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Dynamic Analysis of Non-Symmetric Functionally Graded (FG) 

Cylindrical Structure under Shock Loading by Radial Shape 

Function Using Meshless Local Petrov-Galerkin (MLPG) Method 

with Nonlinear Grading Patterns 
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Abstract: In this paper, dynamic behavior of non-symmetric Functionally Graded (FG) 

cylindrical structure under shock loading is carried out. Dynamic equations in the polar 

coordinates are drawn out using Meshless Local Petrov-Galerkin (MLPG) method. 

Nonlinear volume fractions are used for radial direction to simulate the mechanical 

properties of Functionally Graded Material (FGM). To solve dynamic equations of non-

symmetric FG cylindrical structure in the time domain, the MLPG method are combined 

with the Laplace transform method. For computing the inverse Laplace transform in the 

present paper, the Talbot algorithm for the numerical inversion is used. To verify the 

obtained results by the MLPG method, these results are compared with the analytical 

solution and the Finite Element Method (FEM). The obtained results through the MLPG 

method show a good agreement in comparison to other results and the MLPG method has 

high accuracy for dynamic analysis of non-symmetric FG cylindrical structure. The 

capability of the present method to dynamic analysis of non-symmetric FG cylindrical 

structure is demonstrated by dynamic analysis of the cylinder with different volume 

fraction exponents under harmonic and rectangular shock loading. The present method 

shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric FG 

cylindrical structure with nonlinear grading patterns, which furnishes a ground for a more 

flexible design.  

Keywords: MLPG, cylindrical structure, FGM, radial basis functions, volume fraction. 

1  Introduce  

Dynamic analyses of cylindrical structure are one of the important engineering problems. 

In order to optimize the displacements and stresses of structures subjected to loads, is often 

used Functionally Graded Materials (FGMs) in cylindrical structure. In this paper, the 

material properties of FGM are defined by nonlinear grading patterns. Stress analysis in a 

2D-FGM thick finite length hollow cylinder was studied by Najibi and Shojaeefard [Najibi 
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and Shojaeefard (2016)]. Khosravifard et al. [Khosravifard, Hematiyan and Marin (2011)] 

focused on nonlinear transient heat conduction analysis of functionally graded materials. 

Vibration characteristics of FGM cylindrical shells resting on Pasternak elastic foundation 

were investigated by Park and Kim [Park and Kim (2016)]. Shen et al. [Shen, Paidoussis, 

Wen et al. (2014)] proposed the beam-mode stability of periodic functionally graded 

material shells conveying fluid. Vibration analysis of a functionally graded hollow 

cylinder has been studied by Chen et al. [Chen, Bian, Ding (2004); Chen, Bian, Lv et al. 

(2004)]. Hosseini et al. [Hosseini and Abolbashari (2010); Hosseini, Akhlaghi and Shakeri 

(2007)] carried out dynamic analysis of functionally graded thick hollow cylinders. 

Stochastic wave propagation in functionally graded materials was studied by Hosseini and 

Shahabian [Hosseini and Shahabian (2011); Hosseini and Shahabian (2011)]. 

In recent decade, Meshless method as a new numerical method has been proposed 

[Jaberzadeh and Azhari (2015); Mirzaei and Hasanpour (2016); Sladek, Sladek and Atluri 

(2004); Sladek, Stanak; Han et al. (2013); He and Seaid (2016); Tadeu, Stanak, Antonio 

et al. (2015)]. Meshless Local Petrov-Galerkin (MLPG) method has become a very useful 

and effective solving method in structures made of Functionally Graded Materials (FGMs) 

because these materials have variable mechanical properties and does not require to the 

mesh generation on the domain. Therefore we can continuously model these materials with 

this method. Lin and Atluri [Lin and Atluri (2000)] studied Meshless Local Petrov-

Galerkin (MLPG) Method for convection-diffusion problems. They, proposed several up 

winding schemes, and applied to solve steady convection diffusion problems, in one and 

two dimensions. Meshless Local Petrov-Galerkin (MLPG) method in combination with 

finite element and boundary element approaches was investigated by Liu and Gu [Liu and 

Gu (2000)]. Zhang et al. [Zhang, Song, Liu et al. (2000)] carried out meshless methods 

based on collocation with radial basis functions. They showed that the accuracy of 

derivatives of interpolating function are usually very poor on boundary of domain when a 

direct collocation method is used, with Neumann boundary conditions. Analysis of thick 

plates by using a higher-order shear and normal deformable plate theory and MLPG 

method with radial basis functions was proposed by Xiao et al. [Xiao, Batra, Gilhooley et 

al. (2007)]. They analyzed infinitesimal deformations of a homogeneous and isotropic 

thick elastic plate. They employed Radial Basis Functions (RBF) for constructing trial 

solutions and two types of RBFs, multiquadrics (MQ) and Thin Plate Splines (TPS), are 

employed and effects of their shape parameters on the quality of the computed solution 

are examined for deformations of thick plates under different boundary conditions. Rezaei 

Mojdehi et al. [Rezaei Mojdehi, Darvizeh, Basti et al. (2011)] investigated 3D static and 

dynamic analysis of thick functionally graded plates by the Meshless Local Petrov-

Galerkin (MLPG) method. In their work, by using the kinematics of a three dimensional 

continuum, the local weak form of the equilibrium equations is derived. A weak 

formulation for the set of governing equations is transformed into local integral equations 

on local sub-domains using a Heaviside step function as test function. Analysis of the 

bending of circular piezoelectric plates with functionally graded material properties by a 

MLPG method was studied by Sladek et al. [Sladek, Sladek, Stanak et al. (2013)]. In their 

work, material properties are considered to be continuously varying along the plate 

thickness, also the axial symmetry of geometry and boundary conditions for a circular 

plate reduces the original three-dimensional (3-D) boundary value problem into a two-

http://www.sciencedirect.com/science/article/pii/S0955799715000090
http://www.sciencedirect.com/science/article/pii/S0955799715000090
http://www.sciencedirect.com/science/article/pii/S0955799715000090
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dimensional (2-D) problem. Zhao et al. [Zhao, Liu, Dai et al. (2008)] carried out geometric 

nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point 

interpolation method. In their paper, the Sander’s nonlinear shell theory is utilized and the 

arc-length technique is implemented in conjunction with the modified Newton-Raphson 

method to solve the nonlinear equilibrium equations. The radial and polynomial basis 

functions are employed to construct the shape functions with Delta function property using 

a set of arbitrarily distributed nodes in local support domains. Foroutan and Moradi 

[Foroutan and Moradi-Dastjerdi (2011)] investigated dynamic analysis of functionally 

graded material cylinders under an impact load by a mesh-free method. In this analysis, 

Moving Least Square (MLS) shape functions are used for the approximation of the 

displacement field in the weak form of motion equation and essential boundary conditions 

are imposed by the transformation method. The resulting set of time domain differential 

equations is solved using central difference approximation. Dynamic analysis of 

functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-

free method was proposed by Moradi et al. [Moradi-Dastjerdi, Foroutan and Pourasghar 

(2013)]. In their paper presented free vibration and stress wave propagation analysis of 

carbon nanotube reinforced composite (CNTRC) cylinders. In this simulation, an 

axisymmetric model is used. Material properties are estimated by a micro mechanical 

model. Moving Least Squares (MLSs) shape functions are used for approximation of 

displacement field in the weak form of motion equation and the transformation method 

was used for the imposition of essential boundary conditions. 

In this paper, dynamic equation of non-symmetric FG cylindrical structure is drawn out 

using Meshless Local Petrov-Galerkin (MLPG) method. The displacements can be 

approximated using shape function so that we choose radial functions as the basis in 

equation. The dynamic behaviors of non-symmetric FG cylindrical structure in time 

domain obtained with Meshless Local Petrov-Galerkin (MLPG) method is combining with 

Laplace transform method. The MLPG obtained results compare with analytical and Finite 

Element Method (FEM). Finally, the non-symmetric FG cylindrical structure is analyzed 

under harmonic and rectangular shock loading. 

 

2  MLPG implementation 

Governing dynamic equations of cylindrical structures with asymmetric geometry and 

boundary conditions in polar coordinates can be written as follows: 

𝜕𝜎𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

1

𝑟
(𝜎𝑟 − 𝜎𝜃) = 𝜌(𝑟)

𝜕2𝑢𝑟

𝜕𝑡2
 (1) 

1

𝑟

𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2

𝑟
𝜏𝑟𝜃 = 𝜌(𝑟)

𝜕2𝑢𝜃

𝜕𝑡2
 (2) 

where "𝜌(𝑟)" is the mass density, "𝜎𝑟", "𝜎𝜃" and "𝜏𝑟𝜃" are radial, hoop and shear stresses 

respectively. The terms "𝑢𝑟"  and "𝑢𝜃"  denote the radial and hoop displacement, 

respectively.  
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In this paper, cylindrical structure made of FGM, and also FG material in this structure is 

graded through the r-direction. Material properties of FG cylindrical structures can be 

defined as 

𝐸(𝑟) = (𝐸𝑚 − 𝐸𝑐) (
𝑟 − 𝑟𝑖𝑛

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
)
𝑙

+ 𝐸𝑐 (3) 

𝜌(𝑟) = (𝜌𝑚 − 𝜌𝑐) (
𝑟 − 𝑟𝑖𝑛

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
)
𝑙

+ 𝜌𝑐 (4) 

where "𝑙" is a non-negative volume fraction exponent, subscript "𝑚" and "𝑐" stand for 

metal and ceramic material, "𝐸"  and  "𝜌"  are modulus of elasticity and mass density, 

respectively. Constitutive equations for FG cylindrical are 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 (5) 

𝐷𝑖𝑗𝑘𝑙 = 𝜇 𝐷𝑖𝑗𝑘𝑙
0  (6) 

𝐷𝑖𝑗𝑘𝑙
0 =

2𝜈

(1 − 2𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘                                𝑖, 𝑗, 𝑘, 𝑙 = 1,2 (7) 

𝜇 =
𝐸(𝑟)

2(1 + 𝜈)
 (8) 

where "𝛿𝑖𝑗" is Kronecker delta and "𝜈" is Poisson's ratio. The strain-displacement relations 

are given by  

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 (9) 

𝜀𝜃 =
1

𝑟
(
𝜕𝑢𝜃

𝜕𝜃
+ 𝑢𝑟) (10) 

𝛾𝑟𝜃 =
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝑟
−

1

𝑟
𝑢𝜃 (11) 

where "𝜀𝑟", "𝜀𝜃" and "𝛾𝑟𝜃" are radial, hoop and shear strain, respectively. In the analysis 

of non-symmetric cylindrical structures, for converting points from Cartesian coordinates 

into cylindrical coordinates is used. 

𝑑𝛺𝑠 = 𝑟 𝑑𝛺 (12) 

By using Eq. (12) we developed the weak-form over a local subdomain "𝛺𝑄" instead of 

constructing the global weak-form for whole domain of dynamic problem. So, we have 

∫ 𝑟𝑊𝐼 (
𝜕𝜎𝑟

𝜕𝑟
+

(𝜎𝑟 − 𝜎𝜃)

𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
− 𝜌(𝑟)

𝜕2𝑢𝑟

𝜕𝑡2 )

𝛺𝑄

 𝑑𝛺 = 0 (13) 
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∫ 𝑟𝑊𝐼 (
1

𝑟

𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2𝜏𝑟𝜃

𝑟
− 𝜌(𝑟)

𝜕2𝑢𝜃

𝜕𝑡2 )

𝛺𝑄

 𝑑𝛺 = 0 (14) 

where "𝑊𝐼" is the weight function. The divergence theory is employed for Eqs. (13) and 

(14) as follows, which "𝛺𝑄" and "𝛤𝑄" are quadrature domain and boundary of quadrature 

domain, respectively. 

∫ (𝑟
𝜕𝑊𝐼

𝜕𝑟
𝜎𝑟 + 𝑊𝐼𝜎𝜃 +

𝜕𝑊𝐼

𝜕𝜃
𝜏𝑟𝜃)

𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑊𝐼 (𝑛𝑟𝜎𝑟 +
𝑛𝜃

𝑟
𝜏𝑟𝜃)

𝛤𝑄

 𝑑𝛤

+ ∫ 𝑟𝑊𝐼𝜌(𝑟)
𝜕2𝑢𝑟

𝜕𝑡2

𝛺𝑄

 𝑑𝛺 = 0 

(15) 

∫ (
𝜕𝑊𝐼

𝜕𝜃
𝜎𝜃 + 𝑟

𝜕𝑊𝐼

𝜕𝑟
𝜏𝑟𝜃 − 𝑊𝐼𝜏𝑟𝜃)

𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑊𝐼 (
𝑛𝜃

𝑟
𝜎𝜃 + 𝑛𝑟𝜏𝑟𝜃)

𝛤𝑄

 𝑑𝛤

+ ∫ 𝑟𝑊𝐼𝜌(𝑟)
𝜕2𝑢𝜃

𝜕𝑡2

𝛺𝑄

 𝑑𝛺 = 0 

(16) 

where "𝑛𝑟" and "𝑛𝜃" are the unit outward normal vector on the boundary for "𝑟" and "𝜃" 
direction, respectively. The boundary of quadrature domain is divided to some parts as 

"𝛤𝑄 = 𝛤𝑄𝑖
∪ 𝛤𝑄𝑢

∪ 𝛤𝑄𝑡
". The term "𝛤𝑄𝑖

" is the internal boundary of the quadrature domain, 

"𝛤𝑄𝑢
" is the part of the essential boundary that intersects with the quadrature domain and 

"𝛤𝑄𝑡
" is the part of the natural boundary that intersects with the quadrature domain (see 

Figure 1). 

 

Figure 1: The domain and the boundary of cylindrical structure in MLPG method 



 

 

502    Copyright © 2017 Tech Science Press           CMES, vol.113, no.4, pp.497-520, 2017 

 

We can then change the expression of Eqs. (15) and (16) to 

∫ (𝑟
𝜕𝑊𝐼

𝜕𝑟
𝜎𝑟 + 𝑊𝐼𝜎𝜃 +

𝜕𝑊𝐼

𝜕𝜃
𝜏𝑟𝜃)

𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑊𝐼 (𝑛𝑟𝜎𝑟 +
𝑛𝜃

𝑟
𝜏𝑟𝜃)

𝛤𝑄𝑖

 𝑑𝛤

− ∫ 𝑟𝑊𝐼 (𝑛𝑟𝜎𝑟 +
𝑛𝜃

𝑟
𝜏𝑟𝜃)

𝛤𝑄𝑢

 𝑑𝛤 + ∫ 𝑟𝑊𝐼𝜌(𝑟)
𝜕2𝑢𝑟

𝜕𝑡2

𝛺𝑄

 𝑑𝛺

= ∫ 𝑟𝑊𝐼𝑡𝑟
𝛤𝑄𝑡

 𝑑𝛤 

(17) 

∫ (
𝜕𝑊𝐼

𝜕𝜃
𝜎𝜃 + 𝑟

𝜕𝑊𝐼

𝜕𝑟
𝜏𝑟𝜃 − 𝑊𝐼𝜏𝑟𝜃)

𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑊𝐼 (
𝑛𝜃

𝑟
𝜎𝜃 + 𝑛𝑟𝜏𝑟𝜃)

𝛤𝑄𝑖

 𝑑𝛤

− ∫ 𝑟𝑊𝐼 (
𝑛𝜃

𝑟
𝜎𝜃 + 𝑛𝑟𝜏𝑟𝜃)

𝛤𝑄𝑢

 𝑑𝛤 + ∫ 𝑟𝑊𝐼𝜌(𝑟)
𝜕2𝑢𝜃

𝜕𝑡2

𝛺𝑄

 𝑑𝛺

= ∫ 𝑟𝑊𝐼𝑡𝜃
𝛤𝑄𝑡

 𝑑𝛤 

(18) 

where "𝑡𝑟" and "𝑡𝜃" are the radial and hoop tractions, respectively and they are defined as 

follows: 

𝑡𝑟 = 𝑛𝑟𝜎𝑟 +
𝑛𝜃

𝑟
𝜏𝑟𝜃 (19) 

𝑡𝜃 = 𝑛𝑟𝜏𝑟𝜃 +
𝑛𝜃

𝑟
𝜎𝜃 (20) 

The matrix form of Eqs. (17) and (18) is given as: 

∫ �̂�𝑰𝝈

𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑾𝑰𝒏 𝝈

𝛤𝑄𝑖

 𝑑𝛤 − ∫ 𝑟𝑾𝑰𝒏 𝝈

𝛤𝑄𝑢

 𝑑𝛤 + ∫ 𝑟𝑾𝑰𝝆
𝜕2𝒖

𝜕𝑡2

𝛺𝑄

 𝑑𝛺

= ∫ 𝑟𝑾𝑰�̅�

𝛤𝑄𝑡

 𝑑𝛤 

(21) 

where "�̂�𝑰", "𝝈", "𝑾𝑰", "𝒏" and "�̅�" are the derivative of weight function, the stress vector, 

matrix of weight functions, matrix of unit outward normal and traction vector, respectively, 

which are as follows: 
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�̂�𝑰 = [
𝑟
𝜕𝑊𝐼

𝜕𝑟
𝑊𝐼

𝜕𝑊𝐼

𝜕𝜃

0
𝜕𝑊𝐼

𝜕𝜃
𝑟
𝜕𝑊𝐼

𝜕𝑟
− 𝑊𝐼

] (22) 

𝝈𝑇 = {𝜎𝑟𝑟 𝜎𝜃𝜃 𝜏𝑟𝜃} (23) 

𝑾𝑰 = [
𝑊𝐼 0
0 𝑊𝐼

] (24) 

𝒏 = [
𝑛𝑟 0

𝑛𝜃

𝑟

0
𝑛𝜃

𝑟
𝑛𝑟

] (25) 

�̅� = {
𝑡𝑟
𝑡𝜃

} (26) 

The displacements can be approximated using shape function. Shape function defined for 

each point using the nodes in support domain "𝛺𝑠" of a point (see Figure 1). In this paper, 

we used the Radial Point Interpolation Method (RPIM) shape function, the advantage of 

using this shape function is its simplicity and high accuracy. We choose radial functions 

as the basis in equations. 

𝑢𝑟(𝑟, 𝜃, 𝑡) = 𝑢𝑟(�̅�, 𝑡) = 𝜑(�̅�) �̅�𝑟(𝑡) (27) 

𝑢𝜃(𝑟, 𝜃, 𝑡) = 𝑢𝜃(�̅�, 𝑡) = 𝜑(�̅�) �̅�𝜃(𝑡) (28) 

The matrix form of Eqs. (27) and (28) can be stated as 

𝑢 = {
𝑢𝑟

𝑢𝜃
} = ∑[

𝜑𝑗 0

0 𝜑𝑗
]

𝑘

𝑗=1

{
𝑢𝑟𝑗

𝑢𝜃𝑗
} = ∑𝜱𝒋

𝑘

𝑗=1

𝒖𝒋 (29) 

"�̅�" is distance between point "𝑥" and "𝑥𝐼", so we have 

�̅� = √𝑟2 + 𝑟𝐼
2 − 2𝑟 𝑟𝐼 𝑐𝑜𝑠(𝜃 − 𝜃𝐼) (30) 

Furthermore, shape function "𝜑(�̅�)" defined as follow: 

𝜑(�̅�) = 𝑅𝑇(𝑟 ̅) 𝑅𝑄
−1 (31) 

The vector "𝑅" and matrix "𝑅𝑄" can be written: 

𝑅𝑇(�̅�) = {𝑅1(�̅�) 𝑅2(�̅�) … 𝑅𝑛(�̅�)} (32) 

𝑅𝑄 = [

𝑅1(�̅�1) 𝑅2(�̅�1) … 𝑅𝑛(�̅�1)

𝑅1(�̅�2) 𝑅2(�̅�2) … 𝑅𝑛(�̅�2)
⋮ ⋮ ⋱ ⋮

𝑅1(�̅�𝑛) 𝑅2(�̅�𝑛) … 𝑅𝑛(�̅�𝑛)

] (33) 
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There are a number of forms of radial basis functions used by the mathematics community. 

In this paper we used the type of a classical form is called multiquadric (MQ) basis. The 

MQ basis function is following  

𝑅𝑖(�̅�) = (�̅�2 + 𝐶2)𝑞 (34) 

where "𝐶" and "𝑞" are constant coefficient.  

Substitution of the Eq. (5) and (29) into Eq. (21) gives 

∫ �̂�𝑰𝑫∑𝑩𝒋𝒖𝒋

𝒌

𝒋=𝟏𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑾𝑰𝒏𝑫∑𝑩𝒋𝒖𝒋

𝒌

𝒋=𝟏𝛤𝑄𝑖

 𝑑𝛤 − ∫ 𝑟𝑾𝑰𝒏𝑫∑𝑩𝒋𝒖𝒋

𝒌

𝒋=𝟏𝛤𝑄𝑢

 𝑑𝛤

+ ∫ 𝑟𝑾𝑰𝝆(𝒓)∑𝚽𝒋

𝜕2𝒖𝒋

𝜕𝑡2

𝑘

𝑗=1𝛺𝑄

 𝑑𝛺 = ∫ 𝑟𝑾𝑰�̅�

𝛤𝑄𝑡

 𝑑𝛤 

(35) 

where "𝑘" is the number of nodes. Matrix "𝑫" and "𝑩" defined as follow: 

𝑫 =
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1 − 2𝜈

2

] (36) 

𝑩𝒋 =

[
 
 
 
 
 

𝜕𝜑𝑗

𝜕𝑟
0

𝜑𝑗

𝑟

1

𝑟

𝜕𝜑𝑗

𝜕𝜃
1

𝑟

𝜕𝜑𝑗

𝜕𝜃

𝜕𝜑𝑗

𝜕𝑟
−

𝜑𝑗

𝑟 ]
 
 
 
 
 

 (37) 

There are some numerical techniques to solve the governing equations in time domain. In 

this article, Laplace transform is used for time domain analysis with the initial conditions 

that are assumed to be zero. 

( ∫ �̂�𝑰𝑫∑𝑩𝒋

𝒌

𝒋=𝟏𝛺𝑄

 𝑑𝛺 − ∫ 𝑟𝑾𝑰𝒏𝑫∑𝑩𝒋

𝒌

𝒋=𝟏𝛤𝑄𝑖

 𝑑𝛤 − ∫ 𝑟𝑾𝑰𝒏𝑫∑𝑩𝒋

𝒌

𝒋=𝟏𝛤𝑄𝑢

 𝑑𝛤

+ ∫ 𝑟𝑾𝑰𝝆(𝒓)∑𝜱𝑠2

𝑘

𝑗=1

 𝑑𝛺

𝛺𝑄

)𝑼(𝑠) = ∫ 𝑟𝑾𝑰𝐿(�̅�) 𝑑𝛤

𝛤𝑄𝑡

 

(38) 

where "𝐿(�̅�)"  and "𝑼(𝑠)"  are the Laplace transform of traction and displacement, 

respectively. 

The time-dependent values of transformed of the quantities in the previous consideration 

can be obtained through an inverse Laplace transform. There are many inversion methods 

available for inverse Laplace transform. In the present analysis, the Talbot algorithm for 
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the numerical inversion is used. The Talbot inversion formula to numerically calculate for 

"𝑢𝑗(𝑡)" is 

𝑢𝑗(𝑡) =
2

5𝑡
∑ 𝑅𝑒(𝛾𝑘𝑈(𝑆𝑘))

𝑀−1

𝑘=0

 (39) 

𝑆𝑘 =
𝛿𝑘

𝑡
 (40) 

where "𝑀" is the number of samples and 

𝛿0 =
2𝑀

5
 (41)   

𝛿𝑘 =
2𝑘𝜋

5
(𝑐𝑜𝑡(𝑘𝜋 𝑀⁄ ) + 𝑖)               0 < 𝑘 < 𝑀 (42) 

𝑖 = √−1 (43) 

𝛾0 =
1

2
𝑒𝛿0 (44) 

𝛾𝑘 = [1 + 𝑖(𝑘𝜋 𝑀⁄ )(1 + [cot(𝑘𝜋 𝑀⁄ )]2) − 𝑖 cot(𝑘𝜋 𝑀⁄ )]𝑒𝛿0                0 < 𝑘 < 𝑀 (45)   

3  Verification 

In numerical methods, ensuring the accuracy of the results obtained is very important. For 

this purpose, a cylindrical structure is dynamic analyzed using MLPG method and the 

results of this method compare with results of analytical and FEM methods.  

3.1  Verification with analytical solution  

 

Figure 2: The geometry and the boundary conditions 
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In this section, a cylindrical structure is analyzed using MLPG method and the results 

compare with analytical solution. So, a cylinder is assumed, in which 𝑟𝑖 = 0.25 𝑚, 𝑟𝑜 =
0.5 𝑚, and, 𝜃 = 𝜋

2⁄  𝑟𝑎𝑑, are considered as the inner, outer radius, and angle of cylinder, 

respectively. The geometry of this cylinder is showed in Figure 2. The following boundary 

conditions were assumed for the verified problem. 

𝜎𝑟(𝑟𝑖, 𝜃, 𝑡) = 𝑃(𝑡) 𝜎𝑟(𝑟𝑜, 𝜃, 𝑡) = 0 

(46) 

𝜎𝜃(𝑟𝑖, 𝜃, 𝑡) = 0 𝜎𝜃(𝑟𝑜, 𝜃, 𝑡) = 0 

𝜏𝑟𝜃(𝑟𝑖, 𝜃, 𝑡) = 0 𝜏𝑟𝜃(𝑟𝑜, 𝜃, 𝑡) = 0 

𝑢𝑟(𝑟, 𝜃𝑚𝑖𝑛, 𝑡0) = 0 𝑢𝑟(𝑟, 𝜃𝑚𝑎𝑥, 𝑡0) = 0 

𝑢𝜃(𝑟, 𝜃𝑚𝑖𝑛, 𝑡) = 0 𝑢𝜃(𝑟, 𝜃𝑚𝑎𝑥, 𝑡) = 0 

𝑃(𝑡) = 𝑃0(1 − 𝑒−𝑐0𝑡) (47) 

where 𝑃0 = 20 𝑀𝑃𝑎 and 𝑐0 = 102  
1

𝑠𝑒𝑐
 are assumed. Radial stress, hoop stress and radial 

displacement using analytical solution [Ugural and Fenster (2003)] are obtained as follow: 

𝜎𝑟𝑟 =
𝑟𝑖𝑛

2 𝑟𝑜𝑢𝑡
2 (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2

1

𝑟2
+

𝑟𝑖𝑛
2 𝑃𝑖𝑛 − 𝑟𝑜𝑢𝑡

2 𝑃𝑜𝑢𝑡

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2  (48) 

𝜎𝜃𝜃 = −
𝑟𝑖𝑛

2 𝑟𝑜𝑢𝑡
2 (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2

1

𝑟2
+

𝑟𝑖𝑛
2 𝑃𝑖𝑛 − 𝑟𝑜𝑢𝑡

2 𝑃𝑜𝑢𝑡

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2  (49) 

𝑢𝑟𝑟 =
1 + 𝜈

𝐸
[
𝑟𝑖𝑛

2 𝑟𝑜𝑢𝑡
2 (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2

1

𝑟
+ (1 − 2𝜈)

𝑟𝑖𝑛
2 𝑃𝑖𝑛 − 𝑟𝑜𝑢𝑡

2 𝑃𝑜𝑢𝑡

𝑟𝑜𝑢𝑡
2 − 𝑟𝑖𝑛

2 𝑟] (50) 

Figure 3-5 show a good agreement in obtained results with this method in comparison of 

analytical results. Percentage error for radial stress, hoop stress and radial displacement 

are obtained in Table 1. As can be seen from Table 1, the MLPG method has high accuracy 

for dynamic analysis of cylindrical structure. 
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Figure 3: The comparison of obtained results through the MLPG method with those 

using analytical method for radial displacement 

 

Figure 4: The comparison of obtained results through the MLPG method with those 

using analytical method for radial stress 
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Figure 5: The comparison of obtained results through the MLPG method with those 

using analytical method for hoop stress 

Table 1: The comparison of obtained results from MLPG method with those results using 

analytical method for middle point of thickness of the cylinder 

3.2 Verification with FEM 

In this section, a FG cylinder using present method under shock loading have been 

analyzed dynamically. The obtained results compare with FEM [Shakeri, Akhlaghi and 

Hoseini (2006)]. The boundary conditions are the same as Eq. (46). The cylinder is under 

shock loading as follows: 

𝑃(𝑡) = {
𝑃0𝑡                     𝑡 ≤ 0.005 𝑠𝑒𝑐
  0                       𝑡 > 0.005 𝑠𝑒𝑐

 (51) 

where 𝑃0 = 4 𝐺𝑃𝑎 𝑠𝑒𝑐⁄ . FG material properties are showed in Table 2. Obtained results 

with MLPG method show a good agreement in comparison of results (Figure 6-8). 

Percentage difference for radial displacement, radial stress and hoop stress are obtained in 

Table 3. As can be seen from Table 3, the MLPG method has high accuracy for dynamic 

analysis of cylindrical structure. 

 

percentage error MLPG method 

Analytical method 

[Ugural, Fenster 

(2003)] 

 

9.89 × 10−3 1.0112 × 10−4 1.0111 × 10−4 
Radial displacement 

(𝑚) 

0.8872 −5.139 × 106 −5.185 × 106 Radial stress (𝑃𝑎) 

0.5399 1.842 × 107 1.852 × 107 Hoop stress (𝑃𝑎) 
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Figure 6: The comparison of obtained results through the MLPG method with those 

using FEM for radial displacement 

 

Figure 7: The comparison of obtained results through the MLPG method with those 

using FEM for radial stress 
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Figure 8: The comparison of obtained results through the MLPG method with those 

using FEM for hoop stress 

Table 2: Mechanical properties of the FG cylindrical structure 

Mass density Poisson's ratio Elastic modulus Material location 

𝟐𝟕𝟎𝟕 𝒌𝒈 𝒎𝟑⁄  0.3 70 𝐺𝑃𝑎 Outer radius 

𝟑𝟖𝟎𝟎 𝒌𝒈 𝒎𝟑⁄  0.3 380 𝐺𝑃𝑎 inner radius 

 

Table 3: The comparison of obtained results from MLPG method with those using finite 

element method for middle point of thickness of the cylinder at time step 520 

percentage 

difference 
MLPG method 

FEM [Shakeri, 

Akhlaghi and 

Hoseini (2006)] 

 

𝟎. 𝟎𝟏𝟏 −9.466 × 10−5 −9.465 × 10−5 
 Radial 

displacement (𝑚) 

𝟏. 𝟎𝟕𝟐 −9.779 × 106 −9.885 × 106 Radial stress (𝑃𝑎) 

𝟎. 𝟖𝟏𝟗 −2.421 × 107 −2.441 × 107 Hoop stress (𝑃𝑎) 

 

4  Numerical results and discussion 

To showing capability of the present method for dynamic analysis of the FG cylindrical 

structure, in the following, we carry out the dynamic analyzed cylinder with different 
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volume fraction exponent using MLPG method under harmonic and rectangular shock 

loading. 

4.1 harmonic shock loading 

A non-symmetric FG cylinder is assumed, in which 𝑟𝑖 = 1.25 𝑚, 𝑟𝑜 = 1.5 𝑚, 𝜃𝑚𝑖𝑛 =
−𝜋

4⁄  𝑟𝑎𝑑 and 𝜃𝑚𝑎𝑥 = 𝜋
4⁄  𝑟𝑎𝑑 are considered as the inner, outer radius, minimum and 

maximum angle of cylinder, respectively (see Figure 9). Table 2 shows material properties 

for the FG cylinder. The boundary conditions are as follow: 

𝜎𝑟(𝑟𝑖, 𝜃, 𝑡) = 𝑃(𝑡)  𝜎𝑟(𝑟𝑜, 𝜃, 𝑡) = 0 

(52) 

𝜎𝜃(𝑟𝑖, 𝜃, 𝑡) = 0  𝜎𝜃(𝑟𝑜, 𝜃, 𝑡) = 0 

𝜏𝑟𝜃(𝑟𝑖, 𝜃, 𝑡) = 0  𝜏𝑟𝜃(𝑟𝑜, 𝜃, 𝑡) = 0 

𝑢𝑟(𝑟, 𝜃𝑚𝑖𝑛, 𝑡) = 0  𝑢𝑟(𝑟, 𝜃𝑚𝑎𝑥 , 𝑡) = 0 

𝑢𝜃(𝑟, 𝜃𝑚𝑖𝑛, 𝑡) = 0  𝑢𝜃(𝑟, 𝜃𝑚𝑎𝑥 , 𝑡) = 0 

𝑃(𝑡) = {
𝑃0 sin(𝑐0𝑡)             𝑡 ≤ 0.005 sec              −

𝜋

4
≤𝜃 ≤ −

5𝜋

36

0                               𝑡 > 0.005 sec                         𝜃 > −
5𝜋

36

 (53) 

where 𝑃0 = 7 𝑀𝑃𝑎 and 𝑐0 = 5 × 103  
1

𝑠𝑒𝑐
 is assumed. In Figs. 10 to 14 are depicted radial 

displacement, hoop displacement, hoop stress, radial stress, and shear stress at  𝑟 =
1.375 𝑚 and 𝜃 = 0 𝑟𝑎𝑑 for various values volume fraction exponent. It is concluded from 

Figure 10 and 11 that by increasing the value of volume fraction exponent, the radial and 

hoop displacement maximum amplitude decreased and the structure frequency increase 

and the similar behaviors can be seen for hoop stress, (see Figure 12). Figure 13 shows by 

increasing the value of volume fraction exponent, the maximum amplitude of radial stress 

has not much difference. Clear trend cannot be seen for the shear stress with various values 

volume fraction exponent, thereupon the maximum value of shear stress happens for 𝑙 =
0.75 (see Figure 14). 
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Figure 9: The geometry and the boundary conditions under shock loading 

 

Figure 10: The time history of radial displacement for l = 0.5, l = 0.75 and l = 1 under 

harmonic shock loading 
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Figure 11: The time history of hoop displacement for l = 0.5, l = 0.75 and l = 1 under 

harmonic shock loading 

 

Figure 12: The time history of hoop stress for l = 0.5, l = 0.75 and l = 1 under 

harmonic shock loading 
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Figure 13: The time history of radial stress for l = 0.5, l = 0.75 and l = 1 under 

harmonic shock loading. 

 

Figure 14: The time history of shear stress for l = 0.5, l = 0.75 and l = 1 under 

harmonic shock loading. 

4.2 Rectangular shock loading 

The same geometric and boundary conditions with problem 4.1 are assumed for a non-

symmetric FG cylinder under rectangular shock loading. Table 2 shows material properties 

for the FG cylinder. The loading is supposed as follow: 

𝑃(𝑡) = {
𝑃0                             𝑡 ≤ 0.005 sec              −

𝜋

4
≤𝜃 ≤ −

5𝜋

36

0                               𝑡 > 0.005 sec                         𝜃 > −
5𝜋

36

                                   (54) 

where 𝑃0 = 10 𝑀𝑃𝑎 is assumed. Radial displacement, hoop displacement, radial stress, 

hoop stress, and shear stress are illustrated in Figure 15-19. Maximum amplitude of the 

radial and hoop displacement (Figure 15 and 16) by increasing the value of volume 
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fraction exponent has decreased, such that, radial displacement increase after the impact 

loading within the confines of free vibration for 𝑙 = 0.5 suddenly (Figure 15). The peak 

hoop displacement escalates after the impact loading in the range of free vibration for 𝑙 =
0.5 and 𝑙 = 0.75 and this trend for 𝑙 = 1 is inverse. Figure 17 shows radial stress, from 

this figure can conclude that the maximum radial stress occurs for 𝑙 = 0.75. In Figure 18 

is seen by increasing the value of volume fraction exponent, the maximum hoop stress 

rises. Within the confines of free vibration in comparison with forced vibration, the value 

of hoop stress has a significant growth. The maximum of shear stress occurs in the range 

of free vibration for 𝑙 = 0.75 (see Figure 19). 

 

Figure 15: The time history of radial displacement for l = 0.5, l = 0.75 and l = 1 under 

rectangular shock loading 

 

Figure 16: The time history of hoop displacement for l = 0.5, l = 0.75 and l = 1 under 

rectangular shock loading 
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Figure 17: The time history of radial stress for l = 0.5, l = 0.75 and l = 1 under 

rectangular shock loading 

 

Figure 18: The time history of hoop stress for l = 0.5, l = 0.75 and l = 1 under 

rectangular shock loading 
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Figure 19: The time history of shear stress for l = 0.5, l = 0.75 and l = 1 under 

rectangular shock loading 

5  Conclusion 

In this paper, dynamic equation of non-symmetric FG cylindrical structure has been 

exploited using Meshless Local Petrov-Galerkin (MLPG) method. To simulate the 

mechanical properties of FGM, nonlinear volume fractions have been used in the direction 

of radius. To obtain the dynamic behaviors of non-symmetric FG cylindrical structure in 

the time domain, the Meshless Local Petrov-Galerkin (MLPG) method have been 

combined with Laplace transform method. The major conclusions that have been obtained 

through the above analysis can be summarized as follows: 

• The MLPG method shows that it is a very effective method with high accuracy for 

dynamic analysis of non-symmetric FG cylindrical structure. 

• In comparison to the obtained results of analytical method, the achieved results of 

MLPG method showed a good agreement, that it demonstrates the MLPG method 

have high accuracy and capability for dynamic analysis of non-symmetric FG 

cylindrical structure. The maximum percentage errors in the middle point of thickness 

of the cylinder for radial displacement, radial stress and hoop stress are 9.89 × 10−3, 

0.8872 and 0.5399 respectively. 

• For showing the accuracy and capability of the obtained results through the MLPG 

method for shock loading, these results were compared with the FEM. In this case, the 

maximum percentage differences between the results of the MLPG method and the 

FEM at time step 520 and the middle point of thickness of the cylinder for radial 

displacement, radial stress and hoop stress are 0.011, 1.072 and 0.819 respectively. 

• For obtaining the time histories of displacements and stresses for the various values 

of volume fraction exponent can be used the presented hybrid meshless technique 

(combined MLPG and Laplace transform method). 
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• The non-symmetric FG cylindrical structure was analyzed under harmonic shock 

loading with the various values of volume fraction exponent. This analysis showed, 

by increasing the value of volume fraction exponent, the radial and hoop displacement 

maximum amplitude decreased and the similar behaviors can be seen for hoop stress. 

Also the maximum amplitude of radial stress has not much difference. Clear trend 

cannot be seen for the shear stress with various values volume fraction exponent. 

• The rectangular shock loading applied to the non-symmetric FG cylindrical structure. 

This analysis showed, the maximum amplitude of the radial and hoop displacement 

by increasing the value of volume fraction exponent has decreased. The maximum 

radial stress occurs for 𝑙 = 0.75. Also by increasing the value of volume fraction 

exponent, the maximum hoop stress rises. The maximum of shear stress occurs in the 

range of free vibration for 𝑙 = 0.75. 

• The present analysis furnishes a ground for natural frequency analysis of FGMs with 

two dimensional grading patterns. 
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