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An Adaptive Load Stepping Algorithm for Path-Dependent 

Problems Based on Estimated Convergence Rates 

M.T.C. Araújo Fernandes1, C.O. Cardoso2 and W.J. Mansur3 

Abstract: A new adaptive (automatic) time stepping algorithm, called RCA (Rate of Con

vergence Algorithm) is presented. The new algorithm was applied in nonlinear finite ele

ment analysis of path-dependent problems. The step size is adjusted by monitoring the est

imated convergence rate of the nonlinear iterative process. The RCA algorithm is relative

ly simple to implement, robust and its performance is comparable to, and in some cases b

etter than, the automatic load incrementaion algorithm existent in commercial codes. Disc

ussions about the convergence rate of nonlinear iterative processes, an estimation of the r

ate and a study of the parameters of the RCA algorithm are presented. To show the capaci

ty of the algorithm to adjust the increment size, detailed discussions based on results for d

ifferent limit load analyses are presented. The results obtained by RCA algorithm are com

pared with those by ABAQUS®, one of the most powerful nonlinear FEA (Finite Elemen

t Analysis) commercial software, in order to verify the capability of RCA algorithm to ad

just the increment size along nonlinear analyses.   

Keywords:  Rate of convergence, nonlinear, automatic, load incrementation, limit load. 

1 Introduction 

In nonlinear finite element modelling, the use of robust and efficient solution algorithms 

is a fundamental step for the success of a reliable analysis. The main purpose of these 

algorithms is to solve a set of nonlinear algebraic equations. The solution algorithms are 

efficient when besides being reliable, the computational cost and the analyst effort are 

relatively low. In order to improve these two characteristics, robust adaptive solution 

algorithms are continuously presented in the literature [Bathe and Dvorkin (1983)].  

Nonlinear structural problems solved by numerical algorithms may have multiple 

solutions (analyses with snap-through or snap-back buckling) or be path-dependent 

(analyses with material nonlinearities) [Bergan et al (1978)]. 

Different load incrementation strategies and parameters to define the increment size have 
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been continuously developed to solve the aforementioned problems. Some of these 

strategies are: the current stiffness parameter [Bergan et al (1978)], the length of the 

equilibrium path [Riks (1979)], arc-length techniques [Crisfield (1981)], incremental 

schemes with error control [Abbo and Sloan (1996)] and scalar homotopy methods 

[Elgohary et al (2014)]. Other algorithms can be found in references [Schweizerhof and 

Wriggers (1986); Geers (1999); Sheng, Sloan and Yu (2000); Sheng and Sloan (2003); 

Ritto-Corrêa and Camotim (2008); Stull, Earls and Aquino (2008); Sheng, Nazem and 

Carter (2009); Lindgaard and Lund (2010); Labeas and Belesis (2011); Koohestani 

(2013); Hardyniec and Chraney (2015)]. 

However, in order to ensure robustness, the traditional arc-length method and its 

variations have complex implementations that include the monitoring of the eigenvalues 

of the Jacobian matrices and the use of additional constraint equations [Abbo and Sloan 

(1996); Elgohary et al (2014)]. For these reasons, the development of robust and simple 

to implement algorithms to solve nonlinear structural problems is still in progress. 

In this paper, the path-dependent problems are treated in some detail. Fig.1, which shows 

a typical load displacement curve where it can be seen a drastic reduction on stiffness for 

the limit load, illustrates the degree of difficulty one may face when solving these kinds 

of problem.   

displacement

load

limit 

load

 

Figure 1: Limit load analysis considering material nonlinearity. 

In this case, usual procedures to obtain the limit load, require the total external load to be 

divided into increments and the accuracy of the finite element solution is dependent of 

the size of each increment.  

Additionally, in plasticity theory, infinitesimal deformations are considered and 

depending on the size of the chosen load increments, the calculation of displacements, 

strains and stresses can have significant errors. Therefore, one may be tempted to choose 

excessively small load increments, and pay the price: the analysis becomes too expensive, 

in some cases impossible to deal with when one has deadlines, or else one must abandon 

a desktop working station and use supercomputers. Thus, one must be aware when 

designing adaptive load stepping algorithms to analyze nonlinear problems that the size 

of the load increments can vary substantially during the analysis without accuracy loss. 
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Taking into account the above considerations, a new adaptive load stepping algorithm 

based on the estimated convergence rate of the nonlinear iterative process is presented. 

The algorithm is used together with the full Newton-Raphson method to solve the 

nonlinear finite element equations.     

The convergence rate was considered as the control variable of the adaptive process due 

to its mathematical definition, which guarantees the robustness of the algorithm and was 

calculated based on a force norm during the incremental load process.  

The new adaptive load stepping algorithm, the RCA (Rate of Convergence Algorithm) 

algorithm has been firstly applied to solve nonlinear elastoplastic problems. The RCA 

algorithm has been implemented in the in-house 2D and 3D finite element program AMG 

(Mechanical and Geomechanical Analysis) [Costa (1984); Cardoso (2005)]. Static and 

dynamic analyses with material and geometric nonlinearities can be performed by AMG. 

In the next section a brief discussion about the convergence rate of nonlinear iterative 

processes is presented. An estimation of the convergence rate for computational implementation 

is also discussed [Gustafsson and Soderlind (1997)]. The RCA algorithm is presented in 

Section 3. The solutions obtained with AMG/RCA are discussed in Section 4 and 

compared with the FEA commercial software ABAQUS® [Abaqus (2012)]. Finally, in 

Section 5, concluding remarks are drawn. 

2 Rate of convergence of iterative processes 

Firstly, the formal definition of the convergence rate of a general iterative process is 

given.  

Let the sequence  kx converge to 
*x . If p  is the order of convergence of  kx , the limit 

[Luenberger (1989); Ortega and Rheinboldt (1970)]: 

p
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k
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
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
                                                        (1) 

exists, and asymptotically the following equality is true: 

p
kk xxxx **1                                                          (2) 

where   is the rate of convergence or the asymptotic error constant that depends on the 

nonlinearity of the problems; 

At this point the following remarks are due: 

1) In the full Newton-Raphson method, which is adopted in this paper, the quadratic order 

of convergence is not usually achieved in elasto-plastic problems. This occurs because the 

Jacobian matrix is not continuously differentiable when an element quadrature point changes 

its state from elastic to plastic or from plastic to elastic [Belytschko, Liu and Moran 

(2000)];  

2) Commonly, iterative processes have three phases: nonlinear transient, linear transient 
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and finally asymptotic [Gustafsson and Soderlind (1997)];  

3) In an iterative process, the rate of convergence   will only be representative if a 

considerable number of iterations have been performed, i.e., the asymptotic phase has 

been achieved. 

In order to present the estimated convergence rate used in this paper, it is necessary to def

ine the nonlinear algebraic equations (equilibrium equations) for nonlinear structural prob

lems: 

0RRUF  intext)(                                                        (3) 

where F(U) ℝ
n
 is a vector function and U  is the solution vector (nodal displacement).

 extR  is the external load vector and intR  is the internal load vector; The stiffness (Jacobi

an) matrix is given by: 

U

F
K
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
                                                        (4) 

The estimated convergence rate   presented in this paper is a modification of the rate ba

sed on vector norms presented in [Gustafsson and Soderlind (1997)]. Taking into account

 the equilibrium equations of nonlinear problems in an incremental notation, the new prop

osed estimative for   is given by: 
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ext

tt
R


 is the vector of externally applied loads evaluated at time tt  , int

t
R is the vec

tor of nodal forces equivalent to the internal element stress at time t  and 
1)-(k

int

tt
R


 is the 

vector of nodal forces equivalent to the internal element stress at time tt   at iteration 

)1( k . The time variable denotes a load level in static analysis of structures, which is th

e focus in this paper. 
k  is an Euclidean force norm;  

It is usual to estimate   through solution vectors [Ortega and Rheinboldt (1970); Belytsc

hko, Liu and Moran (2000)]. Although the estimation shown in Eq. 5 does not involve dir

ectly the solution vector U ,  the residual intext RR  is function of this vector, as can be s

een in Eq. 3. 

Considering 0* x in Eq. 1, one can see that the variables x  and   have an analogous 

behavior, because   tends to zero for a large number of iterations in a converging incre
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ment during a nonlinear iterative process.  

For this reason and due to the relation with the solution vector U ,  the variable   is use

d in the estimation of   (Eq. 5) in the RCA algorithm. Taking into consideration that the 

majority of the estimated values of 
k are not located in the asymptotic phase of the iterat

ive process, the objective of the RCA algorithm is to evaluate the variation of 
k  to meas

ure the speed of convergence at initial stages of the process. In this paper, the speed of co

nvergence denotes how fast the iterative process converges [Luenberger (1989)].  

Some observations regarding the values of the variable 
k  are presented next.   

Diverging increments can be detected using Eq. 5. This situation occurs when values of 
k  are negative or 

k  is positive and 
21   kkk  . In both cases, the force norms 

and consequently the force residuals are not decreasing.  

Generally, large positive values of 
k  indicate a fast convergence of the iterative process.

 In other words, if 
1 kk   and  

12   kk  , 
k  will tend to infinity.   

Similarly, small positive values of 
k  indicate a slow convergence of the iterative proces

s.  In other words, if 
1 kk   and  

12   kk  , 
k  will tend to zero. 

The idea behind Eq. 5 is to link the history of values of the variable 
k , with the speed of

 convergence of the current load increment that will be used to calculate the size of the ne

xt load increment. 

3 Adaptive load stepping algorithms based on convergence rate 

In this section, the new automatic load stepping algorithm, the RCA, is presented. 

Initially, it is necessary to define the incremental finite element equations that describe 

the response of a nonlinear structure in a static analysis due to a varying load: 

)1()()1(   k

int

tt

ext

ttkktt
RRUK                                                         (7) 

Where tt 
is a variable load factor and 

)(k
U is the increment to the current 

displacement vector given by: 

)()1()( kkttktt
UUU  

                                                       (8) 

The update of the matrix 
)1(  ktt

K depends on the method used. In the full Newton-

Raphson method, the matrix is updated in every iteration. 

The iterative process ends when the force norm (Eq. 6) and the displacement norm (Eq. 

9), are smaller than specified tolerances. 
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After the convergence check, the current load increment will be accepted or not. In both 

situations, the main objective of an adaptive load stepping algorithm is to define suitable 

load factors tt 
for each load increment based on the estimated convergence rate.  

The speed of convergence of the incremental/iterative solution of Eq. 7 is related to the 

average values of 
k of each load increment. The average value is called  and is 

calculated at the end of each load increment. 

The speed of convergence is classified as fast, constant or slow and grouped in regions 

(Fig.2). The definition of these convergence regions is based on statistical analysis of the 

values 
k performed in different analyses.  

Fig.2 schematically shows how the different speeds of convergence are correlated with 

the values of 
k . 

Iterations

+

Slow region

Constant region

Fast region

Divergence region

-  

Figure 2: Graphical representation of the speed regions and correlation with 
k . Full 

circles represent punctual values of iterations for one load increment. 

Regarding Fig. 2, the different regions are limited by the slow and fast values. At the end 

of the convergence process, four different situations are considered in the algorithm: 

a) A load increment is classified as fast if    (Eq. 14) is located in the fast region and if 

the maximum number allowed for iterations in the slow region ( slowniter ) has not been 

reached. In this case, the next load increment is increased by a factor fastM : 

 t

fast

tt M
                                                     (10) 

b) A load increment is classified as constant if    is located in the constant region and if 

the maximum number allowed for iterations in the slow region ( slowniter ) has not been 

achieved. In this case, the next load increment remains constant: 
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 ttt 
                                                     (11) 

c) A load increment is classified as slow if    is located in the slow region or if the 

maximum number allowed for iterations in the slow region ( slowniter ) has been achieved. 

In this case, the next load increment is decreased by a factor slowM : 

 t

slow

tt M
                                                     (12) 

d) Finally, a load increment is classified as divergent if a certain number of iterations, 

defined by user, with values of 
k located in the divergence region has been achieved 

( divniter ). In this case the load step is restarted and the load increment is decreased by a 

factor  cutM : 

 t

cut

tt M
                                                                           (13) 

For the computation of  used in the evaluation of the speed of convergence of a load 

step, the values of 
k located in the divergence region are not considered. Thus:  

 10

0




 

nitercontiter div

iter

niteri

i
                                                                          (14) 

where 0niter is the iteration in which the calculation of  
k begins, iter is the counter of 

iterations of the current load increment and divcont is the counter for the occurrences of 

k located in the divergence region. 

The default values of fastM , slowM , cutM , slowniter  and divniter were chosen 

heuristically based on the results of different analyses. 

Still regarding the parameters of the algorithm, if the load step is too small, the 

computational cost of the analysis can be very high. On the other hand, a large load step 

can lead either to non-convergence or to a great number of iterations to achieve 

equilibrium. For this reason, a maximum value for t  ( max ) must be set to avoid a very 

large load increment in linear or nearly linear regions of the load path. Similarly, in order 

to stop the analysis and to prevent unnecessary calculations, a minimum value for t  

( min )  should also be defined.  

Finally, the incremental procedure ends when the entire load is applied: 

0.1t                                                                            (15) 

4  Applications 

The elastoplastic analyses described next were performed with fixed and automatic load 

step incrementation (RCA algorithm). In the analyses with the RCA algorithm, the most 
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critical parameter is slow . For this reason, different values of slow were tested. The 

results obtained with AMG/RCA were also compared with those by the FEA commercial 

software ABAQUS®.   

4.1 Collapse of an end-loaded cantilever beam 

The plastic collapse of an end-load cantilever beam is studied in the first example [Souza 

Neto, Peric and Owen (2008)]. Fig. 3 shows the cross-section, boundary conditions and 

applied load. Tab. 1 presents the parameters of the model. 

 

  

L 

b 

h 

P 

 

Figure 3: Geometry of the end-loaded cantilever beam. 

Table 1: Parameters of the end-loaded cantilever beam model. 

Property Value 

Length: L(m) 1.00 

Width of the section: b(m) 0.05 

Height of the section: h(m) 0.1 

Poisson ś Ratio: ν 0.3 

Maximum load: P(kN) 40 

Young ś Modulus: E(Pa) 210x109 

The beam material is elastoplastic and represented by von Mises yield surface with 

isotropic hardening and plane stress state (Tab. 2). 

Table 2: Stress-strain data for isotropic hardening rule adopted. 

Yield stress (Pa) Plastic strain  

2.40x108 0.00 

2.55x108 0.02 

7.50x108 1.00 

One hundred sixty quadrilateral elements with eight nodes were used (forty elements 

along the length and four along the height) employing four (2x2) Gauss quadrature points. 

The tolerance for displacement and force residuals was set to 10-3. 

For the analyses with fixed load steps, one hundred load increments of 0.4 kN were 

applied until reach the maximum collapse load. 
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Tab. 3 summarizes the parameters adopted in the RCA algorithm for the end-loaded 

cantilever beam. 

Table 3: Parameters of the RCA algorithm. 

Parameter Value Parameter Value 

slow  0.0-0.8 fast  1.0 

min  10-5 max  0.1 

divniter  3 0niter  8 

slowniter  5 slowM  0.8 

fastM  1.25 cutM  0.5 

The initial load step of the automatic analyses (AMG/RCA and ABAQUS®) was set to 

0.01. 

In the automatic analysis performed with ABAQUS®, the maximum load step was set to 

1.0max , associated with the default solver controls and full Newton-Raphson method.  

Tab. 4 presents the number of load increments and collapse loads for different values of  

slow . The objective is to evaluate the performance of the AMG/RCA algorithm and to 

compare it with the load increment history path obtained with ABAQUS®. The variable 

“ p ” is the maximum collapse load calculated by the algorithms. 

Table 4: Results for the end-loaded cantilever beam. 

slowλ  
No. load increments 

Collapse load (p/P) 
Successful Failed 

0.0 17 0 1.0000 

0.2 20 1 1.0000 

0.4 33 9 0.9859 

0.6 34 8 0.9868 

0.8 35 8 0.9867 

Fixed load step 100 0 1.0000 

ABAQUS® 15 0 1.0000 

According to Tab. 4, the total number of load increments of AMG/RCA analyses is highly 

dependent of the  slow  parameter. In all AMG/RCA automatic analyses, a smaller number 

of load increments was necessary in comparison with the AMG fixed load step analysis.  

The ABAQUS® analysis presented a number of load increments similar to the AMG/RC

A analysis with  0.0slow .  
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Fig. 4 shows the distribution of different types of iterations according to the speed 

regions giving a better understanding of the numerical computational effort. 
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Figure 4: Distribution of the iterations according to the speed regions. 

In the analyses with reduced number of load increments, ( 0.0slow  and 2.0slow ) the 

percentage of iterations located in the constant region are the highest among all the analyses. It 

means that the increment size does not change unnecessarily during the analysis.  

Fig. 5 gives the variation of the load factors   plotted for different automatic analyses 

in order to illustrate the previous statement. 
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Figure 5: Variation of the load factors   for different values of slow . 

From 4.0slow  to 8.0slow , it is possible to verify in Fig. 5 that the analyses with more 
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load increments reach the minimum ( min ) due to large number of load increments changes.  

Fig. 6 shows the load-displacement curves for AMG/RCA with 0.0slow , AMG with 

fixed step and ABAQUS® with automatic step. 

 

Figure 6: Load-displacement curves of the end-loaded cantilever beam. 

As it can be seen in Fig. 6, AMG/RCA successfully adjusted the increment size during 

the nonlinear stage of the analysis in a consistent way with ABAQUS®.  

Finally, Fig. 7 shows the accumulative frequency history of 
k for different values of 

slow used to calibrate speed regions. 
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Figure 7: Histograms for the variable 
k in different automatic analyses, showing speed 

regions for different values of slow .   
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Despite some minor differences in the initial tail ( 0.0slow ), the histograms showed a 

similar behavior for different values of slow . The similar behavior of the histograms 

shows that the main difference between the analyses, in terms of the number of load 

increments, is related to the definition of the speed regions. As explained before, the 

analyses with reduced number of load increments have the highest proportion of constant 

iterations. If the constant region is not correctly defined by the values of slow and fast , 

more iterations are unnecessarily classified as slow or fast. In the analysis with 

8.0slow , for example, a large percentage of 
k values are in the slow regions and 

more iterations are classified as slow. The load steps are successively diminished, 

increasing the number of increments required to perform the analysis (see Fig. 5).  On the 

other hand, for 0.0slow  to 2.0 , the constant region is more adequately defined, 

requiring less increments to perform the analyses. 

4.2 Strip-footing collapse 

The bearing capacity of a rigid strip footing is analyzed using fixed load increments, 

AMG/RCA and compared with FEA commercial software ABAQUS®. Fig. 8 gives the 

geometry of the problem. 

 

Figure 8: Geometry of the rigid strip-footing. 

A vertical pressure P  is applied in order to determine the strip footing collapse pressure. A 

plane strain state is assumed for the model and the soil material is represented with the Mohr-

Coulomb yield surface. Tab. 5 presents the main parameters of a rigid strip-footing model.   

Table 5: Parameters of the rigid strip-footing model. 

Property Value 

Length: L(m) 5.00 

Width: B(m) 1.00 

Poisson ś Ratio: ν 0.3 

Total prescribed displacement: u(m) 0.06 

Young ś Modulus: E(Pa) 5x106 

Cohesion: c(Pa) 104 

Frictional angle: ϕ (°)  20 
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Fig. 9 shows the adopted mesh, comprised of 3697 nodes and 1184 eight-noded 

quadrilaterals elements with four (2x2) Gauss quadrature points. 

 

Figure 9: Finite element mesh of rigid the strip-footting. 

The tolerance for displacement and force residuals was set to 10-3. 

For the analyses with fixed load step, one hundred load increments of 6.0x10-4 m were 

applied. The average pressure p is calculated dividing the total reaction on the footing by 

the width B.  

The adopted parameters of the RCA algorithm are shown in Tab. 6. 

Table 6: Parameters of the RCA algorithm. 

Parameter Value Parameter Value 

slow  0.0-0.8 fast  1.0 

min  10-5 max  0.05 

divniter  5 0niter  8 

slowniter  5 slowM  0.8 

fastM  1.25 cutM  0.5 

The initial load step of the automatic analyses (AMG/RCA and ABAQUS®) was set to 0.01.  

In the automatic analysis performed with ABAQUS®, the maximum ( max ) load step 

was set to 0.05 associated with the default solver controls and full Newton-Raphson 

method.  

Tab. 7 presents the number of load increments and collapse pressures. The variable “ p ” 

is the maximum pressure calculated in the algorithm and “ P ” is the limit pressure 

predicted by Terzaghi ś solution [Lambe and Whitman (1979)]. 
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Table 7: Results for the rigid strip-foundation. 

slowλ  No. load increments Collapse pressure 

(p/P) 
 Successful Failed 

0.0 41 3 1.07 

0.2 58 1 1.07 

0.4 79 2 1.07 

0.6 91 0 0.74 

0.8 48 0 0.53 

Fixed load step 100 0 1.07 

ABAQUS® 51 4 1.07 

Similar to the first example, for all automatic analyses, the number of load increments 

showed dependence on slow  and a smaller number of load increments was necessary in 

comparison with the fixed load step analysis.  

The relatively small number of increments for 8.0slow  is explained by the early 

interruption of this analysis, as it can be seen in Tab.7 by the low value of pressure 

obtained.  

The analysis with AMG/RCA presented an improved performance in comparison with 

ABAQUS® in the analysis with 0.0slow . For this case, the number of load 

increments in AMG/RCA represents 80% of the number of load increments obtained with 

ABAQUS® for the same collapse pressure.  

Fig. 10 gives the distribution of different types of iterations from the AMG/RCA versus 

the parameter slow . 

 
Figure 10: Distribution of the iterations accordingly to the speed regions. 
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The higher percentage of iterations classified in the region with constant speed of conver

gence is associated with the reduced number of load increments, similarly to the cantileve

r beam example. The small discrepancy presented in the analysis with 8.0slow  is expl

ained by the early interruption of this analysis. 

The variation of load factors   plotted for the AMG/RCA automatic analyses (Fig. 11), 

also shows that the best performances in terms of number of load increments are obtained 

with 0.0slow  and 2.0 , in these cases the load factors do not change frequently during 

the analysis compared with the higher values of slow tested. 
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Figure 11: Variation of the load factors   for different values of slow . 

Fig. 12 shows the pressure-displacement curves for AMG fixed step, AMG/RCA with 

0.0slow , ABAQUS® with automatic step and Terzaghi’s analytical solution [Lambe 

and Whitman (1979)]. 
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Figure 12: Pressure-displacement curves of the rigid strip-footing problem. 

The AMG/RCA with 0.0slow  was able to adjust the load increment size close to the 

limit load with less effort than ABAQUS® (see Tab.7). The limit pressure calculated in 

all different numerical analyses, have a good match reaching values close to the 

Terzaghi’s analytical solution. 

Fig. 13 gives the accumulative frequency history of 
k  for different values of slow . 
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Figure 13: Histograms for the variable 
k in different automatic analyses. 

The histograms presented in Fig. 13, show a similar behavior observed in the cantilever 

beam example for different values of 
slow . The values of 

slow and 
fast considered suitable 

for application in the solution of a large number of nonlinear analyses with reduced 
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number of load increments, must present a high proportion of constant iterations to 

optimize the automatic load incrementation process. 

5 Concluding remarks 

The objective of this paper is to show a new algorithm, called RCA, based on the 

estimated convergence rate of a nonlinear iterative process. The algorithm is relatively 

simple to implement, robust and presents a better performance when compared with fixed 

load step approaches. The performance of the RCA algorithm in the analysis of the rigid 

strip-footting presented here had also a better performance than the load incrementation 

algorithm of the FEA commercial software ABAQUS®. 

Through the study of the histograms of the estimated convergence rate, it was possible to 

calibrate a set of parameters of the algorithm to be used in different nonlinear analyses. 

Although the RCA algorithm was successfully employed in path-dependent nonlinear 

problems, it can also be used for different types of nonlinearities due its robustness 

ensured by the generality of the estimation of the convergence rate. 
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