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Abstract: This paper presents, using Lyapunov-Krasovskii functional technique combined 

with reciprocal convex lemma is considered for a networked control temperature control 

system with additive time-varying-delays. In the stability analysis, a new LK functional is 

assumed, and take the time-derivative of the (LK) functional, using reciprocal convex 

combination technique was employed to obtain less conservative stability criteria. Finally, the 

proposed stability analysis culminates into a stability criterion in the LMI (linear matrix 

inequalities) framework. The results obtained are in accordance with the theoretically 

obtained in the temperature control system and they are closer to the standard benchmark 

temperature-control system. 
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1 Introduction 

In this paper, stability of network controlled heat exchanger system, also known as 

temperature control system that maintains output temperature of a fluid within specified 

limits is analyzed.  When heat exchanger is employed for transfer of heat between one or 

more fluids, closed loop control is very essential and stability of the closed loop system is 

significant. The fluids in a typical heat exchanger system may be separated by a solid 

wall to prevent mixing or they may be in direct contact also [Kakac and Liu (2002); 

Saunders (1988)]. The heat exchangers are widely used in space heating, refrigeration, air 

conditioning, power generations, chemical industries, petrochemical and petroleum 

industries, Oil-industries, gas-industries and sewage treatment [Kakac and Liu (2002); 

Saunders (1988); Stephanopoulas (2003)]. If the heat exchanger system is controlled 

through a master control center located at remote, then the feedback loop of the closed-

loop control scheme will be completed through communication networks.  Such a typical 

network controlled temperature control scheme will consist of heat exchanger, sensor, 

valve, and a regulator (embedding PI control logic) placed at the remote control center 

[Sharma, Gupta and Kumar (2011)]. The temperature control scheme will be pressed into 

service in the event of any unexpected deviation in the temperature control system output 

variable like sudden excessive withdrawal of steam by output loads. Under such 
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perturbed operating condition, the temperature sensor sense the output temperature. This 

signal is feedback to the controller unit through a communication network (as digitally 

processed data packets). In the controller, the error between the reference signal and 

actual signal (delayed by communication network) is computed and processed by 

proportional-integral (PI) control scheme. The PI controller subsequently offers a suitable 

input signal through the communication network to the final control element (the valve) 

thereby bringing the perturbed heat exchanger terminal temperature back to the 

equilibrium condition. The heart of the heat exchanger control scheme, the PI controller, 

is designed apriori assuming zero network delays. However, the use of communication 

network for data (signal) transfer in the closed-loop system introduces time-delays in the 

feedback path.  This, in turn, will enable one to achieve optimal performance from the 

time-delayed system [Batisha and Jota (2014)]. Delay dependent stability criteria are 

employed to compute the stable margin for the network delays within which the 

temperature control system remains asymptotically stable. To the best of author’s 

knowledge, the delay-dependent stability of heat exchanger [Yeroglu (2015)]. These two 

feedback-loop delays, popularly referred to as network induced delays, are practically 

unavoidable in a distributed control system scenario where the plant and controller are 

connected through a communication channel in which the data (control or/and measured) 

experience buffering, processing and propagation at various internodes; refer Zhao et al. 

[Zhao, Liu and Rees (2010)]. As a result, the network-introduced two additive delays are 

time-varying in nature and have dissimilar characteristics [Lam, Goa and Wang (2007)].  

In general case, these network induced delays are inevitably pose serious limitations to 

achievable performance of the closed loop system, and in some cases, may even lead to 

destabilization of the temperature control system. Hence, stable delay margin (i.e. 

maximum delay bound which the networked controlled system can accommodate without 

losing asymptotic stability) for such temperature control system must be computed for 

various subsets of controller parameters (proportional gain 𝐾𝑝  and integral gain  𝐾𝐼 ) 

through delay-dependent stability analysis procedure so that they serve as a practical 

guide-line for fine tuning of controller parameters at the implementation stage. System 

under networked control environment has not been reported in literature so far. In this 

paper, a generalized criterion (sufficient condition) is presented for ascertaining delay 

dependent stability of temperature control systems with time-varying additive feedback 

loop delays.  

In the proposed approach, the mathematical model of the PI controlled temperature 

control system with time-varying feedback loop delays is first developed as a linear 

retarded delay-differential continuous-time equation. This state-space model is a 

generalized modelling framework for dynamical systems with time-delays. Subsequently, 

based on Lyapunov-Krasovskii functional approach combined with Reciprocal convex 

combination [Ko and Park (2011)], a delay-dependent stability criterion is presented in 

LMI framework to compute the maximum value bound of the time-delay within which 

the closed-loop heat exchanger (temperature control) system remains asymptotically 

stable in the sense of Lyapunov. The paper concludes with the presentation of simulation 

results of substantiate the analytical results on delay-dependent stability. The proposed 

stability criterion is expressed as a set of solvable linear matrix inequalities (LMIs) that 
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can be solved using standard numerical packages [Gahinet, Nemirovskii, Laub et al. 

(1995)] by casting it as a convex optimization problem. 

These adequate conditions generally indicated as stability criteria are expressed as a set of 

solvable LMI conditions [Xu and Lam (2008)].  The less conservatism of new delay-

dependent stability criteria mainly depends on the selection of the LK functional used in 

the analysis, and many useful results have been reported in literature in recent times [Lam, 

Goa and Wang (2007); Xu and Lam (2008); Gao, Chng and Lam (2008); Wu, Liao, Feng 

et al. (2009); Ramakrishnan and Ray (2009, 2011b); Dey, Ray, Ghosh et al. (2010); Shao 

and Han (2012); Shao, Zhu, Zhang et al. (2013); Li and Tian (2012); Ko, Lee and Park 

(2011); Jiao (2013); Chaibi, Tisser and Hmamed (2013); Hamed, Chaabane and Kacem 

(2011)]. However, many useful results existing in the literature, to the best of our 

knowledge, there are no results available for the delay-dependent stability of temperature 

control system with additive time-varying delays.   

2 Temperature control model with additive time-varying delays 

The linear model of temperature control system is used to analyze the system dynamics 

and to design a controller [Sharma, Gupta and Kumar (2011)]. Fig. 1 shows the block 

diagram of a temperature control with including network-induced time-delays. Now that 

each component of the system namely heat exchanger, sensor, valve, the controller is 

modeled by a first-order transfer function [Sharma, Gupta and Kumar (2011)]. They 

repeated here for convenience: 

 𝐺𝑉(𝑠) =
𝐾𝑉

𝑇𝑉𝑠+1
;      𝐺𝐻(𝑠) =

𝐾𝐻

𝑇𝐻𝑠+1
;      𝐺𝐹(𝑠) =

𝐾𝐹

𝑇𝐹𝑠+1
;                                                  (1) 

where 𝐾𝑉 , 𝐾𝐻 and 𝐾𝐹 are the gains of a valve, heat exchanger and sensor respectively, and 

𝑇𝑉 , 𝑇𝐻  and 𝑇𝐹  are the corresponding time constants. The transfer function of the 𝑃𝐼 

controller is given below: 

 𝐺𝐶(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
                                                                                                              (2) 

where 𝐾𝑃 and 𝐾𝐼 are the PI controller gains respectively; the proportional term controls 

the rate of temperature rise after initial transients.  The integral controller gain adds a pole 

at the origin and increases the system type by one and hence reduces the steady-state error 

[Ramakrishnan and Ray (2016)]. The combined effect of the PI controller gains will 

structure the response of the temperature control system with reduced overshoot and 

faster settling time. 
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Figure 1: Block diagram of closed loop temperature control system with additive time-

varying delays 

In the Fig. 1 𝜏1(𝑡)  portrays sensor to controller delay (measuring delay) and 𝜏2(𝑡)
portrays controller to actuator delay (processing delay).   

3 System description and problem statement 

The general state-space model of the additive state-delayed system is given by: 

 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐴𝑑𝑥(𝑡 − 𝜏1(𝑡) − 𝜏2(𝑡))

𝑥(𝑡) = ∅(𝑡), 𝑡 ∈ [−(�̅�1 + �̅�2, 0)].                                                                                    (3)

where 𝑥(𝑡) ∈ ℝ𝑛×1 is the state vector, 𝐴 ∈ ℝ𝑛×𝑛 are system matrices, ∅(𝑡) is the initial

condition of the system for, 𝑡 ∈ [−(�̅�1 + �̅�2, 0)].

Consider the system (3) with the following system matrices are: 

 

The time-varying additive delays  𝜏1(𝑡) and 𝜏2(𝑡) are satisfying the following conditions:

0 ≤ 𝜏1(𝑡) ≤ 𝜏1̅,0 ≤ 𝜏2(𝑡) ≤ �̅�2,   (4) 

�̇�1(𝑡) ≤ 𝜇1 ≤ ∞, �̇�2(𝑡) ≤ 𝜇2 ≤ ∞,    (5) 

where �̅�1 and 𝜏̅2 are the upper bound of the time-varying additive delays 𝜏1(𝑡) and 𝜏2(𝑡);

𝜇1  and 𝜇2  are the derivatives of the delay respectively. To develop a robust stability
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criterion in LMI framework to get to know the delay-dependent stability of the system (3) 

subject to the condition satisfying (4) and (5) using LK functional approach and 

reciprocal convex combination lemma [Ko and Park (2011)]. For driving the new stability 

criterion, following lemmas are of the utmost importance. 

Lemma 1 [Zhu and Yang (2008)]: For any positive symmetric constant matrix 𝑁 ∈ ℝ𝑛×𝑛,
scalars 𝜂1  and 𝜂2  satisfying 𝜂1 < 𝜂2,  a vector valued function 𝜔: [𝜂1, 𝜂2] → ℝ𝑛  such

that the integration concerned are well defined, then following inequality holds: 

(∫ 𝜔(𝑠)𝑑𝑠
𝜂2

𝜂1
)
𝑇
𝑁 (∫ 𝜔(𝑠)𝑑𝑠

𝜂2

𝜂1
) ≤ 𝜂12 ∫ 𝜔𝑇(𝑠)𝑁

𝜂2

𝜂1
𝜔(𝑠)𝑑𝑠   (6) 

where 

 𝜂12 = 𝜂2 − 𝜂1

Lemma 2: For a continuous function 𝑓(𝑥) and its derivative 𝑓′(𝑥) are defined on [𝑎, 𝑏],
then 

∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑓(𝑏) − 𝑓(𝑎).       (7) 

Lemma 3 [Ko and Park (2011)]: For any vectors 휀1, 휀2,  matrices 𝑃 > 0, 𝑄  and real

numbers 𝛼1 > 0, 𝛼2 > 0 with 𝛼1 + 𝛼2 = 1 satisfying

[
𝑃 𝑄

𝑄𝑇 𝑃
] ≥ 0,  (8) 

The following inequality condition holds: 

−
1

𝛼1
휀1

𝑇𝑃휀1 −
1

𝛼2
휀2

𝑇𝑃휀2 ≤ −[
휀1

휀2
]
𝑇

[
𝑃 𝑄

𝑄𝑇 𝑃
] [

휀1

휀2
]        (9) 

Proof: The condition (8) implies that 

[

√
𝛼2

𝛼1
휀1

−√
𝛼2

𝛼1
휀2]

𝑇

[
𝑃 𝑄

𝑄𝑇 𝑃
]

[

√
𝛼2

𝛼1
휀1

−√
𝛼2

𝛼1
휀2]

≥ 0,  (10) 

which gives 
𝛼2

𝛼1
휀1

𝑇𝑃휀1 +
𝛼1

𝛼2
휀2

𝑇𝑃휀2 ≥ 휀1
𝑇𝑄휀2 + 휀2

𝑇𝑄휀1  (11) 

By using the relationship 𝛼1 + 𝛼2 = 1 on (11) and by rearranging the terms, we deduce

the inequality condition (9).  

4 Main results 

In this section, the new stability criterion for the temperature control system with additive 

time-varying delay is presented in the following theorem. 

Theorem: Given non-negative scalars �̅�1, �̅�2, 𝜇1, 𝜇2  the system (1) satisfying the

conditions (4) and (5) is asymptotically stable, if there exists real, positive, symmetric 

matrices 𝑍, 𝑅, 𝑄𝑖 , 𝑖 = 1, 2, 3 ; free matrices 𝑆12, 𝑆13, 𝑆23  of appropriate dimensions such

that following LMI conditions hold: 
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[
𝑍 𝑆12 𝑆13

∗ 𝑍 𝑆23

∗ ∗ 𝑍
] ≥ 0    (12) 

𝑍 > 0, 𝑄1 > 0, 𝑄2 > 0,𝑄3 > 0,𝑅 > 0;    (13) 

𝛯 < 0,    (14) 

where 

𝛯 = ℯ1𝑃ℯ5
𝑇 + ℯ5𝑃ℯ1

𝑇 + ℯ1(𝑄1 + 𝑄2 + 𝑄3)ℯ1
𝑇 + ℯ2(−𝑄1(1 − 𝜇1))ℯ2

𝑇 + ℯ3(−𝑄2(1 −

𝜇))ℯ3
𝑇 + ℯ4(−𝑄3)ℯ4

𝑇 + ℯ5𝑈ℯ5
𝑇 − [

(ℯ1 − ℯ2)
𝑇

(ℯ2 − ℯ3)
𝑇

(ℯ3 − ℯ4)
𝑇

]

𝑇

[
𝑍 𝑆12 𝑆13

∗ 𝑍 𝑆23

∗ ∗ 𝑍
]  (15) 

with 

 

 

 

where 

�̅� = �̅�1 + �̅�2 and  𝜇 = 𝜇1 + 𝜇2.

Proof:  consider the LK functional 𝑉(𝑡) = ∑ 𝑉𝑖(𝑡)
3
𝑖=1  with 

𝑉1(𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡),  (16) 

𝑉2(𝑡) = ∫ 𝑥𝑇(𝑠)𝑄1𝑥(𝑠)
𝑡

𝑡−𝜏1(𝑡)
𝑑𝑠 + ∫ 𝑥𝑇(𝑠)𝑄2𝑥(𝑠)

𝑡

𝑡−𝜏(𝑡)
𝑑𝑠 + ∫ 𝑥𝑇(𝑠)𝑄3𝑥(𝑠)

𝑡

𝑡−�̅�
𝑑𝑠,   (17) 

𝑉3(𝑡) = �̅� ∫ ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)
𝑡

𝑡+𝜃

0

−�̅�
𝑑𝑠𝑑𝜃,  (18) 

where 𝑃, 𝑄𝑖 , 𝑖 = 1, 2, 3, and 𝑍 are real symmetric positive definite matrices, and 𝜏(𝑡) =
(𝜏1(𝑡) + 𝜏2(𝑡)).  Define  

The time-derivative of the functional 𝑉𝑖(𝑡), 𝑖 = 1, 2, 3, is computed along the trajectory of

(3) as follows: The time-derivative of �̇�1(𝑡) is given by 

�̇�1(𝑡) = �̇�𝑇(𝑡)𝑃𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃�̇�(𝑡)

�̇�1(𝑡) = 𝜂𝑇(𝑡)(𝑒1𝑃𝑒5
𝑇 + 𝑒5𝑃𝑒1

𝑇)𝜂(𝑡)    (19) 

The time-derivative of �̇�2(𝑡) is given by

�̇�2(𝑡) = 𝑥𝑇(𝑡)(𝑄1 + 𝑄2 + 𝑄3)𝑥(𝑡) − (1 − �̇�1(𝑡))𝑥
𝑇(𝑡 − 𝜏1(𝑡))𝑄1𝑥(𝑡 − 𝜏1(𝑡)) −

(1 − �̇�(𝑡))𝑥𝑇(𝑡 − 𝜏(𝑡))𝑄2𝑥(𝑡 − 𝜏(𝑡)) − 𝑥𝑇(𝑡 − �̅�)𝑄3𝑥(𝑡 − �̅�)      (20) 

Since in NCSs, �̇�1(𝑡) ≤ 𝜇1 < 1 and �̇�(𝑡) ≤ 𝜇 < 1, using Eq. (20) can be expressed as an

inequality as follows: 
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�̇�2(𝑡) ≤ 𝑥𝑇(𝑡)(𝑄1 + 𝑄2 + 𝑄3)𝑥(𝑡) − (1 − 𝜇1)𝑥
𝑇(𝑡 − 𝜏1(𝑡))𝑄1𝑥(𝑡 − 𝜏1(𝑡)) −

(1 − 𝜇)𝑥𝑇(𝑡 − 𝜏(𝑡))𝑄2𝑥(𝑡 − 𝜏(𝑡)) − 𝑥𝑇(𝑡 − �̅�)𝑄3𝑥(𝑡 − �̅�).       (21) 

In other words, Eq. (21) can be revealed in terms of 𝜂(𝑡) as follows: 

�̇�2(𝑡) ≤ 𝜂𝑇(𝑡)(𝑒1(𝑄1 + 𝑄2 + 𝑄3)𝑒1
𝑇 + 𝑒2(−(1 − 𝜇1)𝑄1)𝑒2

𝑇 + 𝑒3(−(1 − 𝜇)𝑄2)𝑒3
𝑇 +

𝑒4(−𝑄3)𝑒4
𝑇)𝜂(𝑡)  (22) 

The time-derivative �̇�3(𝑡) is given by

�̇�3(𝑡) = �̇�𝑇(𝑡)𝜏̅2𝑍�̇�(𝑡) − �̅� ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠
𝑡

𝑡−�̅�
.          (23) 

The Eq. (23) can be rewritten by expanding the integral part as follows: 

�̇�3(𝑡) = 𝜂𝑇(𝑡)(𝑒5𝑈𝑒5
𝑇)𝜂(𝑡) − �̅� ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−�̅�
− �̅� ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡−𝜏1(𝑡)

𝑡−𝜏(𝑡)
−

�̅� ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠
𝑡

𝑡−𝜏1(𝑡)
          (24) 

Which, for applying Lemma 1, is rewritten on Eq. (24), we get 

�̇�3(𝑡) ≤ 𝜂𝑇(𝑡)(𝑒5𝑈𝑒5
𝑇)𝜂(𝑡) −

�̅�

(�̅�−𝜏(𝑡))
[(�̅� − 𝜏(𝑡)) ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−�̅�
] −

�̅�

(𝜏(𝑡)−𝜏1(𝑡))
[(𝜏(𝑡) − 𝜏1(𝑡)) ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡−𝜏1(𝑡)

𝑡−𝜏(𝑡)
] −

�̅�

𝜏1(𝑡)
[(𝜏1(𝑡)) ∫ �̇�𝑇(𝑠)𝑍�̇�(𝑠)𝑑𝑠

𝑡

𝑡−𝜏1(𝑡)
].  (25) 

Now, by applying Lemma 1 on Eq. (25), we get 

�̇�3(𝑡) ≤ 𝜂𝑇(𝑡)(𝑒5𝑈𝑒5
𝑇)𝜂(𝑡) −

1

𝛿1
(∫ �̇�(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−�̅�
)
𝑇
𝑍 (∫ �̇�(𝑠)𝑑𝑠

𝑡−𝜏(𝑡)

𝑡−�̅�
) −

1

𝛿2
(∫ �̇�(𝑠)𝑑𝑠

𝑡−𝜏1(𝑡)

𝑡−𝜏(𝑡)
)
𝑇
𝑍 (∫ �̇�(𝑠)𝑑𝑠

𝑡−𝜏1(𝑡)

𝑡−𝜏(𝑡)
) −

1

𝛿3
(∫ �̇�(𝑠)𝑑𝑠

𝑡

𝑡−𝜏1(𝑡)
)
𝑇
𝑍 (∫ �̇�(𝑠)𝑑𝑠

𝑡

𝑡−𝜏1(𝑡)
)   (26) 

where 𝛿1 =
(�̅�−𝜏(𝑡))

�̅�
, 𝛿2 =

(𝜏(𝑡)−𝜏1(𝑡))

�̅�
, 𝛿3 =

(𝜏1(𝑡))

�̅�

Now, we can express Eq. (26) as follows: 

�̇�3(𝑡) ≤ 𝜂𝑇(𝑡)(𝑒5𝑈𝑒5
𝑇)𝜂(𝑡) −

1

𝛿1
𝜂𝑇(𝑡)(𝑒3 − 𝑒4)

𝑇𝑍(𝑒3 − 𝑒4)𝜂(𝑡) −
1

𝛿2
𝜂𝑇(𝑡)(𝑒2 −

𝑒3)
𝑇𝑍(𝑒2 − 𝑒3)𝜂(𝑡) −

1

𝛿3
𝜂𝑇(𝑡)(𝑒1 − 𝑒2)

𝑇𝑍(𝑒1 − 𝑒2)𝜂(𝑡)  (27)  

Since 𝛿1 + 𝛿2 + 𝛿3 = 1, ∀𝑡, the reciprocal convex combination technique of Eq. (27) is

dealt using Lemma 3 as follows: 

�̇�3(𝑡) ≤ 𝜂𝑇(𝑡)(𝑒5𝑈𝑒5
𝑇)𝜂(𝑡) − [

(𝑒1 − 𝑒2)
𝑇

(𝑒2 − 𝑒3)
𝑇

(𝑒3 − 𝑒4)
𝑇

]

𝑇

[
𝑍 𝑆12 𝑆13

∗ 𝑍 𝑆23

∗ ∗ 𝑍
] [

(𝑒1 − 𝑒2)
𝑇

(𝑒2 − 𝑒3)
𝑇

(𝑒3 − 𝑒4)
𝑇

]          (28) 

Provided 

 [
𝑍 𝑆12 𝑆13

∗ 𝑍 𝑆23

∗ ∗ 𝑍
] ≥ 0        (29) 

holds with 𝑆12, 𝑆13 and 𝑆23 being free matrices of any dimensions.
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By adding �̇�1(𝑡), �̇�2(𝑡), and �̇�3(𝑡) are expressions from (19), (22) and (28) respectively,

we obtain the following quadratic bounding relation.   

�̇�(𝑡) ≤ 𝜂𝑇(𝑡)𝛯𝜂(𝑡)  (30) 

If the condition 𝛯 < 0 and relation (29) holds simultaneously, which the additive time-

delay system (3) with satisfying the condition (4) and (5) is asymptotically stable.  

5 Results and discussions 

In this discussion, the effectiveness of the stability criterion is presented for temperature 

control system with additive time-varying delays is illustrated. The maximum allowable 

delay margin for additive time-varying delays  �̅�1 and �̅�2 for stability for a pick range of

PI controller gains is computed. The gains and time constants of the temperature control 

used in the analysis are as follows [Ko and Park (2011)]. 

Table 1: Parameter values of temperature control system 

For the aforesaid system parameters with delay free condition, the controller capability 

curve can be obtained easily; it is illustrated in Fig. 2.  From the Fig. 2, it is clear that for 

all values of 𝐾𝑃  and 𝐾𝐼  lying below the controller capability curve, the closed-loop

system is asymptotically stable.  From the curve we choose  𝐾𝑃 = 2 and 𝐾𝐼 = 0.15𝑠−1,

then the closed loop system converges asymptotically to equilibrium point as illustrated 

in Fig. 3 for a unit step perturbation in temperature control system output variable (from 

its equilibrium value). 

Figure 2: Maximum value of 𝐾𝐼 for different values of 𝐾𝑃

System Gain Time-constant 

Heat exchanger 𝐾𝐻 = 34 𝑇𝐻 = 30

Valve 𝐾𝑉 = 1.25 𝑇𝑉 = 3

Sensor 𝐾𝐹 = 0.08 𝑇𝐹 = 2
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Figure 3: Evolution of ∆𝜃𝐻(𝑡) less than zero delay condition

when the network delay 𝜏 is made zero, the system Eq. (3) becomes 

�̇�(𝑡) = (𝐴 + 𝐴𝑑)𝑥(𝑡)  (31) 

Now, it is observed that the Eigenvalues of the system state matrix and input matrix 

(𝐴 + 𝐴𝑑) depend on the controller parameters 𝐾𝑃  and 𝐾𝐼 . Tab. 2 given the maximum

values of 𝐾𝐼(𝑠
−1) for a fixed value of 𝐾𝑃 for which the temperature control system is on

the verge of instability i.e. having one complex conjugate pair of eigenvalues on the 𝑗𝜔 

axis. It is observed from the Fig. 3 that there is a tendency for the curve to decrease 

gradually with the increase of 𝐾𝐼.

Table 2: Maximum integral controller gain for a given 𝐾𝑃

Now, when this PI controller operates atop a networked environment, the temperature 

control system will be subjected to additive network induced time-varying delays 𝜏1(𝑡)
and 𝜏2(𝑡). Let the time-derivative of the additive time-varying delays be bounded as

�̇�1(𝑡) = 0.1  and  �̇�2(𝑡) = 0.2 . Let choose the controller parameter  𝐾𝑃 = 2  and  𝐾𝐼 =
0.15𝑠−1, in the presence of network induced delays, according to the stability criterion

are presented in theorem, the temperature control system is stable up to 𝜏1 = 1 second

𝜏2 = 1.3305 seconds, and if network induced delays is increased far beyond this value,

the system output becomes unbounded evolution. Hence, this analysis clearly brings to 

the impact of the network induced delays on stability and performance of the system.  Let 

𝜇1 = 0.1,  and 𝜇2 = 0.2. for different values of 𝐾𝑃 and 𝐾𝐼 , from the capability curve, the

𝐾𝑃 𝐾𝐼(𝑠
−1) Eigen values of (𝐴 + 𝐴𝑑)

0 0.062 -0.4329±0.009j; -0.0004; -0.0790 

1 0.248 -0.0000±0.167j; -0.5801; -0.2864 

2 0.382 -0.0001±0.223j; -0.6415; -0.2250 

3 0.466 -0.0000±0.267j; -0.6885; -0.1781 

4 0.499 -0.0000±0.305j; -0.7282; -0.1385 

5 0.482 -0.0000±0.339j; -0.7631; -0.1036 

6 0.415 -0.0001±0.370j; -0.7946; -0.0719 

7 0.298 -0.0000±0.398j; -0.8236; -0.0430 

8 0.130 -0.0000±0.425j; -0.8506; -0.0160 
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maximum allowable delay bound �̅�2 for a given �̅�1is given in Tabs. 3-7. Likewise, Tabs.

8-12 give the maximum allowable delay bound �̅�1 for a given �̅�2. From the tables, it is

clear that as the various values of 𝐾𝑃 and 𝐾𝐼, the maximum delay bound that system can

accommodate without losing stability decreases. The corresponding stability margin 

presented in Fig. 4 clearly indicates lessening. 

Table 3: Maximum allowable delay bound �̅�2 for a given �̅�1-1

𝐾𝑃 𝐾𝐼
�̅�1 =
0 

�̅�1 =
0.2 

�̅�1 =
0.4 

�̅�1 =
0.6 

�̅�1 =
0.8 

�̅�1 =
1.0 

�̅�1 =
1.2 

�̅�1 =
1.4 

�̅�1 =
1.6 

�̅�1 =
1.8 

�̅�1 =
2 

�̅�1 =
2.2 

�̅�1 =
2.331 

2 
0.1

5 

2.33

05 

2.13

05 

1.93

05 

1.73

05 

1.53

05 

1.33

05 

1.13

05 

0.93

05 

0.73

05 

0.53

05 

0.33

05 

0.13

05 
0 

Table 4: Maximum allowable delay bound �̅�2 for a given �̅�1-2

𝐾𝑃 𝐾𝐼
�̅�1 =
0 

�̅�1 =
0.02 

�̅�1 =
0.04 

�̅�1 =
0.06 

�̅�1 =
0.08 

�̅�1 =
0.1 

�̅�1 =
0.2 

�̅�1 =
0.4 

�̅�1 =
0.6 

�̅�1 =
0.8 

�̅�1 =
1.0 

�̅�1 =
1.1408 

2 
0.2

5 

1.140

8 

1.120

8 

1.100

8 

1.080

8 

1.060

8 

1.040

8 

0.940

8 

0.740

8 

0.540

8 

0.340

8 

0.140

8 
0 

Table 5: Maximum allowable delay bound �̅�2 for a given �̅�1-3

𝐾𝑃 𝐾𝐼
�̅�1 =
0 

�̅�1 =
0.02 

�̅�1 =
0.04 

�̅�1 =
0.06 

�̅�1 =
0.08 

�̅�1 =
0.1 

�̅�1 =
0.2 

�̅�1 =
0.4 

�̅�1 =
0.6 

�̅�1 =
0.8 

�̅�1 =
1.0 

�̅�1 =
1.0983  

4 
0.

1 

1.098

3 

1.078

3 

1.058

3 

1.038

3 

1.018

3 

0.998

3 

0.898

3 

0.698

3 

0.498

3 

0.298

3 

0.098

3 
0 

Table 6: Maximum allowable delay bound �̅�2 for a given �̅�1-4

𝐾𝑃 𝐾𝐼
�̅�1 =
0 

�̅�1 =
0.02 

�̅�1 =
0.04 

�̅�1 =
0.06 

�̅�1 =
0.08 

�̅�1 =
0.1 

�̅�1 =
0.12 

�̅�1 =
0.14 

�̅�1 =
0.16 

�̅�1 =
0.18 

�̅�1 =
0.2 

�̅�1 =
0.2611  

6 
0.

1 

0.261

1 

0.241

1 

0.221

1 

0.201

1 

0.181

1 

0.161

1 

0.141

1 

0.121

1 

0.101

1 

0.081

1 

0.061

1 
0 

Table 7: Maximum allowable delay bound �̅�2 for a given �̅�1-5

𝐾𝑃 𝐾𝐼
�̅�1 =
0 

�̅�1 =
0.02 

�̅�1 =
0.04 

�̅�1 =
0.06 

�̅�1 =
0.08 

�̅�1 =
0.1 

�̅�1 =
0.12 

�̅�1 =
0.14 

�̅�1 =
0.16 

�̅�1 =
0.1644 

2.5 0.4 0.1644 0.1444 0.1244 0.1044 0.0844 
0.06 

44 
0.0444 0.0244 0.0044 0 

Table 8: Maximum allowable delay bound �̅�1for a given �̅�2-1

𝐾𝑃 𝐾𝐼
�̅�2 =
0 

�̅�2 =
0.2 

�̅�2 =
0.4 

�̅�2 =
0.6 

�̅�2 =
0.8 

�̅�2 =
1.0 

�̅�2 =
1.2 

�̅�2 =
1.4 

�̅�2 =
1.6 

�̅�2 =
1.8 

�̅�2 =
2 

�̅�2 =
2.2 

�̅�2 =
2.331  

2 
0.1

5 

2.33

05 

2.13

05 

1.93

05 

1.73

05 

1.53

05 

1.33

05 

1.13

05 

0.93

05 

0.73

05 

0.53

05 

0.33

05 

0.13

05 
0 
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Table 9: Maximum allowable delay bound �̅�1for a given �̅�2-2 

Table 10: Maximum allowable delay bound �̅�1for a given �̅�2-3 

 

Table 11: Maximum allowable delay bound �̅�1for a given �̅�2-4 

KP KI 
τ̅2 =
0  

τ̅2 =
0.02  

τ̅2 =
0.04  

τ̅2 =
0.06  

τ̅2 =
0.08  

τ̅2 =
0.1  

τ̅2 =
0.12  

τ̅2 =
0.14  

τ̅2 =
0.16  

τ̅2 =
0.18  

τ̅2 =
0.2  

τ̅2 =
0.26  

6 
0.

1 

0.261

1 

0.241

1 

0.221

1 

0.201

1 

0.181

1 

0.161

1 

0.141

1 

0.121

1 

0.101

1 

0.081

1 

0.061

1 
0 

Table 12: Maximum allowable delay bound �̅�1for a given �̅�2-5 

𝐾𝑃 𝐾𝐼 
�̅�2 =
0  

�̅�2 =
0.02  

�̅�2 =
0.04  

�̅�2 =
0.06  

�̅�2 =
0.08  

�̅�2 =
0.1  

�̅�2 =
0.12  

�̅�2 =
0.14  

�̅�2 =
0.16  

�̅�2 =
0.1644  

2.5 0.4 
0.16 

44 

0.14 

44 

0.12 

44 

0.10 

44 

0.08 

44 

0.06 

44 

0.04 

44 

0.02 

44 

0.00 

44 
0 

 

 

Figure 4: Stability margin for temperature control of heat exchanger 

Simulation study of the closed-loop temperature control system was carried out for zero 

network delay is confined to the stable region shown in Fig. 3; it is easy to infer the 

influence of network delays on the stability of the system. As network delays increase, 

the response of the temperature control system gets malformed and for higher delays, the 

closed-loop system becomes unstable. 

 

𝐾𝑃 𝐾𝐼 
�̅�2 =
0  

�̅�2 =
0.02  

�̅�2 =
0.04  

�̅�2 =
0.06  

�̅�2 =
0.08  

�̅�2 =
0.1  

�̅�2 =
0.2  

�̅�2 =
0.4  

�̅�2 =
0.6  

�̅�2 =
0.8  

�̅�2 =
1.0  

�̅�2 =
1.1408  

2 
0.2

5 

1.140

8 

1.120

8 

1.100

8 

1.080

8 

1.060

8 

1.040

8 

0.940

8 

0.740

8 

0.540

8 

0.340

8 

0.140

8 
0 

𝐾𝑃 𝐾𝐼 
�̅�2 =
0  

�̅�2 =
0.02  

�̅�2 =
0.04  

�̅�2 =
0.06  

�̅�2 =
0.08  

�̅�2 =
0.1  

�̅�2 =
0.2  

�̅�2 =
0.4  

�̅�2 =
0.6  

�̅�2 =
0.8  

�̅�2 =
1.0  

�̅�2 =
1.0983  

4 
0.

1 

1.098

3 

1.078

3 

1.058

3 

1.038

3 

1.018

3 

0.998

3 

0.898

3 

0.698

3 

0.498

3 

0.298

3 

0.098

3 
0 
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6 Conclusion 

In this research, the problem of delay-dependent stability of temperature control systems 

with additive time-varying delay has been addressed using Lyapunov-Krasovskii 

functional technique. In the stability analysis, the temperature control system is 

mathematically modeled in terms of state space model, and reciprocal convex 

combination technique is employed in the stability analysis to make it less number of 

decision variables. The proposed results are validated benchmark temperature control 

system with time-varying additive delays. The deduced results of this paper impart more 

realistic operating condition in a real-time temperature control system. 
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