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Abstract: High accurary in wind speed forcasting remains hard to achieve due to wind’s 

random distribution nature and its seasonal characteristics. Randomness, intermittent and 

nonstationary usually cause the portion problem of the wind speed forecasting. Seasonal 

characteristics of wind speed means that its feature distribution is inconsistent. This 

typically results that the persistence of excitation for modeling can not be guaranteed, and 

may severely reduce the possibilities of high precise forecasting model. In this paper, we 

proposed two effective solutions to solve the problems caused by the randomness and 

seasonal characteristics of the wind speed. (1) Wavelet analysis is used to extract the 

robust components of time series and reduce the influence of randomness. (2) Based on 

the energy distribution about the extracted amplitude and associated frequency, seasonal 

characteristics of wind speed are analyzed based on self-similarity in periodogram under 

scales range generated by wavelet transformation. Thus, the original dataset is reasonably 

divided into subsest which can effectively reflect the seasonal distribution characteristics 

of wind speed. In addition, two strategies are given to optimal model structure and 

improve the forecasting accuracy: (1) The forecasting model’s lag space is approximately 

estimated by the Lipschitz quotient to improve the generality ability of the feedforward 

neural network. (2) The forecasting accuracy and model robustness are further improved 

by the wavelet decomposition combined with AdaBoosting neural network. Finally, 

experimental evaluation based on the dataset from National Renewable Energy 

Laboratory (NREL) is given to demonstrate the performance of the proposed approach. 
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Notation 

Db4: Daubechies wavelet of order 4 
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NREL: National Renewable Energy Laboratory 

RMSE: Root mean square error 

RSD: Relative standard deviation 

SCA: seasonal characteristics analysis 

WT: wavelet transformation 

1 Introduction 

Wind energy, as a typical renewable, inexhaustible and free energy resource, has been 

considered as an optimal solution to solve the problems caused by the traditional energy 

[Wang, Song, Liu et al. (2016)]. Wind energy production requires accurate and reliable 

wind power forecasting which in turn is closely related to wind speed forecasting. Up to 

date, precise short-term wind speed forecasting unfortunately remains a challenging issue 

due to wind’s randomness and intermittent nature [Shao, Wei, Deng et al. (2016)]. 

Usually, randomness and nonstationary can cause the portion problem of the wind speed 

forecasting [Grilli and Shumchenia (2015)]. 

(1) In the literature, numerical weather prediction [Abd-Elaal, Mills and Ma (2018)] 

hydrological evaluation methods [Honti, Scheidegger and Stamm (2014)], probabilistic 

model [Dowell and Pinson (2016)] and neural network (NN) [Chang, Lu, Chang et al. 

(2017)], etc. have all been considered to analyze the uncertainty effects in climate change 

and wind power penetration. Du et al. [Du, Wang, Wang et al. (2016)] discussed the 

significant characteristics of the randomness in wind power system output, and figured 

out that the potential influence factors which can influence the power capacity credit on 

different output levels. Roy [Roy (2013)] gave a comprehensively and quantitatively 

description for the randomness of wind speed to evaluate the outputs variability. In order 

to reduce the potential influence on power system operation from the randomness of the 

wind speed, Ding et al. [Ding, Hu and Song (2012)] utilized the stochastic optimization 

method to optimize the gird plant scheduling. Wavelet analysis as a powerful time-frequency 

analysis method can capture the local feature of the any time series are widely used in 

short-term wind speed forecasting and used to reduce the negative influence caused by 

randomness.  

(2) Aiming at the assessing the statistical characteristics and modeling the uplift capacity, 

Shademan et al. [Shademan, Barron, Balachandar et al. (2014)] utilized the numerical 

simulation of wind speed loading of the full panel to analyze the effects of the lateral gap 

spacing and seasonal distribution pattern. The experiments denoted that two bottom 

panels experience larger mean wind loading compared to the top panels. This benefits the 

analysis of the wind speed’s seasonal distribution pattern and model configuration. 

Neural network with its strong nonlinear mapping modeling ability is currently the most 

widely used method in the short-term wind speed or wind power forecasting. Recently, 

many studies indicated that the analysis method in combined with NN can significantly 

improve the forecasting accuracy of the short-term wind speed. Kavousi-Fard et al. 

[Kavousi-Fard, Khosravi, Nahavandi et al. (2016)] proposed a fuzzy-based approach in 

combination with NN optimized by the lower upper bound estimation to capture the 

uncertainty of the wind power and improve the forecasting accuracy. Meng et al. [Meng, 
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Ge, Yin et al. (2016)] used the wavelet packet decomposition, crisscross optimization 

algorithm and artificial NNs to develop a new hybrid approach for short-term wind speed 

forecasting. The forecasting result indicated that the NN in combined with WT etc has the 

minimum mean absolute percentage error regardless of one-step, three-step or five-step 

prediction. Analogy, Ren et al. [Ren, Suganthan, Srikanth et al. (2015)] used the 

empirical mode decomposition-based to capture the stationary feature of wind speed, and 

combined with NN to establish the short-term model with high forecasting accuracy. 

Theoretically, although the feedforward NN with a single hidden layer can approximate 

any complex function, only the proper model architecture is beneficial to the acquisition 

of forecasting model with high accuracy. Our previously work [Wei, Shao, Deng et al. 

(2015)] indicated that the proper model structure selection can eliminate the unreasonable 

trend of data as well as feature extraction without loss of data characteristics. In addition, 

the forecasting accuracy can be further improved based on two following issues:  

(1) Persistence of excitation for modeling. The training samples need to contain the 

sufficient features that they can be used to help improve the accuracy of the forecasting 

model. More precisely, more data sets or larger training sample sizes may be not 

conducive to the establishment of high-precision model unless they have enough effective 

features for training.  

(2) Model lag estimation. The curve-fitting degree and cut-off distribution are usually 

selected as the principle to evaluate the model order. Lipschitz condition, Akaike 

Information Criterion and Bayesian Akaike Information Criterion are the most widely 

used methods to evaluate the model order. However, its significant drawback is that the 

outlined criteria are independent with the forecasting modeling. Based on the previous 

discussion, two following strategies are given:  

(1) Seasonal characteristics analysis for persistence of excitation. The inputs of the 

neural network must be continuously energized, i.e. the input variables must be able to 

fully energize all model’s modes. Periodicity detection based on WT is conducive to 

extract the repetitive, stable and periodic characteristics of the wind speed time series. 

This obviously benefits that the various modes of the NN are continuously energized, and 

the spectrum of the training sample contains the pre-established model’s spectrum;  

(2) Lag space evaluation for model lag estimation. The nonlinear mapping between the 

input-output is helpful to reflect the logical relationship between the historical input data 

and the current output data, and it is helpful to establish the feedforward NN with high 

generalization ability. Lipschitz quotients as a powerful measure method are used to 

calculate the proper delay of the chosen model. 

The rest of this paper is organized as follows. The proposed approach includes the 

seasonal characteristics analysis (SCA) and lag space estimation etc. is given in Section 2. 

In Section 3, experimental evaluation is given to verify the performance of the proposed 

approach, and this paper is concluded in Section 4. 

2 Proposed approach 

The main objective of this paper is to propose a robust forecasting model with high 

accuracy by properly analyzing seasonal characteristics and lag space in wind resource, 
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etc. The processing steps in general are specified as follows: 

Step 1: Detect the irrelevant data and noisy to improve the sample quality. The irrelevant 

data and noisy will be effectively detected based on the WT. 

Step 2: WT is used to decompose the original signal, extract the stationary component 

and reflect the similar frequency feature with respect to wind speed. 

Step 3: Satisfy the persistence of excitation for NN, and ensure that the training sample 

contains enough seasonal characteristics used for testing. The proper subsets division is 

generated based on the different seasonal characteristics. 

Step 4: Lag space estimation and model robustness enhancement. Lipschitz quotient and 

AdaBoosting NN are used to reflect the appropriate model structure and enhance the 

model robustness, respectively.  

Experimental evaluation based on the dataset from NREL in 2004 is given to evaluate the 

performance of the proposed approach. The processing flow of this paper is stated in Fig. 1. 

 

Figure 1: The processing flow 

Firstly, WT is given to detect the wind variation pattern and capture the seasonal 

characteristics in different seasons. Secondly, wavelet decomposition is used to estimate 

the approximate frequency and extract the stationary component of wind speed to reduce 

the influence of the uncertainty in wind resources. Thirdly, Lipschitz quotient is used to 

estimate the lag space, reflect the model lag between the output power and the historical 

wind speed and power, and then promote the architecture configuration. Fourthly, 

AdaBoosting NN is utilized to promote the model configuration and enhance the model 

robustness. Finally, experimental comparison based on the dataset from NREL in 2004 is 

given to evaluate the performance of the proposed approach. 

2.1 Seasonal characteristics analysis 

WT composes of discrete and continuous wavelet transformation, which can be used to 

capture the distribution of the wind speed in different seasons based on the 

multi-frequency bands with multi-resolutions along with time. WT can detect the wind 

variation pattern and capture the seasonal feature in different seasons [Duo-Neng, 

Zhong-Xi, Zheng et al. (2016); Shao, Wei, Deng et al. (2016)]. Morlet function is 

dedicated to the meteorological time series analysis because its waveform shape is close 

to the analyzed signal [Megahed, Moussa, Elrefaie et al. (2008); Shao, Deng, Cui et al. 

(2016)]. The continuous wavelet transformation is defined by 
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where ( )x t  is the given time series, and * denotes the complex conjugate operator 

with respect to mother function 2( ) ( )t L R  . The admissibility condition is defined by
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 ,W s   is the wavelet coefficient, and   is the translation parameter associated to 

time t . s  is a scale factor refer to ( )x t , which is used for the frequency measurement. 

The similarity of the seasonal characteristics with respect to ( )x t  can be captured based 

on the scale s  along with the time t . The similarity among the different seasonal 

characteristics in periodogram will be higher if the corresponding  ,W s   is larger. 
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where ( , )c

uvW s   is the wavelet coefficient matrices at the current month, and ( , )n

uvW s   

is the ones about the next month. cW  and nW  are the mean related to the matrix 

elements. Technically, ( , )W sr   is a statistical parameter used to show whether and how 

strongly pairs of given matrices   ,
m n

W s 


 are related. The months will be properly 

divided based on the relationship between the self-similar coefficient SSr  and the 

correlation coefficient ( , )W sr  . Taking into account the requirement of the persistence of 

excitation in NN, training sample should contain various variation types of pattern used 

for the modeling and useful information for testing. In chronological order, the proper 

subsets division in each season is generated based on the similarity and periodicity 

between the different seasonal characteristics. 

2.2 Randomness analysis and model lag estimation 

Lipschitz quotient [He and Asada (1993)], wavelet decomposition and AdaBoost 

technique [Shao, Deng, Cui et al. (2016)] are used to estimate the model lags space, 

reduce the influence from the randomness and non-stationary. Model order is generally 

treated as the maximum lag to reflect the intrinsic relations between the output and the 

historical data. Lipschitz quotient is a powerful measure method with computational 

efficiency used to calculate the proper delay based on the chosen model, which is given by 
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variables. WT can decompose the wind speed into wavelet packets and recursively 

generate the new frequency to reflect the similar frequency feature refer to wind speed. 
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where   and   are the wavelet filter coefficients related to low and high frequency, 

respectively.   and   are the corresponding wavelet coefficients associated to the 

reconstructed wavelet. Model robustness can be significantly improved through 

AdaBoosting method using the multiple NNs’ learning abilities. Moreover, the model 

optimization technique is processed based on our preliminary version [Wei, Shao and 

Deng (2015)] to avoid the over-fitting issue in model learning process. 

2.3 Model performance 

The validation of the model results is used to evaluate the produced error in short-term 

wind speed forecasting. The proposed approach in this paper is mainly based on the 

multi-layered perceptron with one hidden layers NN using the Levenberg-Marquardt 

optimization method. Two performance criteria are used in this paper: Root mean square 

error (RMSE), Relative standard deviation (RSD), and they respectively defined by 
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where tfy  and ˆ
try  are observation vector and forecasting vector, respectively. RMSE 
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and RSD represent regular and relative bias between the real and forecasting sample, 

respectively.  

3 Experimental evaluation 

3.1 Data description 

The sample used for experimental evaluation is downloaded from the National 

Renewable Energy Laboratory (NREL) at: http://www.nrel.gov/electricity/transmission/. 

The sample contains two variables: wind speed (M/S) and netpower (MW). The site 

number of the utilized sample is 06996, and the sampling frequency is 10 min/point. In 

order to effectively reflect the seasonal characteristics of wind speed trend in a whole 

year, the sample size is 26352×1 (only the wind speed) from January 1, 2004 to 

December 31, 2004 is selected for analysis. In this section, the verification steps 

corresponding to the proposed approach are given in detail: 

Step 1: Detect the irrelevant data and noisy to improve the sample quality. The irrelevant 

data and noisy will be effectively detected based on the principles that the true signal’s 

distribution density will gradually decrease while noisy data’s amplitude increase.  

Step 2: Decompose the processed wind speed to derive the accurate analysis. Time-frequency 

analysis method WT is used to decompose the original signal and reflect the similar 

frequency feature with respect to wind speed. Meanwhile, WT can avoid the wind 

speed’s local transient feature which maybe propagated over time. For instance, 

Daubechies (Db) wavelet of order 4 (Db4) encodes the constants and linear components. 

Db4 is dedicated to the analysis of the meteorological time series because it can perform 

appropriate trade-off ability between wavelength and smoothness.  

Step 3: The proper subsets division is generated to effectively reflect the seasonal 

characteristics of the wind speed and satisfy the persistence of excitation for NN used for 

testing, which is mainly divided by the similarity and periodicity between the different 

seasonal characteristics. 

Step 4: Lag space estimation and model robustness enhancement. Lipschitz quotient is 

applied to investigate the proper lag space to reflect the appropriate model structure. 

AdaBoosting NN is used to enhance the model robustness by utilizing the multi-network’s 

learning abilities. Experimental evaluation based on the dataset from NREL is given to 

evaluate the performance of the proposed approach. 

3.2 Seasonal characteristics analysis 

Usually, wind speed has a continuous spectrum to reflect the periodically change and 

external climates conditions. However, it is still a challenge issue to estimate the change 

period of the wind speed due to the complicated meteorological interaction. The seasonal 

characteristics of wind speed can be effectively derived based on the scalogram 

percentage of energy distribution. Wind speed’s trend and seasonality can be sufficiently 

reflected based on self-similarity related to the WT coefficient in periodogram. Note that, the 

energy distribution of the signal and noise is different, so wavelet filter method is used to 

improve the SCA accuracy. SCA results about July are intuitively displayed in Fig. 2. 

http://www.nrel.gov/electricity/transmission/
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Figure 2: Seasonal characteristics analysis (July) 

Table 1: Statistical results 

Season Months 

median 

( , )W s 

 

    
SSr

 
( , )W sr 

 

Spring 

March -0.0194 0.1507 4.1324 -0.1167 Mar. vs Apr. -0.1192 

April -0.1125 0.2631 5.4016 -0.1473 Apr. vs May. -0.2041 

May -0.1981 0.2347 5.3180 -0.0214 May. vs Jun. -0.1309 

Summer 

June -0.0988 0.0814 4.2341 -0.0225 Jun. vs Jul. -0.5526 

July 1.1494 0.2619 3.5559 -0.1920 Jul. vs Aug. -0.3147 

August 0.1367 0.2008 3.7416 -0.0627 Aug. vs Sep. -0.2303 

Autumn 

September 0.0778 0.1801 3.8877 -0.2208 Sep. vs Oct. -0.0235 

October 0.0878 0.2285 3.1071 0.2644 Oct. vs Nov. 0.0335 

November -0.2399 0.2437 3.3770 0.0206 Nov. vs Dec. 0.0973 

Winter 

December -0.5107 0.4225 4.5610 0.0404 Dec. vs Jan. 0.1155 

January -0.4444 0.3639 4.3104 -0.0545 Jan. vs Feb. -0.1478 

February 0.5799 0.1179 4.1928 0.3189 Feb. vs Mar. -0.3224 

where m edian ( , )W s  ,  ,  and SSr  are the median value, expectation, variance and 

self-similar coefficient related to wavelet coefficient matrices   ,
m n

W s 


. The proper 

subsets division is generated based on the similarity between the different seasonal 

characteristics. The months in different seasons are divided into the following subsets in Tab. 2. 
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Table 2: Divided subsets based on SCA 

Seasons Subsets Months Considered order 

Spring 
1 March 8 

2 April & May 7 

Summer 3 June, July & August 10 

Autumn 

4 September 7 

5 October 10 

6 November 9 

Winter 
7 December & January 5 

8 February 9 

Based on the SCA of the wind speed, two seasonal distributions are reflected. Wind speed 

distribution in July is local periodicity and seasonal, which is obviously the type of 

distinguish seasonal characteristics. Half day (about 67 points) is approximately treated 

as the minimum period under scales 1-256 along with time. The other one distribution of 

the wind speed is seasonal but no obvious periodicity along with time, for instance, 

November is a typical month with the outlined seasonal characteristics. The vertical-axis 

is essentially about the scale s  in Fig. 3, which represents the pseudo-frequencies 

estimated by matlab inline function ‘scal2frq’. The estimated frequencies 66 and 146 can 

be approximately treated as the ‘true’ frequency to investigate the seasonal characteristics. 

There are two seasonal distribution pattern based on WT spectrum:  

(1) The ones related to seasons with half-day of periodic, which is seasonal and local 

periodicity such as summer and winter;  

(2) The other one associated to the seasons is seasonal but no obvious periodicity along 

with time, such as the autumn and spring. The statistical results related to the wavelet 

coefficient matrices   ,
m n

W s 


 is given to accurately analyze the wind speed’s 

seasonal characteristics, given in Tab. 1.  

The months are merged into one subset if the self-similar coefficient SSr  is smaller than 

the correlation coefficient ( , )W sr   related to the last and next month. In particular, June, 

July and August are merged into one subset due to ( , )W s SSr r  . This indicates that these 

months have a higher similarity about seasonal characteristics than the self-similarity in 

each month. Based on the outlined discussion, larger sample may not benefit the 

establishment of the high-accuracy model unless the training sample contains the 

sufficient seasonal characteristics information used for testing. Wind speed’s seasonal 

characteristics will be sufficiently reflected in the wind speed forecasting process.  

3.3 Experiments 

The improper lag space cannot reflect the appropriate model structure, based on the 

identified inputs and outputs, the proper lag space structure associated to model order 
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 , 1
,

i

k

y i r i i
p p J N


  can be accurately estimated. These model orders will be treated as 

the considered order in (6) based on the curve trend. More precisely, the order is selected 

as the model order when it is greater or equal to the knee-point where the matrix order 

index ,
a bn n

ij i jL   flattens out along with curve trend. The estimated result for model order is 

shown in Tab. 3 and Fig. 3. 

 

Figure 3: Model order estimation 

Daubechies (Db) wavelets as one typical type of the orthogonal wavelet are usually to 

represent the wind speed’s complicated feature. Db4 is dedicated to the analysis of the 

wind speed because it can carry out appropriate trade-off ability between wavelength and 

smoothness. Db4 at the resolution level-2 [Shao, Deng, Cui et al. (2016)] is selected as 

the wavelet decomposition method to reduce the influence from the uncertainty and 

non-stationary in wind speed. Adaboosting NN using Levenberg-Marquardt learning 

algorithm is used to promote the model configuration, enhance the model robustness and 

improve the wind speed forecasting accuracy by utilizing the multi-individual NN’s 

learning abilities. This paper proposes the 24-steps (i.e. 4 h) ahead forecasting for wind 

speed in short-term. 60%, 20% and 20% of each subset are respectively selected as the 

training sample, verification sample and testing sample based on the model optimization 

strategy. The experimental results are validated through the cross-validation based on the 

forecasting results in each subset. The forecasting results are given in Tab. 3 and Fig. 4.  
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Table 3: Forecasting results 

Seasons Error FMSCA DS FMNSCA PRA 

Spring 

RMSE 0.1303 

1 

0.1198 0.1181 

RSD 0.5337 0.5435 0.5361 

ET 59.89 20.45 109.42 

RMSE 

 2 

0.1275 0.1274 

RSD 0.5045 0.5043 

ET 29.32 151.83 

Summer 

RMSE 0.1397 

3 

0.1397 0.1384 

RSD 0.5426 0.5426 0.5376 

ET 67.17 67.17 366.75 

Autumn 

RMSE 0.1205 

4 

0.1344 0.1332 

RSD 0.4938 0.5004 0.4958 

ET 44.76 14.94 77.09 

RMSE 

 

5 

0.1319 0.1325 

RSD 0.4428 0.4447 

ET 23.55 128.02 

RMSE 

6 

0.1316 0.1239 

RSD 0.6622 0.6238 

ET 22.22 110.92 

Winter 

RMSE 0.1149 

7 

0.1063 0.1083 

RSD 0.4888 0.5641 0.5751 

ET 23.46 15.24 70.81 

RMSE 

 8 

0.1332 0.1321 

RSD 0.5446 0.5402 

ET 23.80 129.48 
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Figure 4: Forecasting results 

where DS represents the divided subsets in Tab. 3, and ET indicates the time cost in 

seconds. FMSCA represents the forecasting methods based on the subsets generated by 

the traditional division in the whole season, and it utilizes the wavelet decomposition but 

without SCA and AdaBoosting NN. PRA indicates the proposed approach based on the 

divided subsets generated by SCA, which includes the uncertainty measurement, 

randomness evaluation, wavelet decomposition, SCA and AdaBoosting NN. FMNSCA is 

the PRA without AdaBoosting NN. Note that, the forecasting results using the FMSCA 

and FMNSCA is same with each other due to the same subsets. The forecasting result 

about the May 22-26, 2004 is shown in Fig. 4. Six individual networks using the 

Levenberg-Marquardt technique compose of the AdaBoosting NN, each of which 

contains three layers, input layer, hidden layer and output layer. The numbers of the input 

layers have been given in Tab. 2 according to the estimated model order, and the output 

layer contains only one neuron associated to the wind speed. Empirical equation 

1hidden inputn n     is used to estimate the number of the hidden layer, where hiddenn  

and inputn  are the number of hidden and input layers nodes, respectively, and   is a 

constant with interval [1, 10]. Learning rate and convergence goal are 0.01 and 0.001, 

respectively. Tansig and purelin are chosen as the activation function of the hidden layer 

and output layer in NN. The forecasting results from 1-h to 12-h ahead are given in Tab. 

4 and Fig. 5, respectively. 
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Table 4(a): Forecasting results using proposed approach 

Seasons Error DS 1-h 2-h 3-h 4-h 5-h 6-h 

Spring 

RMSE 

1 

0.0209 0.0576 0.0930 0.1384 0.1741 0.2030 

RSD 0.0951 0.2617 0.4221 0.6281 0.7898 0.9206 

ET 88.68 92.11 90.87 89.29 89.06 83.46 

RMSE 

2 

0.0429 0.1132 0.1915 0.2491 0.2868 0.3072 

RSD 0.1703 0.4489 0.7583 0.9856 1.1341 1.2137 

ET 119.51 118.37 119.19 122.65 121.74 123.65 

Summer 

RMSE 

3 

0.0545 0.1060 0.1617 0.2103 0.2441 0.2740 

RSD 0.2122 0.4121 0.6286 0.8173 0.9482 1.0641 

ET 232.95 224.54 224.25 224.16 239.43 236.30 

Autumn 

RMSE 

4 

0.0518 0.1052 0.1710 0.2292 0.2854 0.3190 

RSD 0.1937 0.3929 0.6377 0.8533 1.0608 1.1866 

ET 62.85 62.95 62.88 62.95 62.89 62.85 

RMSE 

5 

0.0243 0.0651 0.1112 0.1540 0.1971 0.2360 

RSD 0.0822 0.2194 0.3740 0.5173 0.6611 0.7906 

ET 80.91 80.53 80.46 80.45 80.33 80.33 

RMSE 

6 

0.0447 0.0899 0.1459 0.2067 0.2426 0.2833 

RSD 0.2303 0.4589 0.7393 1.0403 1.2150 1.4124 

ET 74.36 74.25 75.34 75.05 69.92 75.08 

Winter 

RMSE 

7 

0.0269 0.0647 0.1045 0.1404 0.1707 0.1979 

RSD 0.1439 0.3454 0.5562 0.7454 0.9043 1.0455 

ET 57.89 57.55 57.63 57.37 57.31 57.38 

RMSE 

8 

0.0255 0.0709 0.1303 0.1867 0.2340 0.2542 

RSD 0.1046 0.2903 0.5335 0.7637 0.9546 1.0333 

ET 82.22 80.95 81.15 81.60 81.09 79.82 
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Table 4(b): Forecasting results using proposed approach 

Seasons Error DS 7-h 8-h 9-h 10-h 11-h 12-h 

Spring 

RMSE 

1 

0.2179 0.2215 0.2246 0.2314 0.2401 0.2411 

RSD 0.9845 1.0023 1.0184 1.0484 1.0889 1.0929 

ET 89.02 89.11 89.55 89.26 89.25 89.03 

RMSE 

2 

0.3298 0.3498 0.3534 0.3492 0.3477 0.3401 

RSD 1.3022 1.3806 1.3938 1.3770 1.3704 1.3395 

ET 117.66 111.26 117.63 115.74 117.85 117.68 

Summer 

RMSE 

3 

0.2949 0.3123 0.3255 0.3365 0.3382 0.3417 

RSD 1.1453 1.2127 1.2638 1.3062 1.3124 1.3255 

ET 234.43 235.62 235.29 234.46 235.36 235.66 

Autumn 

RMSE 

4 

0.3502 0.3753 0.4072 0.4311 0.4549 0.4789 

RSD 1.2981 1.3890 1.5043 1.5890 1.6712 1.7521 

ET 60.00 62.85 62.87 58.54 59.01 59.08 

RMSE 

5 

0.2666 0.2796 0.2962 0.3046 0.3071 0.3136 

RSD 0.8923 0.9344 0.9889 1.0154 1.0223 1.0424 

ET 80.21 80.11 80.31 80.19 77.60 80.06 

RMSE 

6 

0.3132 0.3322 0.3552 0.3691 0.3943 0.4085 

RSD 1.5540 1.6383 1.7397 1.7917 1.8945 1.9421 

ET 74.51 75.48 70.76 75.83 79.97 75.60 

Winter 

RMSE 

7 

0.2185 0.2363 0.2502 0.2599 0.2697 0.2767 

RSD 1.1520 1.2433 1.3140 1.3624 1.4114 1.4456 

ET 57.28 57.36 57.12 54.38 56.90 57.14 

RMSE 

8 

0.2793 0.2914 0.3064 0.3271 0.3327 0.3401 

RSD 1.1308 1.1745 1.2286 1.3042 1.3185 1.3397 

ET 82.93 79.93 81.14 79.84 79.73 80.92 
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Figure 5: Wind speed hour-ahead forecast using proposed approach 

Based on the outlined discussion about the experimental results, two conclusions are 

given: 

(1) The forecasting accuracy based on the reasonable model structure and proper 

samples will be significantly improved based on the subsets with high similarity in 

seasonal characteristics. For instance, although FMSCA’s model architecture is 

same as the FMNSCA’s, its forecasting accuracy is still lower than the results 

generated by FMNSCA and PRA in general due to the insufficient seasonal 

characteristics analysis.  

(2) The forecasting accuracy based on the reasonable model is still easily susceptible to 

the samples with non-uniform feature distribution. For instance, based on the 

statistical results, FMNSCA’s and PRA’s forecasting accuracy are higher than 

FMSCA on RMSE but still slightly lower than the ones based on the subsets in 

autumn. 

(3) The forecasting performance deteriorates and the forecasting accuracy decreases 

along with the increment of the forecasting-steps. Typically, the small error in wind 

speed forecasting means the big errors in wind power forecasting. This indicates 

the forecasting model should have the ability of the error correction, dynamical 

feedback and adaptive adjustment in combination with the proposed approach in 

this paper. 

As a conclusion, PRA can improve the forecasting accuracy related to the short-term 

wind speed though the approximate seasonal characteristics analysis and proper 

uncertainty measurement. 

4 Conclusion 

This paper attempted to establish a high accuracy and reliable wind speed forecasting 

method, taking into account wind’s seasonal characteristics and lag space. Firstly, the 

similarity among the different seasonal characteristics of wind speed is investigated based 
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on self-similarity in periodogram to effectively reflect the wind speed's Seasonal 

distribution characteristics by properly dividing the original dataset into subsets. 

Secondly, the model lag space is approximately evaluated to construct the reasonable 

model structure. Thirdly, wavelet analysis and AdaBoosting NN are utilized to estimate 

the approximate frequency of wind speed and promote the model configuration. This 

enhances the model robustness and improves the forecasting accuracy. Experimental 

evaluation using the dataset from NREL in 2004 was conducted to verify the 

effectiveness of the proposed approach. Wavelet analysis and seasonal characteristics 

analysis benefit the analysis of the wind speed’s randomness and optimal neural 

network’s structure, respectively. AdaBoosting neural network and lag space estimation 

can be used to promote the model’s configuration and show the confidence in 

high-accuracy forecasting of short-term wind speed. In our further work, the dynamical 

model with ability of error correction and adaptive adjustment in combination with the 

proposed approach in this paper will be considered. 
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