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A Study on the Far Wake of Elliptic Cylinders 
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Abstract: The evolution of far wake of stationary elliptic cylinders with angle of attack is 
investigated for the unsteady flow at Re = 200 using a stabilized finite-element method. 
The Reynolds number, Re, is based on the major axis of cylinder and free-stream speed. 
Cylinder aspect ratios, AR considered are 0.2, 0.5 and 0.8 while the angle of attack, α 
varies from 00 to 900. With increasing α, the Karman or primary shedding frequency of 
each cylinder decreases monotonically while the primary wavelength and time-averaged 
as well as r.m.s. drag increase monotonically. The time-averaged lift and moment 
coefficients initially increase with α and then decrease. The power spectrum analysis of 
unsteady transverse velocity signal at various stations along the wake centerline is used to 
study the associated frequencies. The Karman or primary shedding frequency exists for 
each α. For the AR = 0.2 cylinder, the secondary and subsequently, low magnitude tertiary 
frequencies appear in the wake as α continues to increase from 300. In contrast to the 
decaying nature of primary frequency with α, secondary frequency exhibits a non-
monotonic variation. The secondary frequency in general is not a sub-harmonic of the 
primary. This suggests that the secondary structures do not form due to merging of 
primary vortices. With increasing α, the location of formation of secondary structures 
advances upstream. For a given orientation, the upstream advancement is more dominant 
with decreasing AR. Power spectrum analysis indicates that the wake state for confined 
flow is characterized by the primary frequency alone, i.e. the imposition of blockage 
suppresses the formation of secondary structures. 

Keywords: Elliptic cylinder, stabilized finite-element, far wake, angle of attack, 
blockage. 

1   Introduction 

Most studies concerning external flow past two-dimensional bluff bodies concentrate on 
regions immediately downstream of the body while the far wake is of no less physical 
and practical significance. The practical application of far wake analysis includes the 
non-acoustic detection of submarines near thermoclines (Vorobieff et al., 2002). As an 
outcome of diffusion and viscous dissipation of Karman vortices, the vortex street might 
be expected to disappear in far downstream (Zdravkovich, 1997). For flow past a circular 
cylinder for Reynolds number, Re<200, (Tritton, 1977) commented that `the vortex street 
continues to all distances downstream'. As pointed out by Cimbala et al. (1988) earlier, 
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this statement deems invalid as the flow characteristics in the near (small multiple of 
characteristic dimension) and far (large multiple of characteristic dimension) wake vary 
drastically. The pioneering experimental work of Taneda (1959) demonstrated the 
formation of `secondary vortex street' in the far wake, where the scales of vortical 
structures are multiples of those in the primary or Karman vortex street. The wake 
transition in general, can occur in any staggered vortex street (Vorobieff et al., 2002). 
With downstream distance, the spatial transition of the wake obeys the following 
sequence: primary or Karman vortex street → nearly parallel shear layers → secondary 
vortex street. 
Developments in the wake of two-dimensional symmetric bluff bodies (eg. circular, 
elliptic cylinders and vertical flat plate) with Re have been studied earlier by several 
researchers. These studies, in general, do not consider the effect of blockage, B on the 
wake state. Blockage is the ratio of cross-stream projection of the body and width of the 
experimental apparatus or computational domain. In the present work, we study the 
evolution of far wake of elliptic cylinders with angle of attack, α while Re is fixed. The 
effect of channel confinement on the development of secondary vortex street is also 
studied. Geometry of an ellipse is characterized by its aspect ratio, AR defined as the ratio 
of lengths of its minor and major axes denoted by b and a, respectively. Two extreme 
configurations of an ellipse are the flat plate (AR = 0) and circular cylinder (AR = 1). A 
review on the earlier studies on unsteady flow past stationary elliptic cylinders and 
evolution of far wake with Re for various symmetric bluff bodies is provided below. 
Lugt and Haussling (1974) presented results at Re = 15, 30 and 200 for the flow past 
elliptic cylinders of AR = 0.1 and 0.2 at 450 incidence. They employed finite-difference to 
discretize the unsteady streamfunction-vorticity (ψ-ω) equations. Patel (1981) followed a 
semi-analytical method for the unsteady ψ-ω equations. For impulsively started elliptic 
cylinders of various eccentricities and α between 00 and 900, he presented detailed results 
at Re = 60, 100 and 200. Based on numerical study, Park et al. (1989) identified for 
25≤Re≤600, various flow regimes for an elliptic cylinder of AR≈0.15. For elliptic 
cylinders with major axes oriented normal to the incoming stream, Johnson et al. (2001) 
studied the evolution of wake vortex structures with Re and AR. The parameter space for 
the numerical study was 30≤Re≤200 and 0.01≤AR≤1. At constant Re, a monotonic 
increase of the drag coefficient with decreasing AR was noted. For symmetric elliptic 
cylinders of AR = 0.6, 0.8, 1.0 and 1.2, Kim and Sengupta (2005) presented numerical 
results highlighting the effects of Re and AR on various integral parameters, such as the 
aerodynamic coefficients and shedding frequency. The Reynolds numbers studied were 
200, 400 and 1000. Experiments at high Re were conducted by Taneda (1972), Modi and 
Dixit (1975), Ota and Nishiyama (1986) and Ota et al. (1987). Numerical investigations 
in the high Re regime include those of Panikker and Lavan (1975), Mittal and 
Balachandar (1996), Badr et al. (2001) and Li et al. (2006). The initial separation of 
laminar boundary layer for elliptic cylinders of various thicknesses and orientations have 
been numerically investigated by Sen et al. (2012). They proposed the wake topology for 
inclined elliptic cylinders and also explored the relationship between separation Reynolds 
number and angle of incidence.  
Following flow visualization in water tank, Taneda (1959) first observed for a circular 
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cylinder and flat plate, downstream decay of the primary or Karman vortex street and 
further downstream, eventual formation of the secondary vortex street. Taneda (1959) 
conjectured that the formation of secondary vortex street is an outcome of changing 
hydrodynamic stability. By artificially decelerating the Karman street of a circular 
cylinder, Durgin and Karlsson (1971) demonstrated that the formation of a new 
(secondary) vortex street is preceded by the deformation and streamwise alignment of 
primary vortices to form shear layers (referred to as `calm region' by them). An alternate 
mechanism leading to the formation of secondary vortex street was proposed by Matsui 
and Okude (1981) who suggested that pairing of Karman vortices rather than 
hydrodynamic instability of the wake profile leads to the formation of large scale vortices. 
Based on experimental investigation (flow visualization and hot-wire anemometry) of 
near and far wakes of two-dimensional bluff bodies, Cimbala et al. (1988) concluded that 
the far wake structures originate from hydrodynamic instability of the developing mean 
wake profile. The scale or frequency of the Karman vortices does not affect these large 
structures. The experimental work of Williamson and Prasad (1993a,b) shows that the far 
wake structures are sensitive to free-stream disturbances, they originate from 
hydrodynamic instability and in contrast to the observations made by Cimbala et al. 
(1988), the far wake frequency is closely linked to the near wake frequency through the 
frequency of free-stream disturbances. For Re between 70 and 154, Karasudani and 
Funakoshi (1994) experimentally investigated the breakdown and rearrangement of the 
primary vortex street of a circular cylinder.  
For a zero-thickness flat plate oriented normal to the flow, Najjar and Balachandar (1998) 
numerically investigated at Re = 250, the origin of low frequency (roughly one-tenth of 
Karman frequency) unsteadiness present in the wake and its effects on the Karman 
frequency, drag and lift amplitudes. Based on numerical flow visualization, they 
conjectured that a lack of synchronization between the streamwise and spanwise vortices 
in the wake leads to the low frequency unsteadiness. Inoue and Yamazaki (1999) studied 
numerically both the unforced and sub-harmonic (of shedding frequency) forced far 
wakes of a circular cylinder for 140≤Re≤1000. While the mechanism involving merger of 
Karman vortices played a key role in forced wake transition, no clear evidence was found 
that this mechanism also leads to unforced wake transition. For an elliptic cylinder of AR 
= 0.5 with α = 900, Johnson et al. (2001) identified six different wake patterns for 
30≤Re≤250. The study indicates that the transition Re for the onset of shedding in far 
wake is associated with a peak in the Strouhal number and a minimum in the drag 
coefficient. In a subsequent numerical investigation, Johnson et al. (2004) demonstrated 
that the frequency of the secondary structures is not a multiple of the primary frequency 
and hence argued that the secondary structures arise out of an instability in the mean 
velocity profile. The two-dimensional numerical simulations and experiments conducted 
by Vorobieff et al. (2002) for Re<1000 show that the streamwise distance for the onset of 
second wake measured from a circular cylinder decays as Re-1/2. Saha (2007) investigated 
the developments with Re in the far wake of a vertical flat plate of AR = 0.125. The finite-
difference based two-dimensional analysis of Saha (2007) for Re = 30-175, identified 
various frequencies and also demonstrated that the steady far wake undergoes unsteady 
transition at Re = 145 marked by the presence of large scale vortical structures. Kumar 
and Mittal (2012) employed direct numerical simulations as well as global linear stability 
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analysis to investigate the origin of secondary vortex street in the far wake of a circular 
cylinder at Re = 150. They identified the streamwise location of the dominant modes in 
the wake that lead to the formation of secondary vortex street. They concluded that the 
far wake structures arise out of a convective instability. The study demonstrates that 
suppression of primary vortex street via a slip splitter plate placed suitably, can also 
suppress the large scale structures in far wake. 
For elliptic cylinders of AR = 0.2, 0.5 and 0.8, we report in the paper, results 
demonstrating the transitions in the far wake as function of α. For a fixed Re of 200, α 
varies between 00 and 900, in steps of 150. The present numerical investigation also 
explores the dependence of integral parameters on cylinder thickness and α. The effect of 
blockage (B = 0.20) on the development of secondary vortex street is studied for the AR = 
0.2, α = 900 configuration. A stabilized Petrov Galerkin finite-element method using 
equal order bilinear interpolation for velocity and pressure is employed.   
The outline of the rest of the article is as follows. In Section 2, the governing equations 
for incompressible fluid flow are reviewed. The finite-element formulation involving 
stabilization parameters is presented in Section 3. The definition of the problem and the 
finite-element mesh are described in Sections 4 and 5, respectively. Validation of the 
formulation, its implementation and convergence studies are discussed in Section 6. The 
main results are presented and discussed in Section 7. In Section 8, a few concluding 
remarks are made. 

2   The governing equations 

Let Ω∊n
sd be the spatial domain, where nsd = 2 is the number of space dimensions. The 

domain boundary Γ is assumed to be piecewise smooth. The spatial coordinates are 
denoted by x = (x, y). The equations governing the steady flow of an incompressible fluid 
of density, ρ, are: 
ρ(∂u/∂t +u.∇u- f) -∇.σ = 0  on   Ω            (1) 
∇.u = 0            on   Ω               (2) 
Here u = (u, v), f and σ denote the fluid velocity, body force per unit volume and the 
Cauchy stress tensor, respectively. The stress is the sum of its isotropic and deviatoric 
parts: 
σ = -pI +T, T = 2 μ ε(u), ε(u) = 0.5((∇u)+(∇u)T)        (3) 
where p, I, μ and σ are the pressure, identity tensor, dynamic viscosity of the fluid and 
strain rate tensor, respectively. Both, the Dirichlet and Neumann-type boundary 
conditions are accounted for and are represented as  
u = g on Γg , n.σ  = h on Γh,               (4) 
respectively, where Γg and Γh are complementary subsets of the boundary Γ, n is its unit 
normal vector and h is the surface traction vector. In the present simulations concerning 
low blockage, we have employed the towing tank boundary condition (see Figure 1a) on 
the lateral walls of the domain. This involves free-stream speed condition on the 
upstream as well as lateral boundaries. No-slip boundary condition is applied on the 
surface of the cylinder. At the downstream boundary, a Neumann condition for velocity is 
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specified that corresponds to stress-free condition. For high blockage, the inlet flow is 
fully developed and sidewalls represent no-slip boundaries. 
The initial condition on the velocity is specified on Ω at t = 0: u(x,0)= u0 on Ω, 
where u0 is divergence-free, i.e. u0 satisfies Equation (2). 

3   The finite-element formulation 

The spatial domain Ω is discretized into non-overlapping subdomains Ωe, e =1,2, ..., nel 
where nel is the number of elements. Let Su

h and Sp
h be the finite dimensional trial 

function spaces for velocity and pressure, respectively and the corresponding weighting 
function spaces are denoted by Vu

h and Vp
h. The stabilized finite-element formulation of 

the conservation Equations (1) and (2) is written as follows: 
find uh∊Su

h and ph∊Sp
h such that ∀ wh∊Vu

h, qh∊Vp
h 

∫ wh. ρ(∂uh /∂t +uh.∇uh - f) dΩ+ ∫ ε(wh):σ (ph,uh) dΩ + ∫ qh∇.uh dΩ

+∑
e= 1

n
el ∫ 1

ρ [ (τSUPG ρ(∂wh /∂t+ uh.∇wh)+τPSPG∇qh)].[ρ(∂uh  /∂t +uh .∇uh - f)-∇.σ (ph,uh )]

dΩe 

+∑
e= 1

n
el

∫ δ ∇.wh ρ ∇.uh dΩe  = ∫ wh.hh dΓ.        (5) 

In the variational formulation given by Equation 5, the first three terms and the right hand 
side constitute the Galerkin formulation of the problem. The first series of element level 
integrals are the SUPG (streamline-upwind/Petrov-Galerkin) and the PSPG (pressure-
stabilizing/Petrov-Galerkin) stabilization terms added to the variational formulations of 
the momentum and the continuity equations, respectively. At high Re, in an advection 
dominated flow, Galerkin formulation of the flow equations lead to oscillations in the 
velocity field. This numerical instability is overcome by adding SUPG stabilization terms. 
The SUPG formulation for convection dominated flows was introduced by Hughes and 
Brooks (1979) and Brooks and Hughes (1982). PSPG stabilization terms are added to the 
formulation to enable the use of equal order interpolation for velocity and pressure. 
Hughes et al. (1986) introduced the pressure stabilization methods in the context of 
Stokes flow and Tezduyar et al. (1992) generalized the method to flows at finite Re. More 
details of the finite-element formulation can be found in Tezduyar et al. (1992). 
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4   Problem set-up 

Figure 1: Re = 200 unsteady flow past elliptic cylinders: (a) problem definition for the 
unbounded case. Positive sign convention for the aerodynamic forces and moment is 
shown in (b). The moment is calculated about the center of the cylinder. 

The problem statement for unbounded flow past an elliptic cylinder is shown in Figure 1a. 
The center of the cylinder coincides with the origin of the Cartesian coordinate system. 
The angle of attack is measured clockwise with respect to the direction of incoming flow. 
To simulate unbounded flow, the domain width, H is fixed at 100a (thus, B = 0.01 for α = 
900 and B<0.01 for other values of α) and the towing tank condition is used at the 
sidewalls of the domain. The Reynolds number and Strouhal number, St are based on a 
and free-stream speed, U. For confined flow (B = 0.20), the velocity is set to zero at the 
sidewalls and a parabolic velocity profile is specified at the inlet: u = 1-(2y/H)2, v = 0. Re 
and St for this flow are based on the centerline speed. For all the computations, distances 
of the upstream and downstream boundaries measured from the center of the cylinder are 
Lu = 45a and Ld = 80a, respectively. Figure 1b illustrates the positive sign convention for 
the aerodynamic forces and moment. The instantaneous force (Cd, Cl) and moment (Cm) 
coefficients are defined as 

∫
cylΓ

x2d σdΓn
ρU

=C .2
, ∫

cylΓ
y2l σdΓn

ρU
=C .2

 and ∫
cylΓ

2m σrdΓn
aρU

=C .2
2  (6) 

Here nx and ny are the x and y components, respectively of the unit vector n normal to the 
cylinder boundary Γcyl and r is the radius vector of any arbitrary point located on the 
cylinder surface measured from the center of cylinder. 

5   The finite-element mesh 

For a representative AR of 0.5 and α of 450, Figure 2 shows the non-uniform finite-
element mesh consisting of bilinear quadrilateral elements and its close-up near the 
cylinder. The number of nodes and elements are 107976 and 107168, respectively and 
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remains constant for all the meshes used. The mesh has been constructed by combining 
five blocks; a central square block containing the cylinder and four neighbouring 
rectangular blocks located to the left, right, top and bottom of the central block. To 
efficiently resolve the secondary structures in the far wake, a sufficiently fine mesh is 
designed for the right side rectangular block. This block contains 18954 nodes and 18792 
elements. For every mesh, the number of nodes on the cylinder, Nt is kept constant at 464 
and radial thickness of the first layer of elements located on the cylinder, h1

r
 = 0.0005a. 

Figure 2: Unsteady flow past elliptic cylinders: (a) the non-uniform finite-element mesh 
for a 450 inclined elliptic cylinder of AR = 0.5 and (b) close-up of the central square block 
containing the cylinder. The mesh contains 107976 nodes and 107168 bilinear 
quadrilateral elements. 

6   Validation of method and convergence of results 

6.1   Comparison with the earlier studies 

In order to ascertain validity of the computed results, predicted time-averaged drag 
coefficient, 𝐶𝑑��� and vortex shedding frequency of elliptic cylinders of AR = 0.25 and 0.5 
for α = 900 are compared with those obtained by Johnson et al. (2001) at Re = 175 and 
200, respectively (see Table 1). The comparison in general reveals satisfactory agreement 
(the maximum difference is about 5% for 𝐶𝑑��� at Re = 200) between the two sets of results. 
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Table 1: Unsteady flow past elliptic cylinders of various AR with major axis oriented 
normal to the flow: comparison of the predicted 𝐶𝑑���  and St with those obtained by 
Johnson et al. (2001). 

Studies AR Re  𝐶𝑑��� St 

Johnson et al. (2001) 0.25 175 2.1814  0.1685 

Present 0.25 175 2.1006 0.1636 

Johnson et al. (2001) 0.5 200 1.9141 0.1955 

Present 0.5 200 1.8160  0.1889 

Detailed validation of computed results for unsteady flow past stationary elliptic 
cylinders has been recently discussed in Sourav and Sen (2017).  

6.2 Effect of spatial resolution 

To establish mesh independence of the computed results, the flow past a 450 inclined 
elliptic cylinder of AR= 0.2 is computed at Re = 200 on several meshes. Out of the many 
meshes, information on meshes M1 and M2 are listed in Table 2. The number of nodes 
and elements of M2 is roughly twice the ones used for M1. The non-dimensional time 
step size, ∆tU/a for the computations is 0.005. The results summarized in Table 2 indicate 
that the spatial resolution of M1 is sufficient to accurately predict the unsteady flow past 
elliptic cylinders.  

Table 2: Flow past an elliptic cylinder of AR= 0.2 at α = 450: effect of mesh resolution on 
the flow characteristics at Re = 200. The other parameters for this study are: Lu = 45a, Ld 
= 80a, h1

r = 0.0005a and ∆tU/a = 0.005. For M1, Nt = 464 and for M2, Nt = 672. The 
subscript r.m.s. implies root mean square of a quantity. 

Me
sh 

Nodes Elements 𝐶𝑑��� C𝑑𝑟𝑚𝑠 𝐶𝑙�  C𝑙𝑟𝑚𝑠 𝐶𝑚���� C𝑚𝑟𝑚𝑠 St

M1 107976  107168 1.2608  0.0750 0.8905  0.3106 0.1811  0.0355 0.2431 

M2 213254  212072 1.2616 0.0752 0.8956  0.3139 0.1811 0.0360 0.2427 

6.3 Effect of time step size 

To examine the effect of time step size on the flow characteristics, the Re = 200 flow past 
a 450 inclined elliptic cylinder of AR = 0.2 is computed on mesh M1 using ∆tU/a = 0.005 
and 0.0025. Table 3 summarizes the results and establishes the adequacy of ∆tU/a = 
0.005 for the present computations. Based on the spatial and temporal resolution tests, all 
computations in the present work are performed on mesh M1 using ∆tU/a = 0.005. 
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Table 3: Flow past an elliptic cylinder of AR = 0.2 at α = 450: effect of time step size on 
the flow characteristics at Re = 200. The computations are carried out on Mesh M1. 

∆tU/a 𝐶𝑑��� C𝑑𝑟𝑚𝑠 𝐶𝑙�  C𝑙𝑟𝑚𝑠 𝐶𝑚���� C𝑚𝑟𝑚𝑠 St

0.005 1.2608 0.0750 0.8905 0.3106 0.1811 0.0355 0.2431 

0.0025 1.2636 0.0755 0.8989 0.3125 0.1817 0.0354 0.2435 

7   Results 

Results are presented for unsteady flow at Re = 200 past elliptic cylinders of aspect ratios 
0.2, 0.5 and 0.8 as well as angles of attack between 00 and 900. Each numerical 
computation uses the corresponding steady flow solution at Re = 40 as the initial 
condition. The linearized algebraic equation system has been solved by GMRES or 
Generalized Minimal RESidual method (Saad and Schultz, 1986) in conjunction with a 
diagonal preconditioner. 

7.1   Flow characteristics: the integral parameters 

Figure 3: Re = 200 unsteady flow past elliptic cylinders of AR = 0.2-0.8: variation of the 
time-averaged (first row) and r.m.s. (second row) values of aerodynamic coefficients with 
α. 

For any orientation of an elliptic cylinder, amplitude of lift oscillation is the largest while 
moment oscillates with the smallest amplitude (Sen, 2010). Thus, relative amplitudes of 
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the aerodynamic coefficients suggest 𝐶𝑙𝑟𝑚𝑠> 𝐶𝑑𝑟𝑚𝑠, C𝑚𝑟𝑚𝑠. Figures 3(a,d) indicate that 
the time-averaged and r.m.s. drag of elliptic cylinders continue to increase with 
increasing α and attain the maxima when α = 900. For α≥600, 𝐶𝑑��� and 𝐶𝑑𝑟𝑚𝑠 increase with 
decreasing AR. As seen from Figure 3b, 𝐶𝑙�  of each cylinder initially increases with 
increasing α and then decreases. The average lift and moment vanish for symmetric 
configurations of α = 00 and 900. When α is fixed, the lift generated by a cylinder 
increases with decreasing thickness. Figure 3e demonstrates that 𝐶𝑙𝑟𝑚𝑠  for AR = 0.2 
displays a non-monotonic variation with α. Interestingly, a monotonic rise is seen for 
AR≥0.5. With α, 𝐶𝑚���� of each cylinder displays non-monotonic variation (Figure 3c) and 
r.m.s. moment coefficient, C𝑚𝑟𝑚𝑠 displays monotonic rise (Figure 3f) for α≥300. 
To analyze the primary vortex shedding characteristics, Fast Fourier Transform (FFT) is 
performed on the signals of aerodynamic coefficients. For each AR and α, the lift and 
moment coefficients are found to oscillate at the primary vortex shedding or Strouhal 
frequency. The drag coefficient in general, oscillates at twice the primary frequency. 
Exceptions to this are found for AR≤0.5 at low α. When α≤450, FFTs of Cd and Cl for AR 
= 0.2 lead to the same value of St. The power spectra of Cd and Cl for AR = 0.2, α = 450 
reveal three and two distinct peaks, respectively (Figures 4a and 4b). The dominant peak 
of each spectrum corresponds to the same frequency (St = 0.2431) and the drag-lift phase 
diagram consists of a single loop (Figure 4c). For AR = 0.5, values of St obtained from 
FFTs of Cd and Cl converge when α ≤300. Figures 4(d,e) illustrate for AR = 0.5 and α = 
900, the power spectra of Cd and Cl. For this case, the drag oscillates at twice the shedding 
frequency. Phase diagram for this configuration (Figure 4f) is of the shape of a distorted 
figure eight characterized by the presence of a cross-over point. Phase diagrams of 
Figures 4(c,f) are closed and ascertain periodic nature of flow. Dominance of the 
amplitude of lift over drag is also apparent from these plots. 
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Figure 4: Unsteady flow past elliptic cylinders at Re = 200: non-dimensional power 
spectra of the (a) drag, (b) lift coefficients and (c) the drag-lift phase diagram for AR = 
0.2, α = 450. Figures (d), (e) and (f) respectively plot the same quantities for AR = 0.5 and 
α = 900. 

Figure 5a indicates that St of an elliptic cylinder decays monotonically with increasing α. 
St of a thick cylinder (AR = 0.8) is relatively less sensitive to α. The decaying trend of St 
with α is opposite to the one observed for a square cylinder. Slow monotonic growth of St 
with increasing α was reported by Sohankar et al. (1998) for a square cylinder with 00≤α 
≤450. For α≤450, St decreases monotonically with decreasing AR. The trend reverses for 
α≥750. The predicted vortex shedding frequencies are in close agreement (maximum 
deviation being 2.26%) with those obtained by Sheard (2007) for AR = 0.5, α = 150 and 
300. The intervortex spacing along each row of the vortex street or primary wavelength, 
a1 is inversely proportional to the local St. In particular, a1/a = 1/St (Vorobieff et al., 
2002). Figure 5b suggests monotonic growth of a1/a with increasing α. a1/a of a cylinder 
attains the maximum when α  = 900. 
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Figure 5: Re = 200 unsteady flow past elliptic cylinders of AR = 0.2-0.8 in the 
unbounded medium: variation of (a) Strouhal number and (b) primary wavelength, a1/a 
with α. 

7.2   The evolution of wake with α 

We study the wake transition for a thin cylinder (AR = 0.2). To identify various 
frequencies, time histories of cross-flow component of velocity are recorded at 
sixteen locations in the wake along the x axis. The velocity probes are located at 
approximate downstream distances of 2a, 6a, 10a, 15a, 20a, 25a, 30a, 35a, 40a, 
45a, 50a, 55a, 60a, 65a, 70a and 75a, respectively measured from the cylinder center. 
To resolve the frequencies, about 218 data points are used for performing FFT of the 
cross-flow component of velocity. 
7.2.1   The instantaneous vorticity field 
Figure 6 shows that the flow is steady and vortex shedding is absent at low α, such as 00 
and 150. The flow becomes unsteady at some critical α between 150 and 300 and Karman 
vortex shedding from the cylinder ensues. When α = 300, the wake is comprised of two 
parts. The first part close to the cylinder is the Karman vortex street where the alternately 
shed vortices appear as concentric circles. In the second part, the vortices are deformed to 
elliptical cross-section and orient themselves with major axes parallel to the free-stream 
as observed by Durgin and Karlsson (1971). The mechanisms leading to the deformation 
of Karman vortices were explained by Durgin and Karlsson (1971) and later, Karasudani 
and Funakoshi (1994). These deformed vortices form two parallel and opposite signed 
shear layers on either side of the wake centerline that extend downstream and appear not 
to interact mutually. A markedly different wake pattern is observed as α approaches 450. 
The shear layers become unstable, begin mutual interaction and terminate well ahead of 
the domain exit. Also, width of individual shear layers increase relative to the width at α 
= 300. The secondary vortex street characterized by large scale vortical structures, width 
and wavelength than the primary, is seen to develop at x ≈ 50a. 
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Figure 6: Re = 200 unsteady flow past an elliptic cylinder of AR = 0.2 in an unbounded 
medium: instantaneous vorticity field for various values of α between 00 and 900. 
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Rapid decay of the streamwise extent of the shear layers is observed for α = 600. The far 
wake vorticity distribution for this configuration is characterized by the one-sided 
convection of the secondary vortex pairs (comprising of vortices of opposite signs) away 
from the x axis. With increasing α, breakdown of the primary vortex street occurs closer 
to the cylinder. The shear layers gradually shrink in streamwise extent and attain the 
minimum when α = 900. Consequently, the location of formation of secondary vortex 
street moves upstream. For α ≥750, the secondary vortices interact strongly with each 
other and group of three vortices form with two of them having the same sign. It is shown 
in Section 7.2.2 that a tertiary frequency of low magnitude appears in the far downstream 
for α≥750. When α = 900, the secondary structures are visible sufficiently close to the 
cylinder, the distance being of the order of 20a. The developments in the wake with α for 
a fixed Re appear analogous to the cases of transition of wake with Re for a cylinder of 
fixed orientation (Johnson et al., 2001; Johnson et al., 2004; Saha, 2007). Though not 
shown here, it is found that the location of formation of secondary vortices moves far 
downstream with increasing AR. 

7.2.2 The frequency distribution 

For α = 00 and 150, the flow is steady and vortex-shedding frequency is absent. The 
transverse velocity component for α = 300 is time periodic in the near wake and the 
fluctuations diminish at large distance downstream implying steady nature of the far 
wake (Figure 7a). The coexistence of unsteady near wake and steady far wake was earlier 
pointed out by Saha (2007) for the flow past a vertical flat plate at Re = 100. The wake 
state for α = 300 is characterized by the primary frequency alone. This is evident from 
Figure 7b which also demonstrates the weakening and eventual disappearance of the 
shedding frequency in the far wake. 

Figure 7: Re = 200 unsteady flow past a 300 inclined elliptic cylinder of AR = 0.2 in an 
unbounded medium: (a) time series of v velocity signals at x/a = 2 and 75, (b) normalized 
power spectra of v velocity at selected downstream locations along the x axis. 
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Figure 8 shows for α = 450 and 600, frequency characteristics at selected downstream 
locations. The secondary frequency first appears at α = 450 and when α is increased to 600, 
this frequency is realized relatively close to the cylinder. At the location of probes, Figure 
9 shows the power spectra of cross-flow component of velocity for α = 750. Associated 
with α≥750 are several additional frequencies. The most prominent among them is the low 
magnitude tertiary frequency that appears in the far wake. The tertiary frequency becomes 
the most dominant for x≥60a. 

Figure 8: Re = 200 unsteady flow past an inclined elliptic cylinder of AR = 0.2 in an 
unbounded medium: normalized power spectra of v velocity at various downstream 
locations for α = (a) 450 and (b) 600. 

Figure 9: Re = 200 unsteady flow past a 750 inclined elliptic cylinder of AR = 0.2 in an 
unbounded medium: normalized power spectra of v velocity at various downstream 
locations. 
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It is found that the values of primary shedding frequency obtained by performing FFTs of 
the time series of Cl and v are in excellent agreement. Values of various frequencies 
present in the wake are listed in Table 4. The primary frequency of a cylinder has the 
largest magnitude and the magnitude of tertiary frequency, if it exists, is the smallest. The 
secondary frequency has a magnitude intermediate to the ones for primary and tertiary. A 
non-monotonic variation of the secondary frequency with α is apparent from the table. In 
contrast, the primary frequency exhibits monotonic decrease with increasing α (also see 
Figure 5a). It is also evident from the table that the primary frequency is not a multiple of 
the secondary for α = 450, 750 and 900. Interestingly, for α = 600, the secondary frequency 
is a sub-harmonic of the primary. The primary frequency in most cases is not a multiple 
of the secondary frequency suggesting that the secondary vortices do not form out of 
interaction of the shed primary vortices (also see Karasudani and Funakoshi (1994) and 
Johnson et al. (2004)). The distribution of dominant frequencies is shown in Figure 10 for 
300≤α≤900. Among the primary, secondary and tertiary frequencies, secondary frequency 
exhibits the least sensitivity to α. 

Table 4: Flow past an elliptic cylinder of AR = 0.2 for α = 300-900: summary of various 
frequencies present in the wake at Re = 200. 

α Primary St Secondary St Tertiary St 
00 - - - 
150 - - 
300 0.2993 - - 
450 0.2434 0.0870 - 
600 0.1907 0.0954 - 
750 0.1640  0.0923 0.0519 
900 0.1569 0.0926 0.0271 

Figure 10: Re = 200 unsteady flow past an elliptic cylinder of AR = 0.2 in unbounded 
medium: distribution of dominant frequencies along the wake centerline for 300≤α≤900.  
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7.3   Effect of blockage on the far wake 

We next investigate the effect of channel confinement on the wake structures of the AR = 
0.2 cylinder at Re = 200. To meet this objective, a blockage of 0.20 is used (see 
Section 4). FFT of cross-flow component of velocity measured at all the sixteen 
probes leads to the same value of primary frequency (St = 0.2232). This value is 
significantly higher than the one for unbounded flow (St = 0.1569 from Table 4). 
As apparent from Figure 11, the primary frequency prevails over all locations along 
the wake centerline and the wake state is characterized by the absence of any other 
significant frequency. The immediate effect of blockage is therefore to suppress the 
formation of secondary vortex street. Absence of secondary vortices in the far wake 
is also evident from Figure 12 showing the instantaneous vorticity field. 

Figure 11: Confined flow (B = 0.20) past a perpendicularly oriented elliptic cylinder of 
AR = 0.2 at Re = 200: frequency distribution at various locations along the x axis.  

Figure 12: Instantaneous vorticity field at Re = 200 for the confined flow past an elliptic 
cylinder of AR = 0.2 and α = 900. For this figure, Ld = 80a and B = 0.20. 

In order to investigate if the imposition of blockage pushes the onset of secondary wake 
further downstream, computations are performed by doubling Ld, i.e. Ld = 160a while 
other parameters remain unaltered. Apart from the previously employed sixteen velocity 
probes, eleven more are placed along the wake centerline at approximate downstream 
distances of 82.5a, 90a, 97.5a, 105a, 112.5a, 120a, 127.5a, 135a, 142.5a, 150a and 
157.5a measured from the cylinder center. The frequency spectra presented in Figure 13 
for certain streamwise locations along the x axis, demonstrate monofrequency (St = 
0.2232) nature of the wake and establish that imposition of blockage can suppress the 
formation of secondary vortices. 
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Figure 13: Confined flow past a perpendicularly oriented elliptic cylinder of AR = 0.2 
at Re = 200: normalized power spectra of cross-flow component of velocity component 
at various locations along the x axis. For this figure, Ld = 160a and B = 0.20. 

8   Conclusions 

The transition of wake of elliptic cylinders with varying angle of attack (00≤α≤900) is 
investigated using a stabilized finite-element method. Results are presented for two-
dimensional simulations at Re = 200. Stationary elliptic cylinders of aspect ratios 0.2, 0.5 
and 0.8 are considered. For each AR and α, the lift coefficient oscillates with the largest 
amplitude. The smallest amplitude oscillations are in general associated with moment 
coefficient. The r.m.s. value of lift exceeds the ones for drag and moment. Irrespective of 
AR, the time-averaged and r.m.s. drag increase monotonically with increasing α. In 
contrast, the time-averaged lift and moment initially increase and then decrease. With 
increasing α, the primary shedding frequency of each cylinder continues to decay and the 
primary wavelength exhibits a reverse trend. In general, the shedding frequency obtained 
via FFT of lift is half the value obtained from FFT of drag. Interestingly, both FFTs lead 
to the same frequency for AR≤0.5 at low α. For AR = 0.2, the flow is steady for α = 00 and 
150. An unsteady wake characterized by Karman vortices and associated primary 
frequency, is seen as α increases to 300. The large scale secondary structures appear first 
when α = 450. The secondary frequency is also captured first at this incidence angle. For 
α≥750, analysis of power spectra shows the existence of a low magnitude tertiary 
frequency in the far wake. Compared to the primary and tertiary counterparts, secondary 
frequency displays lesser sensitivity to α. For most of the angles of attack studied, the 
secondary frequency is not a sub-harmonic of primary, signifying that the secondary 
structures do not form due to coalescence of primary vortices. For each AR, the location 
of formation of secondary structures moves upstream with increasing angle of attack. 
When α is fixed, similar behaviour is observed with decreasing cylinder thickness. For 
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confined flow, the instantaneous vorticity field and power spectra of transverse velocity 
suggest that blockage suppresses the formation of secondary vortices. 
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