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1 Introduction

Microscopic traffic simulations are useful for solving various traffic-related prob-
lems, e.g. traffic jams and accidents, local and global environmental and energy
problems, maintenance of mobility in aging societies, and evacuation planning for
natural as well as man-made disasters. To use such microscopic traffic simulators,
we need to input various types of traffic data. Data is typically input as an origin-
destination (OD) matrix, which describes demands between origin-destination pairs
in a traffic network, and is particularly necessary in microscopic simulators. Since
the OD matrix cannot be observed directly, it has to be estimated in some way.
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The approaches for OD matrix estimation can be roughly classified into two cate-
gories. The first is based on the population distribution. This approach is commonly
used for traffic and civil planning using the four step model [McNally (2008)].
Since the population distribution is derived from traffic census data, we do not have
to measure the actual traffic flow. However, the resolution of the census data is low,
and the accuracy of the estimated results is not guaranteed.

The second approach is an inverse analysis of the link traffic volume data. Link traf-
fic volume is the traffic volume counted at a fixed location. This approach is usually
more accurate. Here, the OD matrix is optimized by minimizing the distance be-
tween the observed and estimated link traffic volume. This can be accomplished
with a bi-level programming approach [Bera and Rao (2011)].

The inverse analysis approaches can be classified into two categories depending
on the method used to solve the direct problem involved in the estimation process.
Here, the direct problem refers to the assignment from the OD matrix to the link
traffic volume. The solution of the direct problem can be obtained analytically, or
approximated with the equilibrium assignment algorithm [Larsson and Patriksson
(1992)]. Estimation of the OD matrix using this assignment algorithm was shown
to be effective for large-scale road networks [Lundgren and Peterson (2008)]. For
dynamic estimates, Off-line time-sliced OD estimation based on dynamic equi-
librium, which is similar to the static OD estimation method, has been proposed
[Barceló and Montero (2015)]. However, owing to the differences in network han-
dling, the results of the equilibrium algorithm may not be compatible with the traffic
simulator. The alternative is to use the traffic simulator to solve the direct problem.
However, this latter method requires a high computational cost. Few studies have
been conducted on the use of the traffic simulator for solving the direct problem, so
the stability and robustness of the subsequent results are unclear.

In this paper, we newly propose an OD matrix estimation method using a micro-
scopic traffic simulator. We then examine the accuracy and stability of our results
for the inverse analysis.

2 Method

2.1 Outline of method

An outline of our method is shown in Figure 1.

The proposed method consists of the following steps: (1) calculating link traf-
fic volume from the OD matrix, and (2) updating the optimal OD matrix solu-
tion. In step (1), a multi-agent based microscopic traffic simulator “ADVEN-
TURE_Mates(MATES)” [Yoshimura (2006); Fujii, Yoshimura, and Seki (2010)]
is used. In step (2), we use the Levenberg-Marquardt gradient method. After cal-
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Figure 1: Flow diagram of the proposed method for estimating the OD matrix

culating link traffic volume, the residuals of the link traffic volume are calculated.
The optimal estimated OD matrix is updated using these residuals. These steps are
iterated until the estimated OD matrix converges to a tolerance level.

2.2 Formulation

The OD matrix is estimated so as to minimize the residual norm of the link traf-
fic volume between the estimated and the observed values. This process can be
expressed as follows:

F = ∥rrr∥2 → min. (1)

where

rrr = Q̄QQ− Q̂QQ(xxx) (2)

and The traffic simulation is used to evaluate Qˆcorresponds to the traffic simulation, 
where link traffic volume is calculated from the OD matrix xxx.
We now define the dimensions of the vectors. N denotes the dimension of xxx, i.e. the
number of OD pairs, and M is the dimension of QQQ, i.e. the number of observation
points. In general, N > M. Therefore, in the OD matrix estimation, we have to
estimate more variables from smaller datasets.
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xxx : OD matrix (as a form of vector)
rrr : Residual (vector) of link traffic volume
Q̄QQ : Observed link traffic volume (vector)
Q̂QQ(xxx) : Estimated link traffic volume (vector)

In this paper, we use Euclid norms. If the variance and covariance of the observed
link traffic volume are known and we use the Mahalanobis distance to calculate the
norms, we can regularize the residuals, with consideration of the variance and co-
variance. However, this requires multiple observation of the traffic volume, which
takes much observation cost. Therefore we assume that there is no variance and
covariance in the observed link traffic volume data, and we employ Euclid norms.

For simplicity, we assume that the traffic flow is in a steady state and the relation
between the OD matrix and the link traffic volume is linear. The assumption of
such a linear relation is appropriate if traffic congestion does not occur. Here, the
linear relation means that we can describe the relation in Equation 3 using a matrix
JJJ.

Q̂QQ = JJJxxx (3)

In this study, we use the observed link traffic volume data which satisfies Equation
3. The assumption of a steady state means that both the OD matrix and the link
traffic volume are stationary in time. This assumption is reasonable if an appropri-
ate time period is used, e.g. a short time period where a drastic change in traffic
flow does not occur.

JJJ in Equation 3 corresponds to the Jacobian matrix of F with respect to xxx, which is
an M ×N matrix. Since this system has no explicit constitutive equation, we have
to approximate JJJ. The value of JJJ is estimated as in Equation 4 using the results of
the traffic simulator.

Ji, j =

{
1 (when the link i is included in the route of OD pair j)
0 (otherwise)

(4)

Since a change in xxx corresponds to that in the route choice, we re-evaluate JJJ at each
iteration.

2.3 Modification of simulator

MATES is a multi-agent microscopic traffic simulator, which models individual
driver behavior. This is useful for modeling individual vehicles on the microscopic
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scale and for extrapolating traffic flow on the macroscopic scale in a form of the
emergence phenomena. Since MATES uses OD matrix as input data and outputs
link traffic volume, we use this simulator to calculate link traffic volume from OD
matrix.

In order to model individual driver behavior, stochastic elements are necessary, so
MATES simulates random numbers using some random seeds. In this study, we fix
these random seeds to make MATES deterministic for simplicity.

In addition, the original version of MATES generates vehicles according to a Pois-
son distribution whose rate parameter corresponds to the OD traffic volume, i.e. the
element of the OD matrix. However, when using a Poisson distribution, the number
of generated vehicles in fixed interval of time is not always equal to that described
in the OD matrix, which causes stochastic error in the OD estimation. Here, we
modify the method to generate vehicles at fixed time intervals corresponding to
the OD traffic volume. The number of generated vehicles thus is guaranteed to be
exactly equal to the OD traffic volume.

2.4 Solution updating step

The OD matrix is updated using one of the gradient methods. This updatng step is
given in the following general form:

xxx(k+1) = xxx(k)+α∆xxx(k) (5)

where

α : Search length coefficient
∆xxx : Search direction vector
•(k) : Variable for iteration step k

In this study, we use the Levenberg-Marquardt method (LMM) [Levenberg (1944);
Marquardt (1963)]. The definition of ∆xxx in the LMM is given as follows:

∆xxx = −HHH−1GGG (6)

where

GGG : Gradient of F with respect to xxx ; GGG =−JJJT rrr
HHH : Hessian matrix of F with respect to xxx.

The steepest decent method (SDM) is commonly used in optimization problems,
because it only requires a gradient matrix as input. However, the rate of conver-
gence is slower than other methods. On the other hand, the LMM is based on the
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Gauss-Newton method (GNM) and is applicable to nonlinear problems. In this
method, the Hessian matrix is assumed to be the product of Jacobian matrices:
HHH = JJJT JJJ. However the GNM can only be applied when N < M. In the LMM, the
Hessian matrix is regularized as in Equation 7

HHH = JJJT JJJ+λDDD (7)

where λ denotes a regularization parameter for LMM and DDD denotes a diagonal
matrix, e.g., the identity matrix. The addition of the diagonal matrix makes the
Hessian matrix non-singular, so that its inverse can be calculated. Marquardt pro-
posed initially setting λ to a large value and decreasing λ with successive iterations
[Marquardt (1963)]. If λ becomes zero, Equation 7 is equivalent to the updating
scheme for the GNM. If λ is sufficiently large, the search direction approaches
that of the SDM. According to Marquardt’s proposal, the initial iteration steps have
the robustness of SDM, and the later iteration ones have the high rate of conver-
gence of the GNM. In this study, evaluating F is computationally expensive. Thus,
we decrease λ from an initial value λ0 (> 0) at constant rate γ (0 < γ < 1) with
successive iterations as follows:

λ = λ0γk (8)

The convergence is judged comparing relative residual norm (RRN) ∥rrr∥/∥Q̄QQ∥ and
a tolerance ε . Since RRN is regularized by observed link traffic volume Q̄QQ, it can
be compared among different networks.

2.5 Introduction of non-negative constraints into the estimation method

Non-negative constraint of traffic volume is necessary for OD estimation. When
the OD matrix satisfies the constraint, the link traffic volume then satisfies it. Thus
it is sufficient to apply the constraint only to OD matrix. Since the original LMM
has no constraint for variables, we have to introduce it into the LMM. We propose
the following two kinds of methods to do so.

First, we describe the common assumption in both the methods. In this study, we
make the non-negative constraint stricter, i.e. for all elements i, xi > δ , where δ is a
small value and is larger than zero. The reason is that too small OD traffic volume
causes some estimated link traffic volume to be zero. If it occurs, some elements
of Jacobian matrix become zero, then the zero elements are propagated to some
elements of ∆xxx. Consequently, the search direction gets limited.

Next, we describe the methods in sequence. The first, named method A, is de-
signed to satisfy the constraint strictly. Here, the initial value of α is set to 1.
If xk

i + ∆xk
i < δ for any element i, α is modified to be so smaller as to satisfy
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xk
i +∆xk

i = δ for all elements i. It does not modify the search direction from that
given in the LMM. Nevertheless, it is expected to that residuals stop decreasing
within insufficient large values because α becomes smaller toward zero with suc-
cessive iterations.

The second, named method B, is the method using heuristics. Here, the search
length coefficient α is fixed to be 1 strictly. After the solution updating step, the
updated xi is forcibly modified to be δ individually when xi < δ for any index i.
Although it makes different search direction from that in the LMM, since α does
not become zero, iteration is expected not to halt except the convergence.

We discuss these characteristics of the two methods in Section 4.

3 Numerical experiments

3.1 Outline of experiments

Before using the proposed method we describe previously, we have to determine the
following two things; the optimal tolerance for convergence ε and which method
to be used for the non-negative constraint. To determine them, it is necessary to use
some evaluation index which can be discussed in terms of traffic engineering, e.g.
the proportion of reproduced link traffic volume to observed one and the correlation
coefficient between reproduced and observed link traffic volume. Here, we apply
the proposed method to some cases considering observed link traffic volume with
and without noise. Using these results, we determine these two things and discuss
accuracy, stability and characteristics of each case or method.

3.2 Networks used for experiments

In the numerical experiments, we use two types of road networks, i.e. grids or road
maps. The first map is a regular grid with simple topology, shown in Figure 2(a). In
the figure, each line corresponds to a link. Numerical instabilities may arise when
solving symmetric maps. Therefore, we slightly displace all grid nodes in a random
manner. In this map, each link has 2 lanes, and all intersections have traffic signals.

The second map is an actual road network topology, i.e. a 3 km x 3 km area in
Tokyo. The map is shown in Figure 2(b). This map includes one way links, so that
the number of OD pairs N is less than n(n−1), where n denotes the number of OD
nodes.

The properties of these networks are shown in Table 1. In the table, detectors are the
points at which link traffic volume is measured in a simulation. As a general rule in
this study, detectors are located on all links, 5 m from the end point. Consequently,
there are twice as many detectors as links.
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(a) Artificial road network (b) Actual road network in Tokyo

Figure 2: Networks used for experiments

Table 1: Network properties

Number of Number of Number of OD traffic volume xi

Map OD nodes OD pairs detectors which satisfies linearity
N M Unit: veh/h

Regular grid 12 132 48 ≤ 30
Tokyo 3 km 26 600 222 ≤ 14

3.3 Initial conditions for experiments

The parameters used in the experiments are shown in Table 2.

Table 2: Initial conditions in the experiments

Symbol Definition Value
λ0 Initial value of λ 10
γ Reduction rate of λ 0.25

Next, we consider the observed link traffic volume. In this study, we use a simulated
dataset in advance in all experiments. To generate this link traffic volume, we run
the traffic simulator using OD matrices which satisfy the assumption of linearity
described in Section 2.2. The results are given in Table 1. Since the data has been
simulated under these conditions, the existence of the solution is guaranteed.

Using this data as a reference case, we can consider other cases where artificial
noise has been added to the data in Table 1, to examine the accuracy and stability
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of the proposal method. Noise is added to the networks as follows.

Q̄QQNoiseIncluding = Q̄QQ+δδδ (9)

Here, δδδ is a noise vector, where each element i follows a uniform distribution whose
upper and lower limits are within ±10% of Q̄i, For the experiments with each map,
10 kinds of observed link traffic volume are prepared using 10 different random
seeds.

4 Results and Discussions

4.1 Experiments on the regular grid

First of all, we apply the proposed method to the regular grid. As mentioned in
Section 3.1, we apply both of the two methods of the non-negative constraint, i.e.
methods A and B.

We apply the methods to the cases with and without noise. RRN transitions in these
cases are shown in Figures 3 and 4 . The x-axis denotes the number of iteration
counts, while the y-axis is the RRN on the logarithmic scale. Red and green lines
denote the methods A and B, respectively.
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Figure 3: RRN transition in the regular grid without noise

These figures show that RRN transitions in both the methods A and B decrease in
the same rate until early iteration steps, i.e. 6th iteration step without noise and
2nd iteration step with noise. The reason is that all elements of OD matrices are
positive until those steps. Since the methods A and B consider both non-negative
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Figure 4: RRN transition in the regular grid with noise

constraints, there is no difference unless the constraints are applied to the solution
updating step. On the other hand, RRNs in method B shows different transition
between the cases with and without noise. The RRN in the case without noise
oscillates, while the RRN in the case with noise almost continuously increases
after the RRN becomes minimum. This difference is caused by the difference of
the number of the elements to which the non-negative constraint is applied in OD
matrices. If the non-negative constraint is applied for an element in OD matrices,
its value approaches δ . Thus, the number of the elements of xi = 1 denotes the
number of the elements to which the constraint is applied. Here, we show the
results in Figure 5.

This figure shows that there is a difference in the number of the elements of xi = 1
between the cases with and without noise. In the case without noise, the number
oscillates in small, i.e. from 0 to 3, while in the case with noise, the number in-
creases almost continuously. As a result, the case with noise has more elements
to which the constraint is applied than the case without noise. This suggests that
the situation of the regular grid without noise has much simplicity and stability in
iterative solution search.

To discuss the reasonable tolerance for convergence ε and the characteristics in
estimated link traffic volume, we confirm the estimated link traffic volume using
the minimum RRN in the following cases: method A without noise, method B
without noise and method B with noise. These are considered with the difference
of scale of minimum RRN among the cases. All the results are shown in Figure



Inverse Analysis of Origin-Destination matrix 81

0

5

10

15

20

25

30

35

40

45

0 3 6 9 12 15

N
u

m
b

e
r 

o
f 

c
o

m
p

o
n

e
n

ts
 x

_
i=

1

Iterations

Without noise
With noise

Figure 5: Transition of the number of the elements of xi = 1 in the regular grid

6. The x-axis denotes observed link traffic volume Q̄QQ, while the y-axis is the link
traffic volume estimated from the OD matrix Q̂QQ. The approximate straight line is
fixed at the origin point.

These figures of Estimated link traffic volume shows following two evaluation in-
dexes: gradient of approximate straight line a and correlation coefficient R. The
gradient of approximate straight line a shows the scale of estimated link traffic vol-
ume. If a equals to 1, it suggests that the scales of observed and the estimated link
traffic volume are same. The scale of the estimated link traffic volume is higher
than the observed one if a is greater than 1, otherwise the scale is lower. The corre-
lation coefficient R shows the dispersion of accuracy of reproduction. If R equals to
1, the following relation is satisfied: Q̂QQ = aQ̄QQ. On the other hand, if some elements
of link traffic volume are plotted away from approximate straight line, R becomes
lower.

In terms of these evaluation indexes, the values of a in all of these cases equal to 1
in error by at most 0.006. The values of R in all cases also equal to 1 in error by
at most 0.004. This high correlations arise from the characteristic that the LMM
weights residuals equally. These results suggest the accuracy in these cases are the
same or higher than 99% in proportion of the estimated link traffic volume to the
observed one. Since these errors are sufficiently small to ignore and the highest
RRN in these cases is 2.96× 10−2 at that time, it is sufficient to set convergence
coefficient ε to 0.03.
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(a) Method A without noise; RRN = 4.54×10−3

at 10 iterations
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(b) Method B without noise; RRN = 6.28×10−3

at 7 iteratins
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(c) Method B with noise; RRN = 2.96×10−2 at
2 iterations

Figure 6: Estimated link traffic volume for the regular grid

4.2 Application to an actual road network

Next, we apply the proposed method to an actual road network, i.e. a 3 km x 3 km
area in Tokyo. We show the RRN transitions in the cases with and without noise in
Figures 7 and 8.

In this map, RRN transitions in both the two cases are alike. Until early several
iteration steps, RRNs in method B are smaller than those in method A, while after
that, RRNs in method B become larger than those in method A. The increase of
RRNs in method B is explained by the same reason mentioned in Section 4.1, i.e.
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Figure 7: RRN transition for the 3 km x 3 km area in Tokyo without noise
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Figure 8: RRN transition for the 3 km x 3km area in Tokyo with noise

the increase of the elements of xi = 1 in OD matrices. Actually, in this map, the
transitions of the number of the elements of xi = 1 are similar to the green line in
Figure 5 in both of the cases with and without noise. We show it in Figure 9.

On the other hand, these results are different from those in the regular grid, where
RRNs are the same in method A and B at early several iteration steps. This suggests
that in method A, the search length α approaches zero at early few iteration steps
and therefore the RRNs decrease insufficiently. Actually, unlike in the regular grid,
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Figure 9: Transition of the number of the elements of xi = 1 for the 3 km x 3 km
area in Tokyo

the non-negative constraint is applied to OD matrices at only the first iteration in
Tokyo map. This is caused by the large number of variables in OD matrices in
Tokyo map.

For method B, the iteration steps when RRNs become minimum are alike as fol-
lows: 3rd iteration steps in the case without noise and 2nd iteration steps in the case
with noise. These values are almost the same as that in the regular grid with noise,
whose value is 2, and these are all small number. Therefore the results suggest that
even if not adding noise, solution search is more difficult in Tokyo map than in the
regular grid, which is also caused by the large number of variables.

In terms of minimum RRNs, as similar as the regular grid, there is some difference
between in the cases with and without noise. Here, we show the estimated link
traffic volume when RRN is minimum in the following cases, considering the scale
of minimum RRN: method A without noise, method B without noise, method A
with noise and method B with noise. All the results are shown in Figure 10.

These figures show that the gradient of approximate straight line a is distant from 1
when method A is used, i.e. 0.852 without noise and 0.618 with noise. On the other
hand, when method B is used, a equals to 1 in error by at most 0.022 as like as in
the regular grid. The correlation coefficient R almost equals to 1 for all constraint
methods and cases about noise. These results suggest method B is more applicable.
Then, the accuracy is the same or higher than 97% in proportion of estimated link
traffic volume to observed one. Even though this value is less than that in the regular
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(a) Method A without noise; RRN = 0.152 ×
10−2 at 5 iterations
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(b) Method B without noise; RRN = 3.56×10−2

at 3 iterations
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(c) Method A with noise; RRN = 0.384 at 2 iter-  
     ations
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(d) Method B with; RRN = 7.90× 10−2 at 2 it-
erations

Figure 10: Estimated link traffic volume for the 3 km x 3 km area in Tokyo

grid, this is expected to be still sufficiently accurate. Consequently, it is sufficient
to set the tolerance for convergence ε to 0.8, where only method B converges.

5 Conclusions

We newly proposed an OD estimation method using a traffic simulator, whose re-
sult is designed to be suitable for use of the simulator directly. In addition, we
introduced two kinds of approaches of applying non-negative constraints to the
proposed method. Through numerical experiments, we demonstrated the validity
of the method. The estimated link traffic volume is strongly correlated with the ob-
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served link traffic volume. This is due to the iterative process in the LMM. When
we introduce the non-negative constraint into our method, the one using heuristics
is found to be effective and gives smaller RRN. Then, the tolerance for convergence
for the RRN is found to set 0.08, when the estimated link traffic volume has 97%
or more accuracy to the observed one. To improve the accuracy, especially even if
the number of observation points becomes smaller, it is necessary to improve the
method of non-negative constraint in terms of heuristics. In future work, we plan to
examine the accuracy and stability of the proposed method with fewer dataset and
to consider the state of congestion.

Acknowledgement: This work was supported by JSPS KAKENHI Grant Num-
ber 15H01785.

References

Barceló, J.; Montero, L. (2015): A Robust Framework for the Estimation of
Dynamic OD Trip Matrices for Reliable Traffic Management. Transportation Re-
search Procedia, vol. 10, pp. 134–144.

Bera, S.; Rao, K. (2011): Estimation of Origin-Destination Matrix from Traffic
Counts: the State of the Art. European Transport - Trasporti Europei, vol. 49, pp.
3–23.

Fujii, H.; Yoshimura, S.; Seki, K. (2010): Multi-agent Based Traffic Simulation
at Merging Section Using Coordinative Behavior Model. Computer Modeling in
Engineering and Sciences, vol. 63, no. 3, pp. 265–282.

Larsson, T.; Patriksson, M. (1992): Simplicial Decomposition with Disaggre-
gated Representation for the Traffic Assignment Problem. Transportation Science,
vol. 26, no. 1, pp. 4–17.

Levenberg, K. (1944): A Method for the Solution of Certain Non-Linear Prob-
lems in Least Squares. The Quarterly of Applied Mathematics, vol. 2, pp. 164–168.

Lundgren, J. T.; Peterson, A. (2008): A Heuristic for the Bilevel Origin-
Destination-Matrix Estimation Problem. Transportation Research Part B: Method-
ological, vol. 42, pp. 339–354.

Marquardt, D. W. (1963): An Algorithm for Least-Squares Estimation of Non-
linear Parameters. Journal of the Society for Industrial and Applied Mathematics,
vol. 11, no. 2, pp. 431–441.



Inverse Analysis of Origin-Destination matrix 87

McNally, M. G. (2008): The Four Step Model. Center for Activity Systems
Analysis.

Yoshimura, S. (2006): MATES: Multi-Agent Based Traffic and Environment
Simulator-Theory, Implementation and Practical Application. Computer Modeling
in Engineering and Sciences, vol. 11, no. 1, pp. 17–25.




