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Axisymmetric Slow Motion of a Prolate Particle in a Circular 

Capillary with Slip Surfaces 

Hong Y. Yeh, Huan J. Keh1* 

Abstract: The problem of the steady migration of an axially symmetric prolate particle 

along its axis of revolution coinciding with the centerline of a circular capillary is 

investigated semi-analytically in the limit of low Reynolds number, where the viscous 

fluid may slip at the solid surfaces. A method of distribution of spherical singularities 

along the axis inside the particle is employed to establish the general solution of the fluid 

velocity satisfying the boundary conditions at the capillary wall and infinity. The slip 

condition at the particle surface is then satisfied by using a boundary collocation method 

to determine the unknown constants in this solution. The hydrodynamic drag force acting 

on the particle is obtained with good convergence for the cases of a prolate spheroid and 

a prolate Cassini oval with various values of the slip parameter of the particle, slip 

parameter of the capillary wall, aspect ratio or shape parameter of the particle, and 

spacing parameter between the particle and the wall. For the axially symmetric 

migrations of a spheroid and a Cassini oval in a capillary with no-slip surfaces and of a 

sphere in a capillary with slip surfaces, our results agree excellently with the numerical 

solutions obtained earlier. The capillary wall affects the particle migration significantly 

when the solid surfaces get close to each other. For a specified particle-in-capillary 

configuration, the normalized drag force exerted on the particle in general decreases with 

increasing slippage at the solid surfaces, except when the fluid slips little at the capillary 

wall and the particle-wall spacing parameter is relatively large. For fixed spacing 

parameter and slip parameters, the drag force increases with an increase in the 

axial-to-radial aspect ratio (or surface area effective for viscous interaction with the 

capillary wall) of the particle, but this tendency can be reversed when the particle is 

highly slippery.  

Keywords: Creeping flow, prolate spheroid, passini oval, Navier’s slip, singularity distribution, 

boundary collocation.  

1  Introduction  

The creeping motions of small particles in viscous fluids are of much fundamental and 

practical interest in many areas of science and technology. The theoretical treatment of 

this subject grew out of the classic work of Stokes (1851) for a no-slip spherical particle 
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migrating in an unbounded, incompressible, Newtonian fluid. Oberbeck (1876) extended 

this analysis to the migration of an ellipsoid. More recently, analytical results of 

low-Reynolds-number motions were obtained for a particle whose boundary conforms to 

a coordinate surface of one orthogonal curvilinear coordinate system in which the Stokes 

equations are simply separable [Payne and Pell (1960)] or semi-separable [Dassios, 

Hadjinicolaou, and Payatakes (1994)], for a slightly deformed sphere [Brenner (1964)], 

and for a slender body [Batchelor (1970)]. Additionally, the creeping motions of a 

particle of specific or general shape have been investigated semi-analytically by using the 

boundary collocation method [Gluckman, Pfeffer, and Weinbaum (1971)], boundary 

integral method [Youngren and Acrivos (1975)], and singularity method [Chwang and 

Wu (1975)].  

When one tries to solve the creeping-flow problems, no-slip boundary conditions are 

usually taken at the solid-fluid interfaces. Although this assumption is validated by 

experimental evidences at macroscopic scales, it is seldom accepted microscopically [Pit, 

Hervet and Leger (2000); Martini et al. (2008)]. The phenomena that the adjacent fluid 

slips frictionally over a solid surface occur in many cases, such as the rarefied gas flow 

past an aerosol particle [Ying and Peters (1991); Keh and Shiau (2000)], liquid flow next 

to a lyophobic surface [Churaev, Sobolev, and Somov (1984); Gogte et al. (2005)], 

micropolar fluid flow around a rigid particle [Sherif, Faltas, and Saad (2008)], and 

viscous fluid flow over the surface of a porous medium [Saffman (1971); Nir (1976)] or a 

small particle of molecular size [Hu and Zwanzig (1974)]. Presumably, any such slipping 

would be proportional to the local shear stress of the fluid adjacent to the solid surface 

[Felderhof (1977); Keh and Chen (1996)], known as Navier’s slip [Eqs. (4) and (5)], and 

the proportionality constant
1 is termed the slip coefficient of the solid-fluid interface.  

The drag force acting on a migrating spherical particle of radius b with a slip surface by 

an unbounded fluid of viscosity can be expressed as [Basset (1961); Happel and 

Brenner (1983)]  

,
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where U  is the velocity of the particle. The practical values of the dimensionless parameter 

 /b  are greater than about 10 for aerosol systems with the Knudsen number smaller than 

0.1, but can be much less for other systems involving frictional slip such as the water 

flow around a particle with hydrophobic surface. When  /b , there is no slip at 

the particle surface and Eq. (1) becomes Stokes’ law. When 0/ b , there is a perfect 

slip and the particle acts like a gas bubble sphere with bUF π4  .  

The analysis of creeping motion of a no-slip particle which deforms slightly in shape 

from a sphere in an arbitrary direction pioneered by Brenner (1964) was extended to a 

slightly deformed slip sphere and closed-form expressions for the hydrodynamic drag 

force exerted on it were obtained to the first order [Palaniappan (1994); Senchenko and 

Keh (2006)] and second order [Chang and Keh (2009)] in the small parameter 

characterizing the deformation. On the other hand, the semi-separable general solution in 
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the form of an infinite series expansion for the axisymmetric creeping flow in spheroidal 

coordinates developed by Dassios, Hadjinicolaou, and Payatakes (1994) was used to 

examine the slip flow past a spheroid and to derive the drag force experienced by it in 

explicit forms [Deo and Datta (2002); Keh and Chang (2008)]. Recently, the creeping 

flows caused by a general axisymmetric particle with a slip surface migrating parallel 

[Keh and Huang (2004); Wan and Keh (2009)] and perpendicular [Chang and Keh (2011)] 

to its axis of revolution have been studied semi-analytically by using a method of internal 

singularity distribution incorporated with a boundary collocation technique.  

In real situations of colloidal motion, particles are seldom isolated and will move in the 

presence of confining boundaries. Therefore, the boundary effects on creeping motion of 

particles with fluid slip at the solid surfaces are essential and have been investigated for 

various cases of a confined sphere [Reed and Morrison (1974); Chen and Keh (1995); 

Keh and Chang (1998); Lu and Lee (2002); Chen and Keh (2003); Chang and Keh (2006); 

Keh and Chang (2007); Keh and Lee (2010); Faltas and Saad (2011); Lee and Keh (2013, 

2014); Chiu and Keh (2016, 2017); Li and Keh (2017)]. Recently, the axisymmetric 

translation [Keh and Chang (2010)] and rotation [Wan and Keh (2011)] of a slip particle 

of revolution at an arbitrary position between two parallel plane walls have also been 

studied using the method of distributed internal singularities. In the current article, we 

adopt the same method to analyze the creeping flow caused by a general prolate particle 

of revolution undergoing axially symmetric migration in a circular capillary with slip surfaces. 

The drag forces acting on a spheroid and a Cassini oval (which has various configurations 

from a sphere to a partially concave body as its shape parameter takes different values) by the 

suspending fluid are numerically calculated with good convergence for broad ranges of the 

particle shape parameter, particle-to-capillary size ratio, and normalized slip coefficients. 

These results agree excellently with those available in the literature for the particular cases 

of a slip sphere, a no-slip spheroid, and a no-slip Cassini oval migrating in the capillary.  

2  Mathematical formulation of the general problem  

Consider the steady creeping motion of an axially symmetric, prolate particle along its axis 

of revolution which is also the centerline of a circular capillary of radius R filled with a 

quiescent, incompressible, Newtonian fluid of viscosity  , as shown in Fig.1.  

Here ),,( z and ),,( r are the circular cylindrical and spherical coordinate systems, 

respectively, with the origin at the center of the particle. The particle migrates with a 

velocity zUe , where ze is the unit vector in the z direction. The fluid may slip frictionally at 

the particle surface pS and at the capillary wall Rρ  .  
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Figure 1: Geometrical sketch for the migration of an axisymmetric prolate particle along 

its axis of revolution in a coaxial circular capillary. 

The Reynolds number is sufficiently small so that the fluid motion is governed by the 

Stokes equations,  

0v  p2 ,                                                       (2) 

0 v ,                                                             (3) 

where v  and p  are the fluid velocity field and dynamic pressure distribution, 

respectively.  The boundary conditions at the particle surface, at the capillary wall, and 

far from the particle are  

τnnnIev :)(
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τeeeIv :)(
1

w


β

  at Rρ  ,                                    (5) 

0v        as z .                                   (6) 

Here, τ ])([ T
vv   is the viscous stress tensor, e is the unit vector in the   

direction, n is the unit normal vector on the particle surface pS pointing into the fluid, 

I is the unit dyadic, and the constants /1 and
w/1  are the Navier slip coefficients about 

the particle surface and capillary wall, respectively.  

To solve Eqs. (2) - (6) for the axially symmetric motion, a set of spherical singularities 

satisfying Eqs. (2), (3), (5), and (6) will be distributed along the axis of revolution inside 

the particle. The fluid flow field is constructed by the superposition of these singularities 

and the boundary condition (4) over the particle surface can be satisfied by using a 

multipole collocation method.  

The fluid velocity components in circular cylindrical coordinates caused by a spherical 

singularity at the point 0 and hz  are [Keh and Chang (2007)]  


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and 0v , where inA  and inC with 1i and 2 are functions defined by Eqs. (A1) and 

(A2) in Appendix A, and nB and nD are unknown constants. The hydrodynamic drag force 

acting on the particle due to this singularity is related to the constant 2D by  

2π4 DF  .                                                          (9) 

A segment along the axis of revolution ( 0 ) between the points 01  cz  and 

02  cz within the particle is taken on which a set of spherical singularities are 

distributed. The general solution of the fluid velocity can be approximated by the 

superposition of these singularities into the integral form of Eqs. (7) and (8),  
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where )(tBn  and )(tDn  are the unknown density distribution functions.  

In order to use the boundary collocation method, we apply the M-point Gauss-Legendre 

quadrature of integration [Hornbeck (1975)] to Eq. (10) and truncate the infinite series 

after N  terms to result in  
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where mq are the quadrature zeros, and the unknown density constants nmB and nmD need 

to be determined from the boundary condition (4) at the particle surface. From Eq. (11) 

for the fluid velocity, the non-vanishing components of the symmetric viscous stress 

tensor in Eqs. (4) and (5) in cylindrical coordinates are obtained as  
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where the functions in , in , and in are defined by Eqs. (A3) - (A5).  

Substituting Eqs. (11) and (12) into Eq. (4), we obtain  
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where  
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and n and zn are the local  and z components, respectively, of the unit normal n . The 

boundary collocation method allows Eq. (13) to be satisfied at MN values of   

( π0  ) on the particle surface and results in a set of MN2 simultaneous linear 

algebraic equations, which can be solved numerically to yield the MN2 density constants 

nmB and nmD required in Eq. (11) for the fluid velocity components. The accuracy of the 

collocation method can be improved to a satisfactory degree by taking sufficiently large 

values of M and N . Once the constants mD2 are determined, the hydrodynamic drag force 

acting on the particle can be obtained from Eq. (9) as  


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m

mDηF
1

2π4 .                                                     (16) 

In the next two sections, the above-described semi-analytical procedure will be taken to 

solve for the axisymmetric motions of a prolate spheroid and a prolate Cassini oval, 

respectively, in a circular capillary. In both cases, the streamline geometry is symmetric 

about z  and only the terms with even n  are retained in Eqs. (11) - (13). For the simple 

case of migration of a spherical particle (can be degenerated from either spheroid or 

Cassini oval) along the axis of the circular capillary with slip surfaces, only one 

singularity at the particle center (with 0h ) is needed and the numerical results of the 

drag force have been obtained by Keh and Chang (2007).  

3  Motion of a prolate spheroid  

In this section, we consider the migration of a prolate spheroid along its axis of revolution 

in a coaxial circular capillary, where the fluid is allowed to slip at the solid surfaces.  

The surface of a prolate spheroid and the local components of its unit normal in Eqs. (14) 

and (15) are given by  

2/12])(1[ 
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where a  and b  are the major and minor semi-axes, respectively. For the axially symmetric 
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migration of a slip prolate spheroid in an unbounded fluid, analytical and numerical 

results of the hydrodynamic drag force 0F are available in the literature [Keh and Huang 

(2004); Keh and Chang (2008); Chang and Keh (2009)].  

The method of combined singularity distribution and boundary collocation presented in 

the previous section is used to obtain the solution for the axisymmetric migration of a 

prolate spheroid in a circular capillary with slip surfaces.  The details of the numerical 

scheme used for this work were given in an earlier paper [Keh and Chang (2010)], in 

which excellent accuracy and convergence behavior were achieved. Our solutions of the 

hydrodynamic drag force F exerted on the confined prolate spheroid normalized by the 

corresponding drag 0F acting on an unconfined spheroid (i.e., as 0/ Rb ) are presented 

in Tables 1 and 2 for various values of the particle aspect ratio ba / , particle slip 

parameter  /b , wall slip parameter  /wb , and particle-wall spacing parameter 

Rb / . The results converge to at least the significant figures as given. For the difficult 

case of 975.0/ Rb , the number of collocation points with 50M and 10N  is 

sufficiently large to achieve this convergence. For the special cases of 1/ ba  and 

  // wbb , our results are in excellent agreement with the available solutions 

for the axisymmetric motions of a slip sphere in a slip circular capillary [Keh and Chang 

(2007)] and of a no-slip spheroid in a no-slip capillary [Yeh and Keh (2013)], 

respectively.  

The numerical results for the normalized hydrodynamic drag force 0/ FF  (or viscous 

retardation) for the axially symmetric migration of a prolate spheroid with aspect ratio 

2/ ba  in a circular capillary as functions of the spacing parameter Rb / and particle 

slip parameter  /b are plotted in Fig. 2 for the limiting cases of no-slip capillary wall 

(  /wb ) and perfect-slip capillary wall ( 0/w  b ). Analogous to the 

corresponding motion of a spherical particle, Tables 1 and 2 as well as Fig. 2 show that 

the approach of the capillary wall can significantly enhance the hydrodynamic drag 

experienced by the spheroid. For a spheroid with given values of ba / ,  /b , and 

 /wb , the value of 0/ FF  increases monotonically with an increase in the ratio 

Rb / from unity at 0/ Rb  to infinity in the touching limit 1/ Rb . The normalized 

wall-corrected drag force exerted on the spheroid in general decreases with decreases in 

 /b  and  /wb  (i.e., with increasing slippage at the solid surfaces), keeping ba /  

and Rb /  unchanged. Interestingly, when the capillary wall does not slip much (with a 

large value of  /wb ) and the value of Rb /  is close to unity (especially as ba /  is 

large), 0/ FF  first decreases with an increase in  /b  from 0/ b , reaches a 

minimum at some finite value of  /b , and then increases with increasing  /b  to the 

limit  /b .  
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Figure 2a: Plots of the normalized drag force 0/ FF for the axially symmetric migration of a 

prolate spheroid with 2/ ba  in a circular capillary for various values of the spacing 

parameter Rb / and particle slip parameter  /b : (a) 0/ FF versus Rb / ; (b) 

0/ FF versus  /b . The solid and dashed curves represent the cases of 

 /wb and 0/w  b , respectively. 
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Figure 2b: Plots of the normalized drag force 0/ FF for the axially symmetric 

migration of a prolate spheroid with 2/ ba  in a circular capillary for various 

values of the spacing parameter Rb /  and particle slip parameter  /b : (a) 

0/ FF  versus Rb / ; (b) 0/ FF versus  /b . The solid and dashed curves 

represent the cases of  /wb and 0/w  b , respectively. 

In Fig. 3, the results of the normalized drag force 0/ FF for the axially symmetric 

migration of a prolate spheroid with  /b  and 0/ b in a circular capillary 

with 0/w  b  are plotted versus 
1)/( ba for various values of Rb / . Tables 1 and 

2 as well as Fig. 3 indicate that, for given values of Rb / ,  /b , and  /wb , the 

ratio 0/ FF in general is an increasing function of ba / , since the increase in the surface 

area of the spheroid for its viscous interaction with the capillary wall enhances the 

hydrodynamic resistance to the motion of the particle. However, when 0/ b  and 

0F

F

ηβb /
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either  /wb or Rb /  is small, 0/ FF decreases with an increase in ba /  (and a 

minimum of 0/ FF  can appear at some intermediate value of ba /  as  /wb  is 

large), due to the slippage at the particle surface. In general, 0/ FF is not a very sensitive 

function of ba / in the range of 5/1  ba .  
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Figure 3: Plots of the normalized drag force 0/ FF for the axially symmetric migration of 

a prolate spheroid in a circular capillary with 0/w  b  versus the reciprocal of 

particle aspect ratio
1)/( ba for various values of the spacing parameter Rb / . The solid 

and dashed curves represent the cases of  /b  and 0/ b , respectively.  
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Table 1: The normalized drag force 0/ FF exerted on a prolate spheroid migrating 

axi-symmetrically in a circular capillary with  /wb  at various values of the 

parameters ba / , Rb / , and βb/η   

  
Rb /  

0/ FF  

  1/ ba  1.1/ ba  2/ ba  5/ ba  10/ ba  

0βb/η  0.2 1.38994 1.38112 1.32266 1.23619 1.22659 

 
0.4 2.26263 2.23987 2.13082 2.35959 3.62265 

 
0.6 5.20429 5.21679 5.81098 11.1320 26.6718 

 
0.8 28.5678 29.9408 46.5531 136.996 377.029 

 
0.9 173.333 187.679 344.821 1132.97 3186.70 

 
0.95 1038.85 1145 2262 7703 2.179E4 

 
0.975 6079.21 6.75E3 1.4E4 4.8E4 1.3E5 

       
1βb/η  0.2 1.45243 1.45406 1.49771 1.70718 1.97130 

 
0.4 2.48508 2.49384 2.64515 3.19896 3.80162 

 
0.6 5.82728 5.89792 6.68534 8.86535 10.8925 

 
0.8 29.9541 31.1132 41.3588 63.3509 80.7207 

 
0.9 168.989 179.649 267.260 438.547 566.12 

 
0.95 968.946 1045.2 1651 2.79E3 3.62E3 

 
0.975 5537.71 6.0E3 9.8E3 1.7E4 2.2E4 

       
10βb/η  0.2 1.60234 1.61928 1.78145 2.26487 2.80363 

 
0.4 3.15199 3.22945 3.91968 5.62315 7.26154 

 
0.6 8.47578 8.80325 11.5369 17.6430 23.1767 

 
0.8 44.2658 46.5644 64.8637 103.224 136.795 

 
0.9 218.182 231.255 332.742 538.696 716.06 

 
0.95 1068.52 1139.13 1677 2742 3.65E3 

 
0.975 5392.05 5.78E3 8.6E3 1.4E4 1.9E4 

       
βb/η  0.2 1.67948 1.69931 1.88312 2.42095 3.02003 

 
0.4 3.59137 3.69166 4.55952 6.67121 8.70883 

 
0.6 11.0919 11.5882 15.6331 24.5529 32.6570 

 
0.8 74.6688 79.2303 114.777 188.254 252.677 
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0.9 469.170 501.699 749.832 1248.51 1679.50 

 
0.95 2806.65 3013.32 4569.68 7644.97 10264.2 

  0.975 16290.8 1.756E4 2.668E4 4.431E4 5.85E4 

 

Table 2: The normalized drag force 0/ FF exerted on a prolate spheroid migrating 

axisymmetrically in a circular capillary with wβ at various values of the parameters 

ba / , Rb / , and βb/η . 

  
Rb /  

0/ FF  

  1/ ba  1.1/ ba  2/ ba  5/ ba  10/ ba  

0βb/η  0.2 1.28429 1.27753 1.23090 1.14858 1.09530 

 
0.4 1.79341 1.77058 1.61689 1.38638 1.26303 

 
0.6 2.94404 2.87596 2.44676 1.90213 1.63662 

 
0.8 7.30773 7.02413 5.40400 3.67536 2.91480 

 
0.9 19.1777 18.1979 12.9976 8.07134 6.05778 

 
0.95 52.0427 48.9315 33.2759 19.5993 14.2682 

 
0.975 143.951 135 88.8 50.9 36.5 

       
1βb/η  0.2 1.39014 1.39142 1.42827 1.61249 1.85204 

 
0.4 2.10471 2.10813 2.20026 2.59535 3.05298 

 
0.6 3.81055 3.81697 4.02586 4.91454 5.88804 

 
0.8 10.7322 10.7490 11.5805 14.9830 18.3855 

 
0.9 30.5543 30.6067 33.7131 45.6005 56.7584 

 
0.95 87.0755 87.2365 97.7186 135.913 170.460 

 
0.975 247.685 248.14 281.04 397 500 

       
10βb/η  0.2 1.58608 1.60248 1.75956 2.22981 2.75641 

 
0.4 2.99068 3.06122 3.69285 5.26618 6.78857 

 
0.6 7.25645 7.52223 9.75909 14.8142 19.4261 

 
0.8 29.4427 30.8675 42.3615 66.8508 88.4499 

 
0.9 104.116 109.751 154.475 247.5 328 

 
0.95 335.569 354.785 506.12 816.9 1.1E3 

 
0.975 1022.01 1082.4 1.55E3 2.5E3 3.4E3 
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4  Motion of a prolate Cassini oval 

The method of combined singularity distribution and boundary collocation is used in this 

section to solve for the hydrodynamic drag force experienced by a prolate Cassini oval 

undergoing axial symmetric migration in a circular capillary with slip surfaces. The 

surface of a prolate Cassini oval [Keh and Tseng (1994)] and the local components of its 

outward unit normal in cylindrical coordinates are expressed by  

2/1222/1422 ])4[( czdzcρ  ,                                        (19) 

and  

222 zνρ

ρ
nρ


 ,      

222 zνρ

νz
nz


 ,                              (20) 

where dc 0 , 
2/122 )( cdz  , and 

1/24222 )4(21  dzccν .  If the shape 

parameter 2/1)/( 2 dc , the surface of the Cassini oval is convex everywhere, and its 

maximal radius of transverse circle develops at 0z and equals 
2/122 )( cd  ; the 

particle degenerates to a sphere of radius d  in the limit 0c . If 1)/(2/1 2  dc , 

the surface of the Cassini oval is concave at 0z , and its maximal radius of transverse 

circle occurs at
2/144 )4/1( cdcz  (or 0ν ) and equals cd 2/2

.  

In Tables 3 and 4, numerical results of the drag force F exerted by the fluid on a prolate 

Cassini oval migrating axi-symmetrically in a circular capillary normalized by its value 

0F in an unbounded fluid (i.e., as 0/ Rb ) are presented for various values of the slip 

parameters  /b and  /wb , particle shape parameter
2)/( dc (up to 0.95), and 

particle-wall spacing parameter Rb / (up to 0.975), where b  is the larger one between 
2/122 )( cd  and cd 2/2

now. Again, our solutions for the limiting cases of 0)/( 2 dc  

(same as those given for the case of 1/ ba  in Tables 1 and 2) and 

  // wbb  agree excellently with the results for the axisymmetric motions of 

a slip sphere in a slip circular capillary [Keh and Chang (2007)] and of a no-slip Cassini 

oval in a no-slip capillary [Yeh and Keh (2013)], respectively.  

Numerical values of the normalized hydrodynamic drag force 0/ FF for the axially 

symmetric migration of a prolate Cassini oval with shape parameter 8.0)/( 2 dc  in a 

circular capillary as a function of the spacing parameter Rb / and particle slip 

parameter  /b are plotted in Fig. 4 for the cases of no-slip capillary wall 

(  /wb ) and perfect-slip capillary wall ( 0/w  b ). Similar to the 

corresponding motion of a slip prolate spheroid considered in the previous section, Tables 

3 and 4 as well as Fig.4 also show that the approach of the capillary wall can substantially 

increase the hydrodynamic drag experienced by the slip Cassini oval. For a Cassini oval 

with a given shape parameter 
2)/( dc , the value of 0/ FF increases monotonically with 
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an increase in the ratio Rb /  from unity at 0/ Rb  to infinity in the touching limit 

1/ Rb , and in general decreases with decreases in  /b  and  /wb . Again, when 

the capillary wall does not slip much and the value of Rb /  is close to unity, 0/ FF first 

decreases with an increase in  /b  from 0/ b  before attaining a minimum, and 

then increases with a further increase in  /b . 

Table 3: The normalized drag force 0/ FF  exerted on a prolate Cassini oval migrating 

axisymmetrically in a circular capillary with  /wb  at various values of the 

parameters 
2)/( dc , Rb / , and βb/η . 

 
Rb /  

0/ FF  

 
0.1)/( 2 dc  0.3  0.5  0.7  0.9  0.95  

0βb/η  0.2 1.38107 1.36811 1.37466 1.39893 1.47766 1.52215 

 
0.4 2.24025 2.21788 2.27906 2.35137 2.46267 2.55364 

 
0.6 5.22562 5.43223 6.25973 6.87448 6.53663 6.48663 

 
0.8 30.1347 35.8549 52.6455 58.7969 45.9694 42.9173 

 
0.9 189.655 247.132 435.234 437.424 309.436 283.4 

 
0.95 1159.6 1589.2 3278 2799 1927 1756 

 
0.975 6.86E3 9.66E3 2.33E4 1.66E4 1.2E4 1.0E4 

        
1βb/η  0.2 1.45195 1.45979 1.49462 1.54145 1.60159 1.62832 

 
0.4 2.48621 2.52046 2.65659 2.77281 2.83221 2.88527 

 
0.6 5.88098 6.14732 7.00415 7.53237 7.16371 7.12980 

 
0.8 31.2095 35.7861 49.5806 53.8195 44.2368 42.4105 

 
0.9 181.396 225.185 373.703 368.612 278.600 263.570 

 
0.95 1060.07 1384.02 2704.70 2276.95 1683.345 1587.0 

 
0.975 6.12E3 8.23E3 1.89E4 1.33E4 9.8E3 9.3E3 

        
10βb/η  0.2 1.61821 1.66735 1.76277 1.86421 1.90996 1.91586 

 
0.4 3.22276 3.43993 3.86793 4.21738 4.14653 4.10128 

 
0.6 8.76464 9.66079 11.5841 12.6343 11.3863 11.0555 

 
0.8 46.2737 52.9330 70.8405 74.2589 59.5853 57.1358 

 
0.9 230.340 273.363 419.725 400.932 304.527 291.893 

 
0.95 1140.52 1405.27 2535.2 2093.5 1583.1 1521.0 

 
0.975 5.80E3 7.39E3 1.58E4 1.1E4 8.5E3 8.2E3 
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βb/η  0.2 1.70173 1.76840 1.89405 2.03118 2.09774 2.10648 

 
0.4 3.70451 4.04497 4.71003 5.31421 5.29098 5.23439 

 
0.6 11.6571 13.3944 17.1162 19.6686 17.8918 17.3608 

 
0.8 79.9433 97.0826 141.978 155.944 125.345 120.368 

 
0.9 507.226 637.551 1063.90 1037.97 790.890 759.547 

 
0.95 3050.36 3919.74 7511.60 6214.28 4723.97 4522.7 

 
0.975 17748.3 23094.7 50904.0 35308.8 27262 2.6E4 

 

Table 4: The normalized drag force 0/ FF exerted on a prolate Cassini oval migrating 

axi-symmetrically in a circular capillary with wβ at various values of the parameters 

2)/( dc , Rb / , and βb/η . 

 Rb /  
0/ FF  

 
0.1)/( 2 dc  0.3  0.5  0.7  0.9  0.95  

0βb/η  0.2 1.27745 1.26675 1.26937 1.28727 1.35041 1.38371 

 
0.4 1.77000 1.72988 1.72339 1.74568 1.88244 1.96697 

 
0.6 2.87268 2.73975 2.70044 2.77908 3.10535 3.24268 

 
0.8 6.99948 6.37005 6.17658 6.98081 8.29713 8.4161 

 
0.9 18.0791 15.646 14.748 19.469 23.306 22.989 

 
0.95 48.4717 39.971 35.904 57.46 65.87 63.85 

 
0.975 132.9 105.3 88.0 1.7E2 1.9E2 - 

        
1βb/η  0.2 1.38800 1.39043 1.41355 1.44730 1.49549 1.51687 

 
0.4 2.09603 2.09673 2.15549 2.21298 2.28235 2.33043 

 
0.6 3.77979 3.76223 3.92313 4.02713 4.06824 4.13071 

 
0.8 10.5899 10.4875 11.4597 11.9230 11.5656 11.4850 

 
0.9 30.0529 29.7236 34.7742 36.1288 33.4735 32.6472 

 
0.95 85.4745 84.4997 107.542 108.088 96.2755 92.92 

 
0.975 242.820 239.929 336.931 316.822 274.9 264 

        
10βb/η  0.2 1.60063 1.64586 1.73371 1.82601 1.86665 1.87178 

 
0.4 3.04809 3.22551 3.57482 3.84983 3.77921 3.73898 

 
0.6 7.44631 8.04222 9.31638 9.92034 8.95006 8.69091 

 
0.8 30.2752 33.1420 40.9494 41.3566 33.1167 31.6255 

 
0.9 106.971 118.082 157.899 146.248 108.841 103.346 
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0.95 344.508 383.401 566.270 464.278 334.720 317.3 

 
0.975 1.05E3 1176 1954.78 1383.1 991 9.4E2 

0.0 0.2 0.4 0.6 0.8 1.0
1

10

100

1000

 

 

0

1

b/

Figure 4a: Plots of the normalized drag force 0/ FF  for the axially symmetric 

migration of a prolate Cassini oval with 8.0)/( 2 dc  in a circular capillary for 

various values of the spacing parameter Rb /  and particle slip parameter  /b : (a) 

0/ FF  versus Rb / ; (b) 0/ FF  versus  /b . The solid and dashed curves represent 

the cases of  /wb  and 0/w  b , respectively.  
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Figure 4b: Plots of the normalized drag force 0/ FF  for the axially symmetric migration 

of a prolate Cassini oval with 8.0)/( 2 dc  in a circular capillary for various values of 

the spacing parameter Rb /  and particle slip parameter  /b : (a) 0/ FF versus Rb / ; 

(b) 0/ FF versus  /b . The solid and dashed curves represent the cases of 

 /wb  and 0/w  b , respectively.  
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Figure 5: Plots of the normalized drag force 0/ FF for the axially symmetric migration of 

a prolate Cassini oval in a circular capillary with 0/w  b versus the particle shape 

parameter 
2)/( dc for various values of the spacing parameter Rb / . The solid and 

dashed curves represent the cases of  /b and 0/ b , respectively.  

In Fig. 5, the results of the normalized drag force 0/ FF  for the axially symmetric 

migration of a prolate Cassini oval with  /b  and 0/ b  in a circular 

capillary with 0/w  b  as a function of its shape parameter 
2)/( dc  for various 

values of the spacing parameter Rb /  are plotted. Tables 3 and 4 as well as Fig. 5 

indicate that, for a given value of Rb /  and a relatively large value of  /b  or 

 /wb , the ratio 0/ FF  in general increases with an increase in 
2)/( dc in the range 

of 2/1)/(0 2  dc  (due to the increase in the surface area of the Cassini oval for its 

viscous interaction with the capillary wall), but can reach a maximum at a value of 

0F

F

2)/( dc
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2/1)/( 2 dc  (this value increases with decreasing Rb / ) and then decrease with a 

further increase in 
2)/( dc  (because the increase in the concave portion of the Cassini 

oval reduces the hydrodynamic retardation effect of the capillary wall).  However, when 

0/ b  and either  /wb  or Rb /  is small, 0/ FF  can first decrease with an 

increase in 
2)/( dc , reach a minimum at some value of 

2)/( dc , and then increase with 

a further increase in 
2)/( dc , due to the slippage at the particle surface.  For the case of 

large Rb /  and small to moderate  /b  and  /wb , 0/ FF  can encounter both a 

minimum and a maximum with an increase in 
2)/( dc in the whole range. Also, 0/ FF  

is not a very sensitive function of 
2)/( dc in the whole range, but the boundary effect on 

the migration of the particle is significant.  

5 Conclusions 

The creeping motion of an axisymmetric prolate particle along its axis of revolution in a 

coaxial circular capillary with slip-flow surfaces is examined by using the method of 

combined singularity distribution and boundary collocation. The convergent and accurate 

solutions of the normalized hydrodynamic drag force 0/ FF for the axially symmetric 

migrations of a prolate spheroid and of a prolate Cassini oval are obtained for broad 

ranges of the particle aspect ratio ba / and shape parameter
2)/( dc , respectively, the 

particle-wall separation parameter Rb / , the particle slip parameter  /b , and the wall 

slip parameter  /wb . For constant values of Rb / and ba / or
2)/( dc , the normalized 

drag 0/ FF in general decreases with decreasing  /b and  /wb  (increasing slippage 

at the solid surfaces), but there are exceptions when the values of both  /wb  and Rb /  

are large. For given values of Rb / ,  /b , and  /wb , the normalized 

drag 0/ FF increases with an increase in the axial-to-radial aspect ratio of the particle (or 

effective surface area for the particle-wall hydrodynamic interaction), but this trend can 

be reversed as  /b  is small (the particle is highly slippery). The boundary effect of 

the capillary wall on the migration of the particle is significant when they are close to 

each other.  

Appendix A: Definitions of functions in Section 2. Some functions in Section 2 are defined 
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mI  and mK  are the modified Bessel functions of the first and second kinds, respectively, 

of order m ; 
2/1

nG  is the Gegenbauer polynomial of the first kind of order n  and 

degree –1/2; nP is the Legendre polynomial of order n .  
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