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Abstract: Fluid-filled closed-cell porous media could exhibit distinctive features which 

are influenced by initial fluid pressures inside the cavities. Based on the equivalent far-

field method, micromechanics-based solutions for the local elastic fields of porous media 

saturated with pressurized fluid are formulated in this paper. In the present 

micromechanics model, three configurations are introduced to characterize the different 

state the closed-cell porous media. The fluid-filled cavity is assumed to be a compressible 

elastic solid with a zero shear modulus, and the pressures in closed pores are represented 

by eigenstrains introduced in fluid domains. With the assumption of spheroidal fluid-

filled pores, the local stress and strain fields in solid matrix of porous media are derived 

by using the Exterior-Point Eshelby tensors, which are dependent of the Poisson’s ratio of 

solid matrix and the locations of the investigated material points outside the spheroidal 

fluid domain. The reliability and accuracy of the analytical elastic solutions are verified 

by a classical example. Moreover, for finite volume fraction of the fluid inclusions, the 

local elastic fields of the porous media subjected to the initial fluid pressure and external 

load are obtained. The results show that the present micromechanics model provides an 

effective approach to characterize the local elastic fields of the materials with closed-cell 

fluid-filled pores. 
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1 Introduction  

In classical micromechanics of composites, the emphasis was focused on mechanical 

properties of composites with solid inclusions in previous investigations. Meanwhile, the 

macroscopic properties of porous media with the fluid inclusions and the internal 

pressures in the closed cavities have already been paid more and more attention. Closed-

cell porous medium containing the fluid phase with or without internal pressure is a 

special kind of composite, which is widely applied in practical engineering. The 

mechanical behaviors of the porous media are affected by the initial fluid pressure in the 

cavity. 
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For a porous material, the micro-scale pores and interstitial fluid have an important effect 

on the macroscopic properties of the material. Several researchers have studied the 

effective mechanical properties of the materials. The poroelastic mechanics models of 

saturated porous medium have been founded, see Terzaghi [Terzaghi (1943)], Gassmann 

[Gassmann (1951)], Biot [Biot (1954)]. Hereafter, O'Connell and Budiansky [O'Connell 

and Budiansky (1977)] analyzed the influences of local fluid flow on the poroelasticity of 

the materils containing arbitrary holes. Thomsen [Thomsen (1995)] applied the 

anisotropic elastic theory to the porous media. In addition, Ozgur et al. [Ozgur, Mullen 

and Welsch (1996)], Kachanov et al. [Kachanov, Tsukrov and Shafiro (1995)] and 

Shafiro et al. [Shafiro and Kachanov (1997)] studied the effects of the hydrostatic fluid 

on macroscopic mechanical properties of closed-cell materials and the phenomenon of 

the pressure polarization. Hartmann et al. [Hartmann and Delgado (2004); Hartmann, 

Mathmann and Delgado (2006)] simulated the compressive deformation of yeast cells 

under high hydrostatic pressure. Yang and Li [Yang and Li (2006)] established a 

micromechanical model to study the microstructure and effective property evolution of 

the cement hydration process. Ma et. al [Ma, Rolfe, Yang et al. (2011); Ma, Yang, Yan et 

al. (2014)] developed a micromechanics model to investigate the effects of the fluid 

pressure and gas pressure on the macroscopic mechanical properties of the close-cell 

porous materials. In recent years, the numerical techniques, for example, multi-scale 

finite element method [Zhang, Lv and Zheng (2010)], boundary element method [Huang, 

Zheng and Yao (2011)] and computational homogenization approach [Ma, Rolfe, Yang et 

al. (2011); Ma, Yang, Yan et al. (2014)] have been proposed to solve the elastic fields of 

porous media with closed fluid. Guo et al. [Guo and Cheng (2002)] modified the classical 

Gurson model [Gurson (1977)] of porous material by introducing the effect of the gas 

pressure. Chen et al. [Chen, Zhu, Wang et al. (2006)], Kitazono et al. [Kitazono, Sato and 

Kuribayashi (2003)] and Zhang et al. [Zhang, Xu, Wang el al. (2009)] developed 

micromechanical models to study the macro-elastoplastic properties of the closed-cell 

porous materials. Vincent et al. [Vincent, Monerie and Suquet (2009)] adopted Gurson-

like approach [Gologanu, Leblond and Devaux (1994)] and variational method [Ponte 

Castañeda (1991)] to derive the upper bounds of macroscopic plastic properties of closed-

cell porous media with different internal pressures, and an N-phase model was proposed 

which matches the best of the bounds. Further, Julien et al. [Julien, Garajeu and Michel 

(2011)] used the N-phase micromechanical model to study the macroscopic plastic 

behavior of porous materials with viscoplastic matrix. These studies have revealed the 

significance of a fluid inclusion phase on the macroscopic mechanical properties of 

closed-cell porous media. 

The micromechanics models have been widely developed based on Eshelby equivalent 

inclusion principle [Eshelby (1957)] to study the macroscopic properties of composites. 

However, for the composites with the finite volume fraction of inclusions, the problem of 

the local elastic fields of the matrix is an important issue which has drawn wide attention. 

Eshelby [Eshelby (1957)] and Mura [Mura (1987)] found the solution of exterior elastic 

field of a spheroidal inclusion in the infinite matrix. However, the expressions were given 

in terms of complicated elliptic integrals. The displacement potential function method can 

be used to solve the local elastic fields outside the spheroidal inclusion. Mikata et al. 

[Mikata and Taya (1985)] analyzed a stress field for the spheroidal inclusions under 

dict://key.0895DFE8DB67F9409DB285590D870EDD/compressive%20deformation
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axisymmetric loadings. Ju et al. [Ju and Sun (1999)] introduced a virtual spheroidal 

inclusion inside the matrix to calculate the local elastic field of the infinite matrix. Duan 

et al. [Duan, Wang, Huang et al. (2005)] obtained the elastic solution of the infinite 

matrix under far-field axisymmetric loadings for the arbitrary orientation of the 

spheroidal inclusions with interphase. Guo et al. [Guo, Liu and Hu (2006)] applied the 

maximum information entropy theory and the secant modulus method to study the local 

stress field of the composites. Most contributions in the literatures are concerned with the 

determination of elastic fields of conventional composite and porous material. The local 

elastic solutions of closed-cell porous media saturated with pressurized fluid are seldom 

reported. In this paper, a micromechanical model based on an equivalent far-field 

approach is presented to formulate the local elastic fields of closed-cell porous media 

filled with pressurized fluids. 

2 Equivalent far-field method 

To reveal the local elastic fields of closed-cell porous media containing the fluid and 

internal pressure, the notion of the representative volume element (RVE) and the 

equivalent far-field method are used to transform the problem of finite volume fraction 

into the one of infinite matrix. We first consider the material containing closed fluid 

inclusions without initial fluid pressure. Because the closed fluid cannot have the shear 

and tensile resistance, its shear modulus is zero, i.e. 0fμ  . Considering the 

compressibility of the fluid-filled cavity, the compression stiffness tensor of the closed 

fluid can be expressed as f

ijkl f ij klC k   , where fk  is the bulk modulus of the fluid 

inclusion, ij is the Kronecker delta. For the material with multiple spheroidal inclusions, 

it is assumed that the closed fluid does not penetrate each other. For convenience, the 

material containing a cluster of fluid-filled inclusions is selected and the boundary 

condition of uniform traction 
0 0 t σ n  is applied, where n is the external normal of the 

body’s surface, 
0

σ is the uniform stress. The average stress over the heterogeneous 

material can be obtained [Mura (1987); Yang and Becker (2004); Yang, Tao and Yang 

(2007)]. 

0σ σ                                                                                                                                (1) 

Then the macroscopic constitutive relation of the material can be expressed by 

0 :σ C ε                                                                                                                          (2) 

where C  is the unknown effective elastic stiffness, ε  is the average strain over the 

material. 

In order to apply the Eshelby equivalent inclusion theory [Eshelby (1957)] to the present 

problem of finite volume fraction inclusions, the RVE is put into the infinite matrix 

subjected to the far-field stress 
σ . The elastic field generated by far-field stress 

σ  

should be consistent with that caused by uniform stress 0
σ . In other words, it is 
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equivalent for 0
σ  applied in boundaries and 

σ  applied in the far field, as shown in Fig. 

1. This is the main idea of the equivalent far-field method. 

 

Figure 1: Equivalent far-field model of the RVE subjected to uniform stress boundary 

condition 

3 Equivalent micromechanical model 

For discussion of the local elastic fields of the RVE of closed-cell porous media 

containing fluid and internal pressure, three configurations, i.e., reference configuration, 

natural configuration and current configuration, can be defined here. The reference 

configuration is referred to as the state of free stress in the matrix and fluid phase. If an 

initial pressure is imposed on the fluid domain in reference configuration, the RVE 

experiences an initial elastic fields in matrix. This equilibrium state is called natural 

configuration where the initial fluid pressure is characterized by p0. When an external 

traction is successively imposed on the boundary of RVE, the current configuration can 

be achieved, and the fluid pressure is changed to p, due to the compressibility of the fluid. 

This means that the current configuration of the RVE is produced by the initial fluid 

pressure and external uniform stress simultaneously. Accordingly, the total local elastic 

fields of current configuration can be obtained by summing local elastic fields by the 

initial fluid pressure and by the external force. Fig. 2 depicts the evolution of the three 

configurations of the RVE. 

 

(a) reference configuration        (b) natural configuration      (c) current configuration 

Figure 2: Evolution of three configurations of the RVE 



 

 

 

Micromechanics-Based Elastic Fields of Closed-Cell Porous Media                       243 

For the single fluid inclusion material with the volume fraction 
1f  

of the inclusions, the 

local elastic fields caused by the initial fluid pressure in the natural configuration are 

analyzed. In this case, the initial elastic fields in the natural configuration of the RVE are 

entirely caused by the initial fluid pressure. 

In order to obtain the initial elastic fields of the RVE containing the finite volume 

fraction of closed fluid and initial internal pressure, by using the equivalent far-field 

method, the material in reference configuration is put into infinite matrix subjected to the 

far-field stress 


σ , and an initial eigenstrain 
p0ε  is applied to the fluid-filled pore , 

which can represent the initial fluid pressure
 
p0. If the local elastic fields produced by the 

equivalent far-field model within the RVE are consistent with the local elastic fields 

produced in natural configuration, the local fields problem of initial model is completely 

equivalent to the far-field model, as shown in Fig. 3. 

 

Figure 3: Equivalent far-field model of the RVE in natural configuration 

The equivalent inclusion method [Eshelby (1957)] is usually used to evaluate residual 

stresses of a composite [Takao and Taya (1985); Hu and Weng (1998)]. Utilizing this 

method, the initial stress 0
P  of fluid inclusions can be expressed as, 

   0 00

0 1 1 0 1: :
p p

p      P I = C ε ε - ε = C ε ε - ε - ε
                               

                       (3) 

where I is the second-order unit tensor. 0C and 1C are the elastic stiffness for matrix and 

inclusions respectively. 
ε is the equivalent far-field strain, 1ε  is the perturbing strain of 

the fluid inclusions, 

ε is the eigenstrain of the fluid inclusions because 1C  is replaced by 

0C in Eq. (3). By using the self-equilibrium condition, the relationship between the 

equivalent far-field strain 
ε and the initial fluid pressure p0 can be given by 

01

1

1

0
1

:
f

f

 
 


ε PC                                                                                                           (4) 

Consequently, the equivalent far-field stress is 

01

0

1
1

:
f

f

 
  


σ C ε P                                                                                                    (5) 
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By the equivalent inclusions principle, the strain of fluid inclusion 
1

 ε ε  and the 

eigenstrain *
ε can be easily derived as 

0

1 : + :
p  ε ε A ε a ε                                                                                                      (6) 

    
-1

-1*

1 0 0
: :+ -

p    
0ε S C - C C I - S ε ε                                                                     (7) 

where I  is the fourth-order unit tensor, S is the fourth-order Eshelby’s tensor depending 

on the shape of the inclusion and elastic properties of the solid matrix, and 

 
1

1

0 1 0
: :


    A I S C C C                                                                                           (8) 

 
1

1

0 0 1 1
: :




 a C - C S - C C                                                                                            (9) 

From Eq. (3), we can obtain 

1 0

1 0
- :

p 
 0*

ε ε - ε ε C P                                                                                                    (10) 

By combining Eqs. (6), (7) and (10), the strain
p0ε is then obtained as 

       
1

1 11 0

0
: : : :

p


        0ε a Ι S + M I - S C P A ε S + M ε                                    (11) 

Substitution of Eq. (4) into Eq. (11) yields 

      0

1
1 11 0 1 0 1 01 1

0 0 0

1 1

: : : :
1

:
1

:
p f f

f f


         

 

 
 
 

a Ι S + M I S C P A C P S + M C Pε                        (12) 

As seen in Eqs. (5) and (12), it is obvious that for the RVE containing initial fluid 

pressure in the natural configuration, the far-field stress 


σ in the equivalent far-field 

model and the applied initial eigenstrain 
p0ε  can be expressed as a function in terms of 

the given initial fluid pressure p0. 

In the current configuration, total elastic fields of the RVE can be divided into the 

individual effect of the initial fluid pressure and the external uniform stress, while the 

relationship between the equivalent far-field stress and the initial fluid pressure is 

demonstrated by Eqs. (5) and (12). Therefore, we only consider the case of material 

subjected to external uniform stress in order to obtain the local elastic fields. In the 

current configuration, the boundary condition of uniform stress of the RVE is 
0 0
 t σ n . 

For the transformed far-field model, the RVE is subjected to the boundary condition of 

far-field uniform traction
 
 t σ n . Based on the equivalent far-field method, the elastic 

fields produced by uniform stress 


σ of the far-field boundary are consistent with the 

elastic fields produced by uniform stress 
0

σ on the boundary. Thus, these models can be 

considered to be equivalent completely, as shown in Fig. 4. 
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Figure 4: Equivalent far-field model in the current configuration 

On the basis of the principle of the equivalent inclusions, the internal stress generated in 

fluid domain can be expressed by 

   1 0

*: : 
  C Cε ε ε ε ε                                                                           (13) 

where 


ε  is the uniform strain corresponding to the uniform far-field stress 


σ , i.e. 

0
: 

σ C ε . ε  is the perturbing strain in the fluid inclusion. 
*

ε is the equivalent 

eigenstrain as the fluid inclusion is replaced by the matrix material. The perturbing strain 

ε  and 
*

ε of the fluid inclusions have the following relation [Eshelby (1957)] 

*:ε S ε                                                                                                                          (14) 

Then we can get the total strain of fluid inclusions 

:  ε ε A ε  (15) 

Using the equivalent far-field method, we can establish the relationship between the 

uniform stress 
0

σ and the uniform equivalent far-field strain 


ε  

 0

0 0 1 1
: :f f


 σ C C A ε                                                                                              (16) 

The uniform strain 


ε of equivalent far-field can be written as 

1

0 :  ε C σ                                                                                                                 (17) 

Combining Eqs. (16) and (17), we can get the relationship between the uniform 

equivalent far-field stress 


σ and the boundary uniform stress 
0

σ . 

 
1 0

0 0 0 1 1
:: :f f


 σ C C C A σ                                                                                  (18) 

This formula shows that under the finite volume fraction, for the given boundary uniform 

stress 
0

σ , the far-field stress 


σ in the equivalent far-field model can be expressed in 

terms of 
0

σ .  

Utilizing the principle of superposition, the total equivalent far-field stress 
t


σ  of the 

RVE in the current configuration can be expressed as the sum of the equivalent far-field 

stresses caused by the initial fluid pressure
0

p  and external uniform stress 0
σ . That is 
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 
10 01

0 0 0 1 1

1

:
1

: :
t

f
f f

f

  
     


σ σ σ P C C C A σ   (19) 

By means of the above derivation, we can respectively obtain the equivalent far-field 

stress in the natural and current configuration of the investigated material with the initial 

fluid pressure. As a result, the problem of finite volume fraction is translated into the 

problem of infinite matrix through the equivalent far-field method.  

4 Local elastic fields 

For a spheroidal inclusion embedded into the infinite matrix D, as the whole material is 

subjected to a boundary condition of uniform stress in far-field and a uniform eigenstrain 

in the inclusion domain  , the Eshelby tensor S is independent of the local coordinates. 

Moreover, the strain and stress in inclusion are uniform for this case. The details can be 

found in literature [Mura (1987)]. 

According to the equivalent far-field model and Eshelby solution of infinite matrix, the 

elastic fields in fluid domains can be obtained in current configuration 

 **: int

  ε ε S ε                                        (20) 

   **

0 : : int

    σ σ C S I ε                                 (21) 

where 
t


ε is the equivalent far-field strain corresponding to the equivalent far-field stress 

t


σ  in the current configuration. According to 0 :t t

 σ C ε and Eq. (19), the equivalent 

far-field strain can be given by 

 
11 0 0

0 0 0
1

1 1

1

: : :
1

t f f
f

f

   


ε C P C C A σ

                      (22) 

In addition, the total eigenstrain **
ε  is the sum of the eigenstrain p

0ε  produced by the 

initial fluid pressure p0 and the equivalent eigenstrain in inclusions caused by equivalent 

far-field traction 

   0
-1** : -+ :

p

t

 εε S M N ε
                            (23) 

where M and N are the fourth-order tensors, respectively 

 
-1

1 0 0:M C -C C                               (24) 

 
-1

1 0 1:N C -C C                                (25) 

The local elastic fields of matrix outside the inclusions are no longer uniform. In order to 

obtain the external local elastic fields, a fourth-order tensor  G x , called Exterior-Point 

Eshelby tensor, is introduced to describe the local elastic field of the solid matrix 

     d , in D


  G x G x - x x                    (26) 
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where  G x - x  is the Green function, x  is a material point of matrix domain D   

outside the inclusions. The Green function can be written by 

 
 

  

   

03

0

0 0

1
1 2

8 1

3 3 3 1 2 15

ijkl ik jl il jk ij kl

ik j l il j k jk i l jl i k ij k l kl i j i j k l

G v
v

v n n n n n n n n n n v n n n n n n

     


     

    


       

x - x
x - x         (27) 

where
0

v is the Poisson's ratio of matrix material, n is the unit vector of outward normal 

defined by   n x - x x - x . Once we get the Exterior-Point Eshelby tensor  G x , the 

local elastic fields of the solid matrix outside fluid inclusions in the current configuration 

can be expressed by 

     **: in Dt

  ε x ε G x ε                         (28) 

     **

0 : in D:t

  σ x σ C G x ε                       (29) 

As can be seen from Eqs. (28) and (29), the Exterior-Point Eshelby tensor  G x  is 

similar to the Eshelby tensor S for the local field inside the fluid inclusion of the porous 

media. As the expression of  G x  is derived, the local elastic fields outside the inclusion 

can be determined exactly. The explicit expressions of the Exterior-Point Eshelby tensor 

 G x  of spheroidal inclusions were given by Ju et al. [Ju and Sun (1999)]. 

The local elastic fields in matrix induced only by initial fluid pressure can be obtained as 

     **

0 0: in D  ε x ε G x ε                        (30) 

     **

0 0 0 i  : n: D  σ x σ C G x ε                       (31) 

with 

 
-1**

0 0 0

1 0 0 1 01 1 1
0 0

1 1 1

: , , : : :
1 1 1

+
pf f f

f f f

    
 

 
   

 



0ε σ ε S ε C PM NC P P   (32) 

5 Benchmark of the micromechanics model 

Although the Exterior-Point Eshelby tensor is introduced in the present micromechanics 

model, the derivations of the local elastic fields of closed-cell porous media with initial 

pressure are relatively complicated. Therefore, it is necessary to verify the reliability and 

accuracy of the present model. Here we consider an elastic spherical shell with closed 

fluid, as shown in Fig. 5. The inner radius of the sphere is denoted by a, and the outer 

radius by b. The inside hollow ball is filled by static fluid with initial pressure 0p . The 

uniform pressure p  is applied on the outside surface of the spherical shell.  
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Figure 5: Elastic spherical shell subjected to internal pressure and external uniform load 

For this simple problem, the classical approach in elasticity can be used to formulate the 

exact solution. When the elastic spherical shell is only subjected to the initial internal 

pressure 0p , the boundary conditions are given by 

   0 , 0R RR a R b
p 

 
                             (33) 

The radial stress component 
R

  and tangential component
T

 can be derived as 

3 3 3 3

0 0

3 3 3 3

1 1 1 1

2,
1 1 1 1R T
R b R bp p

a b a b

 
 

  

 

                         (34) 

where R is the radius of an arbitrary point in solid matrix. 

We continue to consider the spherical shell only subjected to external uniform pressure 

p , the corresponding boundary conditions are 

   0 ,R RR a R b
p p 

 
                              (35) 

where 0p  is the internal pressure of the fluid caused by the external uniform pressure p . 

The corresponding solutions of the radial stress R and the tangential stress
 T  are 

given by 

3 3 3 3

3 3 3 3

0 03 3 3 3

3 3 3 3

1 1 1 1
2 2,

1 1 1 1
R T

b a b a

R R R Rp p p p
b a b a

a b a b

 
   

     

   

              (36) 
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According to the superposition principle, under both initial inner pressure and external 

uniform pressure, the total stress field 
t

R  of the elastic shell structure can be expressed 

by 

,t t

R R R T T T                                   (37) 

In order to verify the accuracy of the formulae of the local elastic fields of the special 

elastic shell, the comparisons between the exact solution and the present 

micromechanics-based solution are made in what follows. Material parameters and 

geometric dimensions used in this example benchmark are shown in Tab. 1. 

Table 1: Material and geometric parameters of the spherical elastic shell 

0E (MPa)    0v        1K (MPa)    0p (MPa)     p (MPa)    a (mm)      b (mm) 

     6000      0.25        2250              10               20              100            150 

The comparisons of radial stress R  and tangential stress T  calculated by the two 

approaches are given in Fig. 6 and Fig. 7. It is shown that the radial stress R  increases 

with the increase of the radius, while the tangential stress T  decreases with the increase 

of the radius. It is noted that the present micromechanics-based solutions are identical to 

the exact solutions, which demonstrates that the formulae of the local elastic fields 

derived by the micromechanical model are accurate and reliable. Furthermore, the results 

show that, even in a large volume fraction of fluid inclusions, the present 

micromechanics-based model still keeps high accuracy. 
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Figure 6: Comparison between exact solution and micromechanics-based solution for 

radial and tangential stresses of the elastic shell subjected to an internal pressure 
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Figure 7: Comparison between exact solution and micromechanics-based solution for 

radial and tangential stresses of the elastic shell subjected to both internal pressure and 

external load 

6 Application to porous media with spheroidal pores 

For the closed-cell porous media containing the initial fluid pressure, it is difficult to 

derive the local elastic fields by the classical elastic mechanics approach, due to the 

complexity of the pore shape. As an application of the present micromechanics-based 

model, two numerical examples for the elastic fields of closed-cell porous materials with 

spheroidal pores are given. 

We first consider the local elastic fields of the RVE of a porous medium with by a fluid-

filled crack. As a classical example, Pollard et al. [Pollard and Segall, 1987] investigated 

the local elastic fields for two-dimensional crack in the elastic matrix. For the 

investigated three-dimensional fluid-filled prolate crack, the length of the semi-major 

axis, 0a , is assumed to be considerably larger than those of semi-minor axes, 0b , with an 

aspect ratio of 
0 0 20a b  . For illustration purposes, the RVE of a porous medium with 

an isolated crack is shown in Fig. 8. 
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Figure 8: The RVE of a porous medium with an isolated crack 

The adopted material parameters are the same as the previous example in Section. 5. The 

initial fluid pressure of the crack is set to
0 5 MPap  . Fig. 9 shows a contour plot of the 

normalized stress 0xx p  along the x direction in the x y  plane of the RVE under the 

initial fluid pressure. The elastic stress field is symmetric and the maximum stress occurs 

in the crack tip due to stress concentration. We continue to apply uniformly distributed 

pressure
 0 2 MPap   on the boundary of the RVE along the x direction. The contours of 

the normalized stress 
0xx p along the x  direction in the x y  plane of the RVE are 

plotted in Fig. 10. The compression of the fluid in the closed crack leads to an increase of 

the fluid pressure, which illustrates that the magnitudes of the normalized stresses 

0xx p  at crack tips increase significantly.  
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Figure 9: Contour map of the normalized stress 0xx p around isolated crack in x y  

plane of the RVE due to an initial fluid pressure 
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Figure 10: Contour map of the normalized stress 0xx p around isolated crack in x y  

plane of the RVE due to an applied external pressure along x direction 

For the RVE of a porous medium subjected to the initial fluid pressure and uniaxial 

distributed pressure at boundary, the 3D views of isosurfaces of the normalized stresses 

( 0 0.4, 0xx p   ) in matrix are shown in Fig. 11 and Fig. 12, respectively. The regions of 

the normalized stresses around the crack form symmetric and toroidal zones enclosing the 

crack. 

 

 

Figure 11: Isosurfaces of the normalized stress 0 0.4xx p   in matrix produced by 

the initial fluid pressure and uniaxial distributed pressure at boundary 
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Figure 12: Isosurfaces of the normalized stress 0 0xx p   in matrix produced by the 

initial fluid pressure and uniaxial distributed pressure at boundary 

 

Next, we consider the second illustrative example for the elastic fields of the porous 

media with the generally spheroidal fluid-filled pores. For the spheroidal pores, the 

lengths of semi-major axis and the semi-minor axis are set to 
0

1.5a  mm, 

0 0
1b c  mm, respectively. The reference frame of the RVE used in this example is 

depicted in Fig. 13. The initial fluid pressure of the pore is set to 
0

3MPap  . When a 

uniformly distributed pressure 5MPap  is imposed on the boundary of the RVE along 

the x  direction, the fluid pressure in spheroidal pore is increased to 3.9 MPa . Under 

this situation, the contour plots of the normalized stresses (
0x x

p ,
0y y

p and 
0zz

p ) 

in matrix along three directions in the x-y plane are shown in Fig. 14. It is readily 

observed that the contour maps are symmetric about the central axes of the pore. With the 

combination of initial fluid pressure and applied external compressive loads, the 

components of the normalized stresses are quite different. 
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Figure 13: The RVE with a fluid-filled spheroidal pore 
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(b) 0yy p  

 

 

 

 

 

 

 

 

 

 

 

 

(c) zz 0p  

Figure 14: Contour maps of the normalized stresses 0xx p , 0yy p and 

zz 0p around the spheroidal pore in x y  plane 

For the 3D view, Fig. 15 shows the isosurfaces of the normalized stress 0xx p around 

the spheroidal pore. The isosurfaces of 
0

1
x x

p   , 
0

5 / 3
x x

p    and 
0

2
x x

p    

are marked with yellow, red and blue color, respectively. The compressive shadows 

alongside the pore are radially symmetric about the central axes of pore.  

When a uniform shear stress 3MPaxy   is applied on the boundary of the RVE of the 

porous medium, the fluid pressure in the pore remains unchanged, due to the inability of 
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the closed fluid to transfer the shear stress. The isosurfaces of the normalized maximum 

shear stresses (
max

0/ 1.15xy p  ,
max

0/ 1.10xy p   and 
max

0/ 1.05xy p  ) in matrix 

around the pore, are shown in yellow, red and blue color, respectively (see Fig. 16). 

Regions of the normalized shear stress around the spheroidal pore are also radially 

symmetric about the central axes of pore. 

 

 

Figure 15: Isosurfaces of the normalized stress 0xx p  in matrix due to the initial fluid 

pressure and uniaxial compressive load 

 

Figure 16: Isosurfaces of the normalized stress 
max

0xy p  in matrix due to the initial fluid 

pressure and uniaxial compressive load 
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7 Conclusions 

In this paper, a micromechanics-based model is developed to determine the local elastic 

fields of the closed-cell porous media with initially pressurized spheroidal pores. In this 

model, the equivalent far-field method is used to transform the problem of finite volume 

fraction of pores into that of infinite matrix, and the initial fluid pressure is represented by 

introducing an initial eigenstrain in the fluid-filled pore by equivalent inclusion method. 

With a benchmark example of an elastic spherical shell structure, the reliability and 

accuracy of the present micromechanics model are validated, even in the case of finite 

volume fraction of fluid-filled pores. For the porous media with initially pressurized 

spheroidal pores subjected to uniform external loads, several numerical examples for the 

local elastic fields around the fluid-filled prolate crack-like pore and generally spheroidal 

pore are respectively illustrated. It is noted that the present micromechanics model, for 

the determination of elastic fields, can also be extended to the porous media with multiple 

and randomly distributed fluid-filled pores. 
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