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Plane Vibrations in a Transversely Isotropic Infinite Hollow 

Cylinder Under Effect of the Rotation and Magnetic Field 

F. S. Bayones1 and A. M. Abd-Alla2 

Abstract: The aim of this paper is to study the effects of rotation and magnetic field on 

the plane vibrations in a transversely isotropic material of an infinite hollow cylinder. The 

natural frequency of the plane vibrations in the case of harmonic vibrations has been 

obtained. The natural frequencies are calculated numerically and the effects of rotation 

and magnetic field are discussed. The numerical results obtained have been illustrated 

graphically to understand the behavior of frequency equation with different values of 

frequency  under effects the rotation and magnetic field. Comparison was made with 

the results obtained in the presence and absence of the rotation and magnetic field. The 

results indicate that the effect of rotation and magnetic field are very pronounced. 

Keywords: Plane transversely isotropic, rotating, magnetic field, homogeneous, 

transversely isotropic, Natural frequencies. 

1   Introduction 

The analysis of the dynamic problems of elastic bodies is an important and interesting 

research field for engineers and scientists. It is concerned with determining the strength 

and load carrying ability of engineering structures, including buildings, bridges, cars, 

planes, and thousands of machine parts that most of us never see. It is especially 

important in the fields of mechanical, civil, aeronautical and materials engineering.  

However, little attention has been given to the problem of the wave propagation in the 

isotropic circular cylinder. Boukhari et al [Boukhari et al. (2016)] studied an efficient 

shear deformation theory for wave propagation of functionally graded material plates. 

Tounsi et al [Tounsi et al. (2016)] investigated a new simple three-unknown sinusoidal 

shear deformation theory for functionally graded plates. Yahia et al [Yahia et al. (2015)] 

discussed the wave propagation in functionally graded plates with porosities using 

various higher-order shear deformation plate theories. Bellifa et al [Bellifa et al. (2016)] 

investigated the bending and free vibration analysis of functionally graded plates using a 

simple shear deformation theory and the concept the neutral surface position. Draiche et 

al [Draiche et al. (2016)] studied a refined theory with stretching effect for the flexure 

analysis of laminated composite plate. Mahmoud et al [Mahmoud et al. (2011)] 

investigated the effect of the rotation on the radial vibrations in a non-homogeneous 
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orthotropic hollow cylinder. Abd-Alla et al. [Abd-Alla et al. (2008)] studied the effect of 

the non-homogenity on the composite infinite cylinder of isotropic material. Bourada et 

al. [Bourada et al. (2015)] studied a new simple shear and normal deformations theory for 

functionally graded beams. Gaoab et al [Gaoab et al. (2013)] investigated the wave 

propagation in poroelastic hollow cylinder immersed in fluid with seismoelectric effect 

Hebali et al. [Hebali et al. (2014)] investigated the a new quasi-3D hyperbolic shear 

deformation theory for the static and free vibration analysis of functionally graded plates. 

Hou et al. [Hou et al. (2006)] discussed the transient responses of a special non-homogeneous 

magneto-electro-elastic hollow cylinder for axisymmetric plane strain problem. Bennoun et al 

[Bennoun et al. (2016)] studied a novel five variable refined plate theory for vibration analysis 

of functionally graded sandwich plates. [Bounouara et al.  [Bounouara et al. (2016)] 

studied a nonlocal zeroth-order shear deformation theory for free vibration of functionally 

graded nanoscale plates resting on elastic foundation. Meziane [Meziane (2014)] investigated 

an efficient and simple refined theory for buckling and free vibration of exponentially graded 

sandwich plates under various boundary conditions. Marin and Lupu [Marin and Lupu (1998)] 

investigated the harmonic Vibrations in Thermoelasticity of Micropolar Bodies. Marin 

[Marin (2010)] studied the domain of influence theorem for microstretch elastic materials. 

Marin [Marin (2010)] discussed the harmonic vibrations in thermoelasticity of microstretch 

materials. Marin [Marin (1997)] investigated the weak solutions in elasticity of dipolar 

bodies with voids. Hutchinson and El-Azhary [Hutchinson and El-Azhary (1986)] 

investigated the vibrations of free hollow circular cylinder. Abd-Alla and Farhan [Abd-

Alla and Farhan (2008)] studied the effect of the non-homogeneous on the campsite 

infinite cylinder of isotropic material. Chen [Chen et al. (2005)] studied the free vibration 

of non-homogeneous transversely isotropic magneto-electro-elastic plates. Buchanan 

[Buchanan (2003)] discussed the free vibration of an infinite magneto-electro-elastic 

cylinder. Abd-Alla et al. [Abd-Alla et al. (2015)] investigated the wave propagation in 

fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The extensive 

literature on the topic is now available and we can only mention a few recent interesting 

investigations in Refs. [Abd-Alla and Mahmoud (2012), Abd-Alla, et al.( (2013), (2017)), 

Bayones and Abd-Alla (2017)]. 

The main objective of the present research is to determine the eigenvalues of the natural 

frequency of the transversely isotropic infinite hollow cylinder for different boundary 

conditions in the cases of harmonic vibrations under effect the in rotation and magnetic 

field after determining the displacement components and stress components. The numerical 

results of the frequency equation are discussed in detail for homogeneous material and 

the effect of rotation and magnetic field for different cases by figures.  

2   Formulation of the problem 

Let us consider the electromagnetic field governs by Maxwell equations, under consideration 

that the medium is a perfect electric conductor taking into account absence of the 

displacement current (SI) in the from is in Abd-Alla and Mahmoud (2012). 
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where h


 the perturbed magnetic field is over the primary magnetic field E
  is the electric 

intensity, 
J
  is the electric current density, 

e  is the magnetic permeability, H is the  

constant primary magnetic field and u  is there a displacement vector. Consider a 

homogeneous and isotropic elastic solid with a circular hollow cylinder of inner radius 

and outer radius b through a transversely isotropic material of Infinite extent. Taking the 

cylindrical polar coordinates such that the z-axis Pointing vertically upward along the 

axis of the cylinder. The stresses displacement relations for homogeneous cylindrical 

transversely isotropic materials in two dimensions are in the form  
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where  

23132211 , cccc   

The elasto-dynamic equations in rotating medium as: 
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where rf  and zf  are Lorenz’s force-are defined by  

























zr

u

r

u

r

u

rr

u
Hf zrrr

er

2

22

2

2

0

1
                                                              (14) 




















2

22
2

0
z

u

zr

u
Hf zr

ez                                                                                       (15) 

Substituting from Eqs.(1)-( 10) into Eqs.( 12) and (13), we  
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3  Solution of the problem 

By [Morse and Feshbach (1953)], is the displacement vector u  can be written 

,u                                                                   (19) 

where the two functions   and   are known in the theory of elasticity, by Lame’s 

potentials rotational and rotational parts of the displacement vector u  respectively. The 

cylinder being bounded by the curved surface, therefore the stress distribution includes 

the effect of both   and . It is possible to take only one component of the vector   to 

be nonzero as  
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From Eqs.(16) and (17), we obtain  

,
zr

u
r












                                                                                                         (21) 

 
rrz

u
z












 .                                                                                                 (22) 

Substituting from Eqs. (21) and (22) into Eq. (16), we get two independent equations for 

  and    as follows: 
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To study the propagation of harmonic waves in the z-direction, we assume a solution in 

the form 

)()](,[),,](,[ tziertzr                                                                                (25) 

where    is the wave number,   is the angular frequency.                                

Substituting from Eq. (25) into Eqs. (23) and (24) we have      
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The solution of Eqs. (26) and (27) can be written in the following form: 
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where A1, A2, B1 and B2 are arbitrary constants, 0J and Y0  are Bessel functions of the first 

and second kind of order zero, respectively, 
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Y  denote cylindrical Bessel’s functions 
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Substituting from Eqs.(31) and (32) into Eqs.(21) and  (22) we obtain 
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In the following sections of the hollow circular cylinders with three different boundary 

conditions are performed. 

4   Boundary conditions and frequency Equations  

In this case, we are going to obtain the frequency equation for the boundary conditions.  
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 To make all the quantities in (33)-(39), where k,  do there frequency dimensions. 

4.1   Plane vibrations cylindrical body-free surface traction: 

In this case, we have 
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These are a set of four homogeneous algebraic equations involving four unknown integration 

constants 211 ,, ABA and 2B .For a nontrivial solution of these equations, the determinant 

of the coefficient matrix must vanish. The zero determinant of the coefficient matrix will 

give the frequency equation for the surface waves. Thus, elimination of these unknowns 

would give us the frequency equations  
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The roots of Eq. (46) gives the values of natural frequency for the free surfaces of the 

cylinder.  

                 

             

Figure 1: Variation of with respect to frequency with effect and neglect respectively 

of rotation   and magnetic field H .  
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These are a set of four homogeneous algebraic equations involving four unknown  integration 

constants 211 ,, ABA and 2B .The condition for a nontrivial solution of these equations is 

that the determinant of the coefficients of these integration constants must vanish,  which 

leads to the following frequency equation: 
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The roots of Eq. (53) gives the values of natural frequency for the free surfaces of the 

cylinder. 

 

                  

 

          

Figure 2:Variation of with respect to frequencwith effect and neglect respectively 
of rotation   and magnetic field H .  
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vanish at the outer surface, i.e. 
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4.4   Free outer surface and fixed inner surface 

In this case, from Eqs. (33)–(40) and (54), we get 
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The roots of Eq. (60) gives the values of natural frequency for the free outer surface and 

fixed inner surface of the cylinder. 
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Figure 3: Variation of  with respect to frequenwith effect and neglect respectively  
of rotation   and magnetic field H .  

5   Free inner surface and fixed outer surface     
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These are a set of four homogeneous algebraic equations involving four unknown integration 

constants 211 ,, ABA and 2B .The condition for a nontrivial solution of these equations is 

that the determinant of the coefficients of these integration constants must vanish ,which 

leads to the following frequency equation: 
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The roots of Eq. (65) gives the values of natural frequency for the free surfaces of the  

cylinder. 

 

             

 

            

Figure 4: Variation of with respect to frequencywith effect and neglect respectively  

of rotation   and magnetic field H . 
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6  Numerical results and discussion 

Here, we shall investigate the frequency equations given by Eqs. (46), (53), (60) and (65) 

numerically for a particular model. Since these equations are an implicit function relation 

of natural frequency , therefore one can proceed to find the variation of natural 

frequency (the eigenvalues) with rotation   and magnetic field H , the cylinder has the 

following geometric and material constants given by Chen et al [Chen et al. (2005)]. 
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The variations are shown in Figures. (1)-(4), respectively. 

Figure 1: show that the variation of the magnitude of the frequency equationwith respect to 

frequency   for different values of rotation   and magnetic field H at free surface 

traction. The magnitude of the frequency equation increases with increasing of rotation 

and frequency, while it dispersion at 3.0  in the presence and absence of magnetic 

field, while it increases with increasing of magnetic field in the presence and absence of 

the rotation. 

Figure 2: show that the variation of the magnitude of the frequency equation  with 

respect to frequency for different values of rotation and magnetic field H at a fixed 

surface. The magnitude of the frequency equation increases with increasing of rotation 

and frequency in the presence and absence of magnetic field, while it increases with 

increasing of magnetic field and frequency in the presence of the rotation, while it 

decreases with increasing of magnetic field and frequency in the absence of rotation. 

Figure 3: show that the variation of the magnitude of the frequency equation  with 

respect to frequency for different values of rotation and magnetic field H  at Free 

outer surface and fixed inner surface. The magnitude of the frequency equation increases 

with increasing of rotation in the presence and absence of magnetic field, while it 

increases and decreases with increasing of frequency in the presence and absence of the 

magnetic field, as well as it increases with increasing of magnetic field in the interval 

]3.0,0[ , while it decreases with increasing of magnetic field in the interval ]5.0,3.0[  and it 

increases and decreases with increasing of frequency in the presence of rotation, while it 

decrease with increasing of magnetic field and frequency in the absence of rotation. 

Figure 4: show that the variation of the magnitude of the frequency equation  with 

respect to frequency for different values of rotation and magnetic field H at Free 

inner surface and fixed outer surface. The magnitude of the frequency equation increases 

with increasing of rotation and frequency in the presence and absence of magnetic field, 

while it dispersion at 1.0 , as well as it increases with increasing of magnetic field 

and frequency in the presence of the rotation, while it increases and decreases with 

increasing of magnetic field and frequency in the absence of rotation. 
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7  Conclusions 

1. Harmonic vibrations of an elastic cylinder have been studied using a half-interval 

method. The governing equations in cylindrical coordinates are recorded for future 

reference. The magnitude of the frequency equations  has been obtained under the 

effect of rotating  and magnetic field H . The numerical results of  the natural 

frequency are obtained and represented graphically in detail for different cases.  

2. All the physical quantities satisfy the boundary conditions. 

3. The magnetic field and rotation play a significant role in the distribution of all the 

physical quantities.  

4. The results presented in this paper will be very helpful for researchers in structures 

and material science, designers of new materials and the study of the phenomenon of 

rotation and magnetic field is also used to improve the conditions of oil extractions. 

Finally, if the rotation and magnetic field are neglected, the relevant results obtained 

are deduced to the results obtained by Abd-Alla et al [Abd-Alla et al. (2013)].   
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