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Abstract: A multi-layered model for heat conduction analysis of a thermoelectric 
material strip (TEMs) with a Griffith crack under the electric flux and energy flux load 
has been developed. The materials parameters of the TEMs vary continuously in an 
arbitrary manner. To derive the solution, the TEMs is divided into several sub-layers with 
different material properties. The mixed boundary problem is reduced to a system of 
singular integral equations, which are solved numerically. The effect of strip width on the 
electric flux intensity factor and thermal flux intensity factor are studied. 
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1 Introduction 
Thermoelectric (TE) materials are becoming increasingly important, which represents a 
promising material technology for energy harvesting from heat sources. TE energy 
converters have received much attention, because these solid-state devices may generate 
electricity by harvesting waste thermal energy, thereby improving power generation the 
efficiency of the system [Glosch, Ashauer, Pfeiffer et al. (1999); Venkatasubramanian, 
Siivola, Colpitts et al. (2001); Riffat and Ma (2003); Xiao, Hangarter, Yoo et al. (2008); 
Boulanger (2010)]. The conversion efficiency of TE materials is directly related to its 
figure of merit , where  is the Seebeck coefficient,  the electric 
conductivity,  the thermal conductivity and  the temperature [Mahan and Sofo 
(1996); Gao, Du, Zhang et al. (2011)]. Due to extensive researched [Mansfeld and Lang 
(1994); Kwon, Ju, Yoon et al. (2009); Brinzari, Damaskin, Trakhtenberg et al. (2014)] 
the thermoelectric properties of bulk materials are well known. However, to improve the 
thermoelectric figure of merit ZT in bulk materials is still difficult due to the inherent 
inter-couplings. Recently, a nonlinear asymptotic homogenization theory to consider the 
effective behavior of layered thermoelectric composite with coupled transport of 
electricity and heat has been investigated by Yang et al. [Yang, Ma, Lei et al. (2013)]. 
Yang et al. [Yang, Xie, Ma et al. (2012)] also considered the effective thermoelectric 
behavior of layered heterogeneous medium. The results show that the effective 
thermoelectric figure of merit of a composite medium can be higher than all of its 
constituents even in the absence of size and interface effects, in contrast to previous 
studies.  
The material’s response under thermal-electric loads should be studied for the better 
understanding of the structural strength, reliability and lifetime of the thermoelectric 
materials and structures. The first-principles transport calculations for  using the 
linearized-augmented plane-wave method and the relaxation time approximation are 
presented by Thonhauser et al. [Thonhauser, Scheidemantel, Sofo et al. (2003)]. Using 
three methods, the fracture toughness of undoped and indium doped 

thermoelectric skutterudites are studied by Eilertsen et al. [Eilertsen, 
Subramanian and Kruzic (2013)]. Using the Fourier model, thermoelectric behaviors of 
these materials have been studied [Antonova and Looman (2005); Pérez-Aparicio, Taylor 
and Gavela (2007)]. Under transient operating conditions, the dynamic thermal behavior 
of thermoelectric generators and refrigerators under the effect of the hyperbolic heat 
conduction model have been described by Alata et al. [Alata, Al-Nimr and Naji (2003)].  
Although many papers have focused on the thermoelectric properties and mechanical 
properties of such materials, very few researchers have paid attention to crack problems 
in thermoelectric media under mechanical, thermal or electrical loads. Since 
thermoelectric materials are typically brittle semiconductors, they are always subject to 
crack or micro-crack damage under mechanical, thermal or electrical loads. Using the 
thermal shock resistance test, a crack was found to initiated on a  specimen 
surface with one quenching cycle [Isoda, Shinohara, Imai et al. (1999)]. The slow crack 
growth study was considered by Schmidt et al. [Schmidt, Case, Giles III et al. (2012)] in 
which the length of Vickers radial indentation cracks was monitored as a function of time 
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in room air. Using the finite element analysis, the role of the dimensions of 
micro-thermoelectric generators, including the length of the thermoelements, thickness of 
the substrates, and cross-sectional area of the thermoelements are studied by Jang et al. 
[Jang, Han and Kim (2011)]. 
By assuming constant material properties in the functioning temperature 
range, the crack problem in a medium possessing coupled thermoelectric effect under 
thermal-electric loads has been considered by Zhang et al. [Zhang and Wang (2013)]. 
Based on the complex variable method, Song et al. [Song, Gao and Li (2015)] solved the 
two-dimensional problem of a crack in thermoelectric materials. It can be found that the 
fields of heat flow, electric current, and stress exhibit traditional square-root singularity at 
the crack tip. Furthermore, there is a linear relationship between the stress intensity factor 
and the heat flux, but there is a non-linear relationship between the stress intensity factor 
and the electric current. Consider two kinds of crack surface conditions, the crack 
problem in a thermoelectric material is studied by Song et al. [Song and Song (2016)].  
Zhang et al. [Zhang and Wang (2016)] considered the interface crack problem in a 
layered thermoelectric or metal/thermoelectric material based on the nonlinear governing 
equations and complex variable method. Using Fourier transform technique and singular 
integral equation method, a theoretical model to analyze the thermoelectric conversion 
efficiency of a cracked thermoelectric material with finite height and width is studied by 
Zhang et al. [Zhang and Wang (2017)]. Wang et al. [Wang and Wang (2017)] studied a 
theoretical model for the thermoelectric coupling analysis of thermal materials with an 
inclined elliptic hole and the extended problem of an elliptic hole under biaxial loading. 
However, the material coefficient matrix in general depends on temperature from 
experiments and microscopic statistical mechanics [Zabrocki, Müller and Seifert (2010)]. 
Such an idealization offers a considerable amount of simplification to the analysis. 
Therefore, it is very important to develop analytical models for thermoelectric material 
with arbitrarily varying properties. In this paper, we develop a multi-layered model for 
approximate analysis of thermoelectric material whose properties may vary arbitrarily 
and solve the problem of a crack in a thermoelectric material strip under the electric flux 
and energy flux loading conditions. The Fourier integral transform technique and singular 
integral equation method are employed to solve the mixed boundary value problem. The 
thermal solutions could provide useful information to improve the design of 
thermoelectric devices.  

2 Problem formulation and multi-layered model 
Consider a thermoelectric material strip (TEMs) that is infinite along -axis and has a 
finite thickness. The strip contains a through crack of length  that is parallel to the 
edges of the strip, as shown in Fig. 1. The crack surface boundary conditions are regarded 
as electrically and thermally fully impermeable. In the present paper, the TEMs is loaded 
by a remote electric flux  and a remote energy flux  as considered. 

The constitutive relations for thermoelectric material can be written in the following form 
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       (1) 

 
Figure 1: The heat conduction analysis of thermoelectric material strip 

where  is the electric flux vector,  is the energy flux 
vector,  is electrochemical potential and  is absolute temperature.  
are the electric conductivity tensor, thermal conductivity tensor, Seebeck coefficient 
matrix and Peltier coefficient matrix, respectively. The thermal flux vector  is 
defined as .  

 
Figure 2: The multi-layered model of the thermoelectric material strip 

It is assumed that material parameters  are arbitrary functions 
of , which makes the boundary value problem based on governing field equations 
nonlinear and untractable. In order to simulate the arbitrary variations of 

, a multi-layered model can be employed. The TEMs is 
divided into  sub-layers with the crack on the  sub-interface (  may be any 
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integer between 1 and ). The analytical model is shown in Fig. 2. We use a superscript 
or a subscript  to represent the layer number, counting from the top surface of the 
structure. The  layer is located between the region  and . Since  

we consider the continuously varied material properties, if  is sufficiently large, the 
material properties of the adjacent two layers will nearly the same. Therefore, the crack 
tip singularity will be same as that of a crack in an isotropic homogeneous thermoelectric 
medium. 
For each layer as an isotropic homogeneous thermoelectric medium, the constitutive 
equations can be transferred to the following form

	
                  (2) 

and governing field equations  

                                         (3) 
The continuities or jumps of electric flux, energy flux, electrochemical potential and 
absolute temperature at the sub-interfaces or crack face  can be written as  

                                         (4) 

                                         (5) 

                                        (6) 

where  are the electrochemical potential and absolute temperature 
jumps across the crack face;  is the Heaviside function, and  is the Kronecker 
delta. 
We consider the present problem as the superposition of the following two sub-problems: 
( ) the TEMs free of crack subjects to applied loads on the surface, inducing electric 
flux and energy flux at ; and ( ) the crack face is loaded under electric flux and 
energy flux with the surface free. It should be noted that we would only consider the 
second problem because the first problem contributes nothing to the singular fields at the 
crack tips. 
The boundary conditions on the crack plane are stated as 

                         (7) 

The upper and lower surfaces of the strip are free of electric flux and energy flux 

                     (8) 
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(2) to governing field Eq. (3). We have 

                                        (9) 

Apply Fourier integral transform to Eq. (9), the general solution of the electrochemical 
potential and absolute temperature are given by 

   

(10) 

where ‘~’ standing for the Fourier integral transform,  are 
unknown coefficients. 
The absolute temperature, electrochemical potential, electric flux and energy flux are 
given by 

                                                  (11) 

in which 
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                                             (14) 

where the superscript “T” standing for transposition of matrix. 
The interfacial conditions between neighboring sub-layers in the transformed domain can 
be obtained as  

                          (15) 

where  with  being the Fourier 
transforms of the jumps of the absolute temperature and electrochemical potential across 
the crack face. 
From the boundary conditions given in (8), we obtain 

                               (16) 
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                              (17) 

where  can be analytically or numerically obtained by solving Eqs. (15) and 
(16). 
Inserting Eq. (17) into Eq. (12) and applying the inverse Fourier transform, one obtains 

      (18) 

From Eq. (7), we have 

                 (19) 

where , with 

. 

From Eqs. (19) and (7), one obtains 

    
(20) 

The continuity condition for the absolute temperature and electrochemical potential on 
the bonded part along the extended crack line yields 

                             
(21) 

It can be found that Eqs. (20) and (21) are dual integral equations for the TEMs crack 
problem. 

3 Cauchy singular integral equation 
In order to solve the dual integral Eqs. (20) and (21), the following dislocation density 
functions are introduced 
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Applying Fourier transformation with respect to  on both sides of Eq. (22), one 
obtains 
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Substituting Eq. (23) into Eqs. (20) and (21) leads to the following integral equations 
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The singular nature of the kernels functions can be determined by examining the 
asymptotic behavior of the kernels functions as  approaches to infinity 

                                          (26) 

in which 

    
Considering Eq. (24), and using the relation 

                                (27) 

The following Cauchy singular integral equation can be obtained 
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where  is the Chebyshev polynomials of the first kind. 
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              (32) 

where  and  .  denotes the Chebyshev polynomial of the second 
kind. But for simplicity in what follows, the bar appearing with the dimensionless 
quantities is omitted. The Cauchy singularity can be regularized and the integral Eq. (28) 
can be re-written as  

     
(33) 

where  . 

The unknown constants  can be determined by using a 
collocation technique to convert Eq. (33) into a set of linear simultaneous equations, and 
then solving numerically for . The collocation points selected in this study are 

                                        (34) 

which are the roots of Chebyshev polynomials.  

Table 1: Normalized EFIF and TFIF for different  under uniform electric flux and 
uniform energy flux loading conditions 
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Table 2: Normalized EFIF and TFIF for different  under uniform electric flux and 
uniform energy flux loading conditions 

 

           (35) 

where  has a singularity less than 1/2. Eq. (35) implies that the near-tip electric 
flux and energy flux always possess a characteristic square-root singularity in terms of the 
distance from the crack tip . Because the electric flux and energy flux for the problem 
as shown in Fig. 1 is finite, the superpositioned electric flux and energy flux solution for the 
problem shown in Fig. 1 contains a square-root singularity at the crack tip. 
The asymptotic expressions for the electric flux and energy flux at the crack tip can be 
expressed as 
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Figure 3: Influences of a/c on the temperatures  and  on the crack 
surface and crack extend line  for multi-layered model, b=a 

 
Figure 4: Influences of b/a on the temperatures  and  on the crack 
surface and crack extend line  for multi-layered model, a/c=1.0 

5 Numerical examples and discussion 
As demonstrating examples, we consider the TEMs with a crack of length  subjected 
to a uniform electric flux loading  and energy flux loading . 
The geometry of the problem being examined is shown in Fig.1. The material properties 
can be found in Yang et al. [Yang, Xie and Ma (2012)]. The crack is located along the 
interval .  
In order to obtain enough accurate results and to avoid too much CPU time, we need to 
choose properly total number of the discrete points (i.e.  in Eq. (33) and the number 
of sub-layers(i.e.  in Eq. (15)). Tab. 1 shows the normalized EFIF and TFIF for 
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different  under electric flux and energy flux loading conditions when . Tab. 
2 lists the normalized EFIF and TFIF for different  under electric flux and energy flux 
loading conditions when . The results are given in Tabs. 1 and 2 where the EFIF 
and TFIF have been normalized by and ,

 
respectively. From Tab. 1, it can 

be found that sufficiently accurate results can be obtained when . From Tab. 2, we 
can answer another question, that is, how many sub-layers should the TEMs be divided into 
so that enough accurate results can be obtained? By selecting different values of , it can be 
seen that  or 8 can yield results which may be considered sufficiently accurate. So for 
this example, we will choose the number of the sub-layers to be 6. 

 
Figure 5: Variations of normalized EFIF with a/c under uniform electric flux and uniform 
energy flux loading at the crack-face for multi-layered model 

 
Figure 6: Variations of normalized TFIF with a/c under uniform electric flux and uniform 
energy flux loading at the crack-face for multi-layered model 

Figs. 3 and 4 show the temperature distribution along the crack plane  and 
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. It can be found that the temperature jump across the crack becomes more 
pronounced as the  increases when . And with the increasing of , the 
temperature jump across the crack becomes more pronounced when . 
Figs. 5 and 6 have presented the normalized EFIF and TFIF by the multi-layered model 
with  as a variation of  under electric flux and energy flux loading 
conditions. It can be found that normalized EFIF and TFIF decrease with the increasing 
of . As an increase of , normalized EFIF and TFIF decrease gradually and 
tend to a constant when . Meanwhile, the normalized EFIF is always greater 
than the normalized TFIF for the same value of . 

6 Concluding remarks 
A multi-layered model for heat conduction analysis of a TEMs with a Griffith crack under 
the electric flux and energy flux load is developed in the present paper. The crack is 
parallel to edges of the strip. The materials parameters of the TEMs vary continuously in 
an arbitrary manner. The thermally and electrically impermeable crack surface 
assumptions are used in this paper. To derive the solution, the TEMs is divided into 
several sub-layers with different material properties. The mixed boundary problem is 
reduced to a system of singular integral equations which are solved numerically. By 
selecting different values of , it can be seen that  or 8 can yield results which 
may be considered sufficiently accurate. The temperature jump across the crack becomes 
more pronounced with the increasing of  or . It can be found that the near-tip 
electric flux and thermal flux always possess a characteristic square-root singularity in 
terms of the distance from the crack tip. The electric flux intensity factor, energy flux 
intensity factor and thermal flux intensity factor are obtained. The normalized EFIF and 
TFIF decrease with the increasing of  or .  
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