( | )T T T T T T TP G G G P G G                                                                                 (11) 

With this model, we define these impacts as transition-belief masses between the focal 

elements of the variable at time step k and those at time step k+1 and the conditional mass 

distribution tables (CMT) relative to inter-time slices is defined in Eq.12. 

1 1
1 1 1

1

1 1
1

( | ) ( | )

( | )

( | ) ( | )

X X X XK K K K
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k k

X X X XK K K K
Q Q Q

m G G m G G

m X X

m G G m G G

 



 



 
 
 
 
 

                                                            (12) 

3.3  Mapping a DFT into a DEN 

3.3.1 System Reliability Model of Evidential Network  

In our evidence theory [Curcurù, Galante, La, (2012)], { , }i iW F  is the knowledge 

framework of a component i and the focal elements are given by 

i2 {{ } { } { } { , }}i i iW F W F  、 、 、                                                                                            (13) 

where { }iW , { }iF and i{ , }iW F denote respectively the working, the failure state and the 

epistemic uncertainty state of the component i. 

The interval [ ( )   ( )]i iBel W Pl W represents the interval probability of the component i is in 

working state at time t, i.e. ( )iBel W  is the lower probability of the component i in the 

working state and ( )iPl W is the corresponding upper probability. Moreover, 

( ) ( )i iPl W Bel W is represented as the epistemic uncertainty. Then the BPAs about 

component i is computed as: 

({ }) ({ })

({ }) 1 ({ })

({ , }) ({ }) ({ })

i i

i i

i i

m W Bel W

m F Pl W

m W F Pl W Bel F



 

 

                                                                                      (14) 

When the component i follows the exponential distribution and the interval failure rate 

[ , ]  of the component is known, the bounds of the component reliability at a mission 

time T can be calculated by: 

[ ( ), ( )] 1 ([ , ] )iP x P x exp T                                                                                             (15) 

where P and P denote respectively the lower probability of the component and the 

corresponding upper probability. 

When the component j obeys to the two-parameters Weibull distribution, and the reliable 
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lifetime tR together with the lifetime variable TY are known, the bounds of the component 

reliability can be computed by Eq. (1) - (5). 

So, the upper and lower bounds of the component reliability [ ( ), ( )]P X P X  are equivalent 

to the BPA in the DEN: 

({ }) 1 ( )

({ }) ( )

({ , }) ( ) ( )

m W P X

m F P X

m W F P X P X

 



 

                                                                                                (16) 

where ( ) P(X)Bel F  , ( ) ( )Pl F P X  

3.3.2 Mapping Static Logic Gates into DEN 

When all the input components Xi (i=1, …, n) of an AND gate fail, the output of the gate 

fails. The conditional probabilities of each node in the static evidential network have been 

discussed in detail in [Philippe, Christophe (2008)]. Fig. 2 shows an AND gate and its 

equivalent DEN. Tab. 1 and 2 gives the CMT of node A (T+ΔT) and node E (T+ΔT) 

respectively. 

Figure 2: An AND gate and its equivalent DEN 

Table 1: The CMT of node A (T+ΔT) 

A(T) 
A(T+ΔT) 

{W} {F} {W, F} 

{W} M (W) m(F) M (W, F) 

{F} 0 1 0 

{W, F} 0 m(F) 1- m(F) 

Table 2: The CMT of node E (T+ΔT) 

A(T+ΔT) B(T+ΔT) 
E(T+ΔT) 

{W} {F} {W, F} 

{W} {W} 1 0 0 

{W} {F} 1 0 0 

( )A T ( )A T T 

( )B T T ( )B T

( )E T T 

E

A B

AND
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{W} {W, F} 1 0 0 

{F} {W} 1 0 0 

{F} {F} 0 1 0 

{F} {W, F} 0 0 1 

{W, F} {W} 1 0 0 

{W, F} {F} 0 0 1 

{W, F} {W, F} 0 0 1 

3.3.3 Mapping Dynamic Logic Gates into DEN 

DFT extended the traditional fault tree by defining some dynamic gates to capture the 

sequential and functional dependencies. Usually, there are six types of dynamic gates 

defined: the Functional Dependency Gates (FDEP), the Cold Spare Gates (CSP), the Hot 

Spare Gates (HSP), the Warm Spare Gates (WSP), the Priority AND Gates (PAND), and 

the Sequence Enforcing Gates (SEQ). The following section briefly discusses a CSP gate 

as it is used later in the example. The CSP gate includes one primary input and one or 

more alternate inputs. When the primary fails, the alternate inputs can be used instead of 

the primary input, and in turn, when this alternate input fails, it is replaced by the next 

alternate input, and so on until the CSP spare fails. Fig. 3 shows a CSP gate and its 

equivalent DEN. Tab. 3 shows the CMT of the node B(T+ΔT) and the CMT of output 

node E(T+ΔT) is shown in Tab. 4. 

( )A T ( )A T T 

( )B T T ( )B T

( )E T T 

E

CSP

A B

 

Figure 3: A CSP gate and its equivalent DEN 

Table 3: The CMT of the node B (T+ΔT) 

A(T+ΔT) B(T) 
B(T+ΔT) 

{W} {F} {W, F} 

{W} {W} 1 0 0 

{W} {F} 1 0 0 

{W} {W, F} 1 0 0 

{F} {W} m(W) m(F) m (W, F) 

{F} {F} 0 1 0 

{F} {W, F} 0 m(F) 1- m(F) 

{W, F} {W} 0 0 1 

{W, F} {F} 0 0 1 

{W, F} {W, F} 0 0 1 
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Table 4: The CMT of the node E (T+ΔT) 

B(T+ΔT) 
E(T+ΔT) 

{W} {F} {W, F} 

{W} 1 0 0 

{F} 0 1 0 

{W, F} 0 0 1 

4 Calculating Reliability Parameters 

4.1   Calculating Reliability Parameters  

After a DFT model is built, The DFT is converted into an equivalent DEN using the 

proposed method. Once the structure of the DEN is known and the probability tables are 

filled, the reliability parameters of the system can be calculated using the DEN inference 

algorithm. These reliability parameters mainly include system unreliability, DIF and BIM, 

which can be used for fault diagnosis and system optimization design. 

4.1.1   Calculating Reliability Parameters System Unreliability 

Calculating the system unreliability is very simple using the following equation: 

[ , ] [ ({ })   ({ })]S S S S SP P P Bel F Pl F                                                                                  (17) 

where [ ({ }), ({ })]S SBel F Pl F represents the failure probability of system. 

4.1.2   DIF 

DIF is defined conceptually as the probability that an event has occurred given that the 

top event has also occurred. DIF is the cornerstone of reliability based diagnosis 

methodology. DIF can be used to locate the faulty components in order to minimize the 

system checks and diagnostic cost. It is given by: 

| |( | ) [ ({ }), ({ })]i i S i SDIF P i S Bel F Pl F                                                                              (18) 

where i is a component in the system S; ( | )P i S is the probability that the basic event i has 

occurred given the top event has occurred. 

Suppose the system has failed at the mission time. We input the evidence that system has 

failed into DEN and get the DIF of components using the inference algorithm. 

4.1.3 BIM 

Birnbaum first introduced the concept of a components’ reliability importance in 1969. 

This measure was defined as the probability that a component is critical to system failures, 

i.e. when component i fails it causes the system to move from a working to a failed state. 

BIM of a component i can be interpreted as the rate at which the system’s reliability 

improves as the reliability of component i is improved [Mohamed, Walter and Felipe 

(2013)]. Analytically, Birnbaum’s importance interval measure of a component i can be 

defined using D-S theory by the following equation. 
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| || , | ,

[ ( )] [ ({ } |{ }), ({ } |{ })]

              - [ ({ } |{ }), ({ } |{ })]

          [ ] [ ]

B
S i S i

S i S i

S W S Fi iS W S Fi i

I i Bel W W Pl W W

Bel W F Pl W F

P P P P



                                                                         (19) 

where ({ }|{ })s iBel W W and ({ }|{ })s iPl W W  denote respectively the belief and plausibility 

measures that the system is functioning when it is known that component i is in a 

working state, whereas ({ }|{ })s iBel W F and ({ }|{ })s iPl W F denote respectively the belief and 

plausibility measures that the system is functioning when component i is in a failed state. 

4.2 Importance Sorting Method based on the Possibility Degree 

DFT describes the logic relationships of system failure events and expresses the system 

structure. On the basis of the proposed assessment method, we can obtain interval values 

of system reliability and the importance of each component. The importance of 

components is related to the system structure, the lifetime distribution of each component 

and the mission time. Therefore, the ranking of component importance will be significant 

for improving the system design and determining the detection site of system when it is 

failed. It also can give the guidance for developing a checklist for system diagnosis. 

However, these interval values are not sufficient to rank components. To do this, we have 

to convert these interval values to a probability measure. Such a transformation is called a 

probabilistic transformation. The most known probabilistic transformation is the pignistic 

transformation BetP. It was introduced by Smets and Kennes [Smets and Kennes (1994)] 

and corresponds to the generalized insufficient reason principle: a BPA assigned to the 

union of n atomic sets is split equally among these n sets. It is defined for any set B X  

and B by the following: 

|

| | ( )
( )

| | 1 ( )
A A X

A B m A
BetP B

A m
 


 

                                                                                   (20) 

where | |A denotes the cardinality of A X . We should note that in the case of binary 

systems and closed word hypothesis (i.e. ( ) 0m   ), the pignistic system reliability BetRS 

is given by: 

({ }) 0.5 ({ , })
X Xs s

S S S SBetR m W m W F                                                                              (21) 

In this paper, a sorting method based on the possibility degree is used to rank the 

importance of components represented by interval numbers [Moore and Lodwiek (2003); 

Li and Gu (2008)]. An interval number can be expressed as [ , ]x x x  , where 0x   and 

x x x   . For interval numbers [ , ] a a a   and [ , ] b b b  , the length of the 

interval numbers, lab is given by 

[ , ] [ , ]abl a a b b                                                                                                        (22) 

If abl  , the intersection of interval number a and interval number b is empty. Then the 

possibility of a>b can be defined as 
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1 ( ) ( )
( ) (1 )

2 | | | | ab

a b a b
p a b

a b a b l

     
  

      
                                                                     (23) 

When there is any set of interval numbers [ , ]   =1,2,...,ia a a i n  , then by pairwise 

comparison of the interval numbers using the Eq. (22) and (23), the corresponding 

possibility ( )ijp p a b   can be obtained and a possibility matrix ( )ij n nP p   is built. 

Then denote 
1

i

n
p
ij

j

  


as the row sum of the possibility matrix P, 
1 2(    ...  )

T

n    as 

the corresponding row sum vector. The interval number [ , ]i i ia a a   will be sorted 

based on possibility degree of vector λi. This method can be used to assess and compare 

the importance of each component with respect to the system. When comparing the 

possibility degree based ranking method with the deterministic sorting method base on 

the pignistic transformation, the distinct advantage of the possibility degree based method 

is that it not only helps for ranking the interval numbers, but also gives an estimation of 

the difference degree of two interval numbers. In addition, it can reflect the uncertainty of 

interval numbers. Therefore, this method is much more adaptive to engineering practice 

and has great theoretical significance. 

5 A numerical Example 

An illustrative example is given to illustrate how the proposed method can be used to 

perform the reliability analysis for the braking system using DFT and DEN. Suppose all 

components follow the exponential distribution or two-parameter Weibull distribution. 

For the components with an exponential distribution, the interval failure rates of the basic 

events for the braking system can be calculated using the expert elicitation and the fuzzy 

sets theory. For the components with a two-parameter Weibull distribution, the interval 

failure rates are calculated using the COV method. Fig. 4 shows a DFT for service 

braking failure of braking system. The interval failure rates of basic events are shown in 

Tab. 5. 

In this numerical example, component X2 is assumed to follow the Weibull distribution 

and other components follow the exponential failure distribution. The interval lifetime 

0.95 0.5[ , ]R Rt t   of X2 is [2100, 4200] using the general accelerated life test and the 

parameters are obtained as follows: β=3.304, η= [4692.7, 5159.7]. For quantitative 

analysis, we map the DFT into the equivalent DEN. Supposing that the mission time is 

T=2000 hours and T =500 hours, the BPA of each root node and the conditional 

probability tables of each intermediate node can be calculated according to Section 3.3. 

Unreliability of the braking system can be obtained. Tab. 6 shows the top event 

occurrence probabilities at the different mission time. Tab. 7 gives the DIF and BIM of 

components for the braking system respectively. The obtained importance measures are 

interval values because in the presence of epistemic uncertainty the belief measures are 

not equal to the plausibility measures. However, within these interval values of 

importance measures, it is very difficult to rank components’ importance. A sorting 

method based on the possibility degree is used to rank the DIF of components. According 
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to the sorting method of interval numbers in Section 4.2, the possibility matrices P can be 

calculated by Eq. (23). Then the ranking vectors λi of matrices P can be computed as 

 = (20.5, 17.5, 6.835, 2.5, 15.6, 9.14, 14.02, 12.49, 6.622, 6.622, 1.027, 13.37, 10.53, 

5.366, 0.9732, 5.458, 5.458, 23.48, 23.48, 19.00, 14.24, 23.48, 23.48, 19.00, 14.24, 

23.596).  

OR

Service braking 

failure

OR

X2X1 X3

OR AND

OR

OR AND

X4 OR

AND AND

X5 X6 X7 X8

X9

X11X10

OR

X15X12 X13

OR

AND

X16 X17 X26

AND

OR

OR

X18 X19 X20 X21

CSP

CSPCSP

X14

CSP

OR

OR

X22 X23 X24 X25

CSP

Braking control 

failure

Air supply unit

failure

Braking control 

output failure

Braking execution 

unit failure

Figure 4: A DFT for service braking failure of braking system 

According to ranking vectors λi, from the most critical component to the lesser one, the 

ranking result of the components importance DIF can be represented as 

X26>X18(X19) >X22(X23) >X1>X20(X24)>X2>X5>X21(X25) 

> X7>X12>X8>X13>X6>X3>X9>X10>X16>X17>X14>X4> X11>X15 

where the symbol “>” is denoted as the optimal order relation of two interval numbers. 

The related interval values of DIF can also be converted into crisp values in order to rank 

components by means of the pignistic transformation and the ranking is  

X26>X18(X19) >X22(X23) >X1>X20(X24)>X2>X5>X21(X25)> X7>X12 

> X13>X6>X3>X9>X10> X16 >X17>X14>X4>X15>X8>X11 

Obviously, the ranking based on the possibility degree is a little different from the one by 

means of the pignistic transformation and the former is more reasonable because the 

latter neglects the difference degree of two interval numbers. From the ranking results 

based on the possibility degree, we can see that the DIF of X15 stays at a low level. This 
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is because X15 is a cold spare gate, which can only be active when the primary input fails. 

Additionally, DIF measure indicates that the component X26 is the most critical in the 

system from a diagnosis perspective, and it should be first diagnosed to fix the braking 

system when the system fails. If we have the potential to upgrade components, the 

component X26 is the most important in the system and improving its reliability will have 

more influence on the system reliability. 

Table 5: The interval failure rates of system components 

Components 
Interval failure 

rate/lifetime 
Components 

Interval failure 

rate/lifetime  

X1 [2.88e-6, 4.20e-6] X12,X13 [6.96e-6, 1.04e-5] 

X3,X9,,X10,X11 [6.08e-7, 9.12e-7] X14,X15 [5.68e-6, 8.52e-6] 

X4 [3.28e-7, 4.92e-7] X16, X17 [5.44e-7, 8.16e-7] 

X5 [1.12e-5, 1.68e-5] 
X18, X19, X22, 

X23 
[3.84e-5, 5.76e-5] 

X6 [0.80e-6, 1.20e-6] 
X20, X21, X24, 

X25 
[3.04e-5, 4.56e-5] 

X7 [0.88e-5, 1.32e-5] X26 [6.24e-6, 9.36e-6] 

X8 [7.12e-6, 1.07e-5] X2 [2100,        4200] 

Table 6: The interval failure rates of system components 

Mission time (h) Interval occurrence probability of the top event 

500 [0.00644, 0.01321] 

1000 [0.01550, 0.03322] 

1500 [0.02690, 0.05857] 

2000 [0.04035, 0.08805] 

Table 7: The DIF and BIM of components for the braking system 

Components DIF BIM 

X1 [0.14233, 0.14459] [0.91965,  0.96520] 

X2 [0.04433, 0.04496] [0.91419,  0.96137] 

X3 [0.00124, 0.00185] [-0.04679, 0.04917] 

X4 [0.00067, 0.00100] [-0.04653, 0.04935] 

X5 [0.02215, 0.03304] [-0.0477, 0.047695] 

X6 [0.00160, 0.00240] [-0.04767, 0.04775] 

X7 [0.01745, 0.02606] [-0.04768, 0.04772] 

X8 [0.01415, 0.02114] [-0.04768, 0.04773] 

X9 [0.00122, 0.00182] [-0.0477, 0.047695] 
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X10 [0.00122, 0.00182] [-0.0477, 0.047695] 

X11 [9.23e-7, 0.00061] [-0.0477, 0.047695] 

X12 [0.01664, 0.02346] [-0.03301, 0.05561] 

X13 [0.00297, 0.00989] [0.91843,  0.95976] 

X14 [0.00111, 0.00165] [-0.04654, 0.04832] 

X15 [1.83e-05,0.00056] [0.91245,  0.95965] 

X16 [0.00112, 0.00166] [-0.04665, 0.04918] 

X17 [0.00112, 0.00166] [-0.04665, 0.04918] 

X18 [0.29559, 0.32213] [0.09422,  0.22865] 

X19 [0.29559, 0.32213] [0.09422,  0.22865] 

X20 [0.06523, 0.09322] [-0.03775, 0.05401] 

X21 [0.00883, 0.03851] [0.07898,  0.21926] 

X22 [0.29559, 0.32213] [0.09422,  0.22865] 

X23 [0.29559, 0.32213] [0.09422,  0.22865] 

X24 [0.06523, 0.09322] [-0.03775,0.05401] 

X25 [0.00883, 0.03851] [0.07898, 0.21926] 

X26 [0.30735, 0.31166] [0.91919, 0.97171] 

6    Conclusions  

In this paper, we have discussed the use of DFT and DEN to evaluate complex systems 

reliability under epistemic uncertainty. Specifically, it has emphasized three important 

issues that arise in engineering diagnostic applications, namely the challenges of failure 

dependency, different life distributions and epistemic uncertainty. In terms of the 

challenge of failure dependency, DFT is used to model the dynamic behaviours of system 

failure mechanisms. In terms of the challenge of multiple life distributions, a mixed life 

distribution is used to analyse complex systems; In terms of the challenge of epistemic 

uncertainty, the failure rates of the basic events for complex systems are expressed in 

interval numbers. For a component whose lifetime follows an exponential distribution, a 

hybrid method combined with expert elicitation and fuzzy sets is used to estimate the 

failure rate of the component. For a component whose lifetime follows a Weibull 

distribution, the COV method is employed to assess the parameters of the lifetime 

distributions. Furthermore, we calculate some reliability results by mapping a DFT into 

an equivalent DEN in order to avoid some disadvantages. In addition, a sorting method 

based on the possibility degree is proposed to rank the importance of components 

represented by interval numbers in order to obtain the most critical components, which 

can be used to provide the guidance for system design, maintenance planning and fault 

diagnosis. Finally, a numerical example is provided to illustrate the availability and 

efficiency of the proposed method. 
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