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Abstract: In this paper we propose a novel two-stage method to solve the three-

dimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth 

boundary. The solution is decomposed into a particular solution and a homogeneous 

solution. In the first stage a multiple-scale polynomial method (MSPM) is used to 

approximate the forcing term and then the formula of Tsai et al. [Tsai, Cheng, and Chen 

(2009)] is used to obtain the corresponding closed-form solution for each polynomial term. 

Then in the second stage we use a multiple/scale/direction Trefftz method (MSDTM) to 

find the solution of Laplace equation, of which the directions are uniformly distributed on 

a unit circle 1, and the scales are determined a priori by the collocation points on boundary. 

Two examples of 3D data interpolation, and several numerical examples of direct and 

inverse Cauchy problems in complex domain confirm the efficiency of the MSPM and the 

MSDTM. 

 

Keywords: Poisson equation, multiple/scale/direction Trefftz method, multiple-scale 

polynomial method, irregular domain, inverse Cauchy problem. 

1 Introduction 

In this paper we propose a new two-stage method to solve the following three-dimensional 

Poisson equation:  

3( ) ( ),u f  x x x ,                                                                                            (1) 
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where   is the three-dimensional Laplacian operator,   is an arbitrary three-dimensional 

bounded domain enclosed by a smooth boundary  , whose normal vector is denoted by 
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n , and ( ) ( )u n u   x x n . ( )f x , ( )g x and ( )h x  are given functions. When 

1 2     and 
1 2   , we encounter a direct problem of the Poisson equation; 

otherwise, when 
1 2    and 

1 2   , we encounter an inverse Cauchy 

problem of the Poisson equation. 

Let 
3 1 2    and 

4 1 2   . The inverse Cauchy problem of the Poisson 

equation is specified as follows: Seek an unknown boundary function ( )F x  on 
3   of 

the boundary under Eqs. (1-3) with the over-specified data on 
4 . If the data ( )F x  are 

available, then the data ( )F x , ( )g x  and ( )h x  are completed on the whole boundary  . 

We may consider a mathematical model of the detection of corrosion inside a body, which 

is a very important technique in engineering application. Given the Dirichlet data ( )u x  

and the Neumann data ( )nu x  at the point 
3x  on an accessible part 

3 1 2    of 

an irregular boundary, it will be required to solve an inverse Cauchy problem of the Poisson 

equation to find the unknown function ( )u x  on an inaccessible part 
3  . The inverse 

Cauchy problem has a wide range of important engineering applications, and thus a large 

number of publications have been related to it [Chapko and Johansson (2012)]. 

Liu [Liu (2008a)] has applied a modified Trefftz method (TM) to recover the unknown 

boundary data for the inverse Cauchy problem, but one needs to consider a regularization 

technique by truncating the higher-mode components of the given data. Then, Liu [Liu 

(2008b)] employed the modified collocation Trefftz method with a single characteristic 

length to solve the inverse Cauchy problems in simply and doubly-connected domains. Liu 

[Liu (2012b)] has developed a very powerful optimally generalized regularization method 

to solve the Cauchy problem of Laplace equation by using the method of fundamental 

solutions (MFS). Up to now, most researches are restricted in the two-dimensional inverse 

Cauchy problems [Fan, Li and Yeih (2015)]. Only a few studies the inverse Cauchy 

problem in three- or higher-dimensional cases [Wei, Hon and Cheng (2003); Wang, Chen, 

Qu et al. (2016)]. 

There are many papers dealing with the numerical solutions of elliptic type partial 

differential equations (PDEs). Presently, the method that uses point collocation rather than 

mesh with weighted integration appears as an effective method, which includes the MFS 

[Golberg (1995)], the Trefftz method [Li, Lu, Huang et al. (2007); Li, Lu, Hu et al. (2008)] 

and the radial basis function (RBF) collocation method [Kansa (1990)]. Li et al. [Li, Lu, 

Hu et al. (2008)] gave a very detailed description of the collocation Trefftz method. The 

meshless and mesh reduction methods are nowadays the main trend of numerical solution 

methods of boundary value problems (BVPs) [Liu (2007); Liu  (2008b); Pradhan, Shalini, 

Nataraj et al. (2011); Zhu, Zhang and Atluri (1999); Atluri and Zhu (1998); Atluri, Kim 

and Cho (1999); Atluri and Shen (2002); Cho, Golberg, Muleshkov et al. (2004); Qu, Chen 

and Fu (2015); Jin (2004); Li, Lu, Huang et al. (2007)]. Many collocation techniques with 

the expansion of trial solutions by different basis-functions were employed to solve the 

elliptic type BVPs; see, for example, [Cheng, Golberg, Kansa et al. (2003); Hu, Li and 

Cheng (2005); Algahtani (2006); Tian, Reutskiy and Chen (2008); Hu and Chen (2008); 
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Libre, Emdadi, Kansa et al. (2008)]. 

In order to overcome the ill-posed linear systems by using the Trefftz method, Liu et al. 

[Liu, Yeih and Atluri (2009)] have developed a multi-scale Trefftz-collocation Laplacian 

conditioner. The concept of multi-scale Trefftz-collocation method has been later 

employed by Chen et al. [Chen, Yeih, Liu et al. (2012)] to solve the sloshing wave problem. 

Liu et al. [Liu and Atluri (2013)] have employed the concept of equilibrated matrix to find 

the best multiple-scale of the Trefftz method used in the solution of the inverse Cauchy 

problems for the Laplace equation, whose resulting linear system is less ill-conditioned. 

The meshless methods, however, only solve the homogeneous PDEs. For nonhomogeneous 

PDEs, a special technique of particular solution is often used to remove the right-hand side, 

such that the usual MFS, TM and RBF can be applied. It is a key point to find the particular 

solution of PDEs for the nonhomogeneous problems. The method of particular solution 

(MPS) is popular in the text book for solving the nonhomogeneous PDEs. In general, we 

cannot find a global closed-form particular solution for an arbitrary right-hand side. 

However, for certain function bases, each term in the bases may have a corresponding 

closed-form particular solution [Cheng (2000); Golberg, Muleshkov, Chen et al. (2003); 

Chen, Fan and Wen (2012); Lamichhane and Chen (2015)]. 

In this paper, we will solve the Poisson equation by a two-stage method: first the particular 

solution and then the Laplace equation by using, respectively, the multiple-scale polynomial 

method and the multiple/scale/direction Trefftz method. The multiple/scale/direction Trefftz 

method was first developed by Liu [Liu (2016)] to solve the inverse Cauchy problem of 

3D Helmholtz equation, and then Liu et al. [Liu, Qu, Chen et al. (2017)] solved the inverse 

Cauchy problem of 3D modified Helmholtz equation. This method reducing the number of 

Trefftz bases for 3D problems is a novel technology, which is not yet applied to solve the 

inverse Cauchy problem of nonhomogeneous PDE, like the 3D Poisson equation. Besides 

that, the present paper possesses another novelty by using the multiple-scale technique to 

interpolate 3D data, which is not yet reported in the literature. 

The remainder of this paper is arranged as follows. In Section 2, we introduce a two-stage 

method and a multiple-scale polynomial method for the interpolation of given data. In 

Section 3, we find a particular solution, and review the Trefftz method endowing with a set 

of the Trefftz T-complete bases for the two- dimensional Laplace equation, which is 

extended to the multi-dimensional Trefftz method for solving the multi-dimensional 

Laplace equation. In Section 4.1, the numerical examples for the direct problems are given, 

while the numerical examples for the inverse Cauchy problems are given in Section 4.2. 

Finally, we draw conclusions in Section 5. 

2 A two-stage method 

Let ( )pu x  be a particular solution of Eq. (1), such that it satisfies 

( ) ( )pu f x x ,  ( , , )x y z  x ,                                                                               (4) 

but does not satisfy the boundary conditions (2) and (3) necessarily. Hence, the problem 

(1-3) reduces to solve a homogeneous equation through ( ) ( ) ( ) :h pu u u x x x  
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( ) 0hu x ,  x ,                                                                                                         (5) 
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When both ( )hu x  and ( )pu x  are available, the final solution of Eqs. (1-3) can be obtained 

by the summation of the particular solution and the homogeneous solution: 

( ) ( ) ( )p hu u u x x x . 

For an arbitrary function ( , , )f x y z  it is in general very difficult to obtain a closed-form 

particular solution, and thus we might find an approximate particular solution. First, we 

propose a multiple-scale polynomial expansion method to approximate ( , , )f x y z  by 

0 0 0

( , , )
jM i

i j j k k

ijk ijk

i j k

f x y z c s x y z 

  

 ,                                                                           (8) 

where ijkc  are expansion coefficients with total number being N=(M+1)(M+2)(M+3)/6, 

and ijks  is a set of multiple-scale to be determined. 

First, we set 1ijks   in Eq. (8). Selecting cN  collocation points in   to satisfy Eq. (8) we 

can obtain a system of linear algebraic equations (LAEs) to solve the N  coefficients 

{ }: { }i ijkc  , which are the vectorization of ijkc . It is convenient to express the resulting 

LAEs in terms of a matrix-vector product form by 

 A b .                                                                                                                            (9) 

Usually, Eq. (9) is an over-determined system for that we may collocate more points to 

generate more equations with number 
cN , which are used to find N coefficients in   

with cN N . Here the dimension of A  is cN N . 

The use of the polynomial bases as an interpolation tool to fit the given data is simple and 

is straightforward to derive the required LAEs to determine the expansion coefficients after 

a suitable collocation of points in the problem domain. Although the polynomial method 

in Eq. (8) is derived, which has a drawback that the series diverges when the term 
i j j k kx y z 

 in Eq. (8) is with a large quantity of x , y  and z . In order to obtain a stable 

and accurate data interpolation, we have to develop a more stable method to solve the 

resulting LAEs by significantly reducing the condition number. 

An equilibrated matrix has either the same norm of all columns or the same norm of all 

rows, and under this condition the matrix is better-conditioned than that without 

considering the scaling technique. The problem is the search of some suitable matrices Q  

and P , such that the condition number of QAP  is significantly reduced. Liu [Liu (2013)] 

has proposed a simple procedure to find diagonal Q  and P  only through a few operations. 
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Liu [Liu (2012a)] has used the concept of equilibrated matrices to choose the best source 

points for the method of fundamental solutions, while according to the idea of equilibrated 

matrix, Liu [Liu (2012b)] has developed a general purpose optimally scaled vector 

regularization method to treat the ill-conditioned linear problems. 

The scales are determined below, which are used to reduce the condition number of the 

new coefficient matrix, such that we can quickly find the expansion coefficients 
i . If the 

norm of each column of the new coefficient matrix of B  is required to be equal, the 

multiple-scale { }: { }i ijks s , which is obtained from ijks  via a vectorization, is determined 

by 

0
i

i

R
s 

a
,                                                                                                                          (10) 

where 
ia  denotes the ith column of A , and 

0R  is a parameter, in general, 
0 1R  . 

Through this simple arrangement, in the new system 

 B b ,                                                                                                                           (11) 

the N  column norms of the new coefficient matrix B  are all equal to 
0R . It can be seen 

that is  are fully determined by the collocation points. They can be prepared a priori, upon 

the collocation points being given. 

We can introduce a post-conditioning matrix P  by 

1: diag( ,..., )Ns sP ,                                                                                                       (12) 

such that the above equilibrated multiple-scale technique is equivalent to derive the new 

coefficient B  by 

B AP ,                                                                                                                           (13) 

where the dimension of B  is still cN N . As P  being a post-conditioner it will render 

Cond ( )B Cond ( )A . The scaling technique is used to reduce the ill-conditioned 

behavior of the resulting LAEs, and in the three-dimensional case the scaling in Eq. (10) is 

the most easily formulated one. 

Instead of Eq. (11), we can solve a normal linear system: 

1 D b ,                                                                                                                          (14) 

where 

1 : b B b , : 0 D B B .                                                                                               (15) 

The conjugate gradient method (CGM) is a powerful solution scheme and can be employed 

here to solve Eq. (14), the calculation steps of this method are summarized as follows: 

(i) Give an initial value 0 , and then compute 0 0 1 r D b  and set 0 0P r . 

(ii) Repeat the following steps for 0,1,2,...k  , 
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2

k

k

k k





r

P DP
, 

1k k k k     P , 

1 1 1k k  r D b , 

2

1

1 2

k

k

k

 

 
r

r
, 

1 1 1k k k k   P P r .                                                                                                         (16) 

Until a given stopping criterion 1k  r  is satisfied, then stop. 

We give two examples for the data interpolation by using the above multiple-scale 

polynomial method (MSPM). 

Examples 1 and 2. We interpolate two given functions: 

4

1( , , ) 1f x y z xyz xy z    , 

2( , , ) exp( )f x y z x y z                                                                                              (17) 

inside the domain   enclosed by a boundary: 

{( , , ) | cos sin , sin sin , cos ,0 2 ,0 }x y z x y z                    , 

                                                                                                                                         (18) 

where 

1

32( , ) (2 cos ) cos(3 ) 8 sin (3 )         
 

.                                                      (19) 

Under 2250cN  , 35N   ( 4M  ), 
0 0.01R  , and 

1010  , the CGM is convergent 

with 65 steps as shown in Fig. 1(a). By comparing the numerical and exact values u(θ) of 

1f  on ( 2,0 2 , 4r         ), the maximum error is 
101.39 10  as shown in 

Fig. 1(b). On the other hand, the maximum error in the whole domain is 
91.76 10 . This 

example shows that the MSPM is effective and accurate. 

Under 2250cN  , 455N   ( 12M  ), 0 0.01R  , and 
810  , the CGM is 

convergent with 24701 steps as shown in Fig. 2(a). By comparing the numerical and exact 

values u(θ) of 2f  on ( 2,0 2 , 4r         ), the maximum error is 
47.04 10  

as shown in Fig. 2(b). 
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Figure 1: For example 1 of a 3D interpolation in an irregular domain, (a) convergence rate, 

and (b) the comparison of the numerical and exact solutions. The numerical and exact 

solutions overlap, such that the difference is not visible in the figure 
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Figure 2: For example 2 of a 3D interpolation of a complex function in an irregular domain, 

(a) convergence rate, and (b) the comparison of the numerical and exact solutions. The 

numerical and exact solutions overlap, such that the difference is not visible in the figure 

3 A multi-dimensional Trefftz method 

3.1 Particular solution 

When the interpolation of ( , , )f x y z  by using Eq. (8) is available, we can get an 

approximate particular solution ( , , )pu x y z  by 
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, ,

0 0 0

( , , ) ( , , )
jM i

p ijk ijk i j j k k

i j k

u x y z c s F x y z 

  

 ,                                                              (20) 

where 
, , ( , , )i j j k kF x y z 

is given by [Tsai, Cheng, and Chen (2009)]: 

2 2 2 2 2[( )/2] /2

, ,

0 0

( 1) ( )!( )!( )! !
( , , )

! !( 2 2 2 )!( 2 )!( 2 )!

p q i j p q j k p k qj k k

i j j k k

p q

p q i j j k k x y z
F x y z

p q i j p q j k p k q

       

 

 

   


      
  .  

                                                                                                                                          (21) 

Although up in Eq. (20) is not a closed-form particular solution, but each term in up is a 

closed-form solution. By inserting the above up into Eqs. (6) and (7), the right-hand sides 

can be obtained. Now a remained problem is how to solve Eqs. (5-7). 

3.2 The Trefftz method 

We first consider the following two-dimensional Laplace equation: 

( , ) 0, ( , )u x y x y   ,                                                                                                (22) 

( , ) ( , ), ( , )u x y H x y x y  ,                                                                                         (23) 

where   is the Laplacian operator, and   is the boundary of the problem domain  . In 

terms of  

2

2( , ) ,arctan
y

r x y
x


 

  
 

,                                                                                       (24) 

which are polar coordinates in the Euclidean space 
2

, Eq. (22) can be rewritten as 

2 2

2 2 2

1 1
0

u u u

r r r r 

  
  

  
.                                                                                              (25) 

It is well-known that for an interior problem of two-dimensional Laplace equation, 

 1, cos , sin ,..., cos( ), sin( ),...k kr r r k r k                                                                (26) 

forms a set of complete Trefftz bases [Liu (2007); Liu (2008b)]. 

Now, the Trefftz method based on the above bases (26) for the two-dimensional Laplace 

Eq. (22) can be written as 

1

( , ) cos( ) sin( )
m

k k

k k n

k

u x y a r k b r k c 


     ,                                                         (27) 

where 2 1n m   is the number of the unknown coefficients  , ,k k na b c , which needs to 

be determined. 

3.3 The multiple-scale-direction Trefftz method 

In order to solve the multi-dimensional Laplace equation, we extend the result in Section 

3.2 to a multi-dimensional case. Let 
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1 ,... , qx x


   x ,                                                                                                            (28) 

where x  denotes the q-dimensional space coordinates. Then the q-dimensional Laplace 

equation can be written as 

2

2
1

0
q

i i

u

x





 ,                                                                                                                      (29) 

which is recast to 

2 2

2 2
21

0
q

i i

u u

x x

 
 

 
 .                                                                                                           (30) 

Let 

2: , ... , qx x


   y ,                                                                                                           (31) 

2: ,...,j j j

qd d    d ,                                                                                                       (32) 

2

:
q

j j

i i

i

d x


  d y ,                                                                                                      (33) 

where 

 
2

2

1

2

1, 1,...,
q

j j

i

i

d j m


  d .                                                                                  (34) 

We introduce 

2

1

1

( , ) : ,arctanr x
x


 

 
  
 

.                                                                                      (35) 

As mentioned in Section 3.2 we have the bases 

2

2 2
1

2

cos cos arctan

k
q jq

i ik k j i
c i i

i i

d x
B r k x d x k

x
 



    
       
       


 ,                            (36) 

2

2 2
1

2

sin sin arctan

k
q jq

i ik k j i
s i i

i i

d x
B r k x d x k

x
 



    
       
       


 ,                            (37) 

which satisfy the two-dimensional Laplace equation in terms of  1,x  : 

2 2

2 2

1

0
k k

c cB B

x 

 
 

 
,                                                                                                           (38) 
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2 2

2 2

1

0
k k

s sB B

x 

 
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 
.                                                                                                           (39) 

We can expand the trial solution of  hu x  by 

 
1 1

1 2

1 1 1 1

m mm m
k k

h kj kj c kj kj s n

k j k j

u a s B b s B c
   

   x ,                                                                (40) 

where 
12 1n mm   is the number of unknown coefficients  , ,kj kj na b c , and both 

k

cB  

and 
k

sB  are k-order polynomials of x . In fact, 
k

cB  and 
k

sB  are the extensions of 

coskr k  and sinkr k  in Eq. (26) to the q-dimensional space. It will be proved that 
k

cB  

and 
k

sB  satisfy the q-dimensional Laplace Eq. (30). Based on the following formula 

 
2 2

2

2 2
, 2,...,

k k
jc c

i

i

B B
d i q

x 

 
 

 
,                                                                                    (41) 

by summing the above equation with respect to i  for 2,...,i q , and using Eq. (34), we 

have 

 
2 2 2

2

2 2 2
2 2

k k kq q
jc c c

i

i ii

B B B
d

x   

  
 

  
  .                                                                               (42) 

Inserting Eq. (42) into Eq. (38) we have 

2 2 2 2

2 2 2 2
21 1

0
k k k kq

c c c c

i i

B B B B

x x x 

   
   

   
 .                                                                           (43) 

Thus, it has been proved that 
k

cB  satisfies the q-dimensional Laplace Eq. (30). Similarly, 

it can be proved that 
k

sB  satisfies the q-dimensional Laplace Eq. (30). Considering 

1, 1,...,j j md  cover 1m  different directions in space, the expansion in Eq. (40) is called 

a multiple/scale/direction Trefftz method (MSDTM), of which the multiple scales 
1

kjs  and 

2

kjs  are determined by the boundary collocation points as that in Section 2. 

Ku et al. [Ku, Kuo, Fan et al. (2015)] have employed the multiple-scale Trefftz method 

with 1 18m   independent bases of the Bessel functions and the modified Bessel functions 

expressed in the cylindrical coordinates to solve the three-dimensional Laplacian problems. 

In detail, it expands the solution by 
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

 
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



                (44) 

where 
0J  and jJ  are the Bessel functions of the first kind of order zero and j , 

respectively, and 
0I  and jI  are the modified Bessel functions of the first kind of order 

zero and j , respectively.  

It can be seen that the MSDTM is simpler than that of the above standard Trefftz method [Ku, 

Kuo, Fan et al. (2015)], where many tedious works to establish the bases functions are 

necessary. When the number of unknown coefficients of MSDTM is O(
1mm ), that of the 

standard Trefftz method is about O( 1 2 3m m m ). Later, the above bases have been used to solve 

the 3D Laplace equation and compared it with the MFS [Lv, Hao, Wang et al. (2017)]. 

By collocating 
cn  nodes on the boundary, and considering the boundary conditions (6) and 

(7), a linear system of equations can be derived to solve the unknown coefficients 

 , ,kj kj na b c  in Eq. (40). Finally, the solution of Eqs. (1-3) can be obtained by: 

( , , ) ( , , ) ( , , )p hu x y z u x y z u x y z  ,                                                                              (45) 

, ,

0 0 0

( , , ) ( , , )
jM i

p ijk ijk i j j k k

i j k

u x y z c s F x y z 

  

 ,                                                              (46) 

 
1 1

1 2

1 1 1 1

, ,
m mm m

k k

h kj kj c kj kj s n

k j k j

u x y z a s B b s B c
   

    ,                                                        (47) 

where , , ( , , )i j j k kF x y z  is defined in Eq. (21). 

4 Numerical tests 

Encouraged by the accuracy in the data interpolation, we will further combine the multiple-

scale polynomial method and the multiple /scale/direction Trefftz method to solve the 

Poisson equation, including the direct problem and the inverse Cauchy problems. 

4.1 Direct problems 

Example 3. First, we consider the Poisson equation as follows: 
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sin cos sin 6 , ( , , )u x y z x x y z       ,                                                             (48) 

3 2 2 2( , , ) sin cos sin 2 ,( , , )u x y z x y z x x y z x y z        ,                            (49) 

where   is a domain with the boundary   as shown in Fig. 3, prescribed by the following 

spherical parametric equation: 

 ( , , ) | cos sin , sin sin , cos ,0 2 ,0x y z x y z                    , 

                                                                                                                                         (50) 

in which 

 
1

, 1 sin(10 )sin(9 )
8

      .                                                                                  (51) 

 

Figure 3: Irregular domain for example 3 

The particular solution is obtained by using the MSPM with 2744cN  , 56N   

( 5M  ), 0 0.0001R  , and 
1010  . The MSPM is convergent with 75 steps. Then, the 

homogeneous solution is calculated by using the MSDTM with 1600cn  , 217n  , 

12m  , 1 9m  , and 
1010  . As we can see in Fig. 4(a), the MSDTM is convergent 

with 316 steps. Fig. 4(b) plots the exact and numerical solutions of u on a curve 

( 2 3,0 2 , 2r         ), and we can observe that the maximum error is 

77.23 10 . In addition, the maximum error in the whole domain is 
77.41 10 . 
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(a) 

 
(b) 

Figure 4: For example 3 of a 3D Poisson problem in an irregular domain, (a) the 

convergence rate, (b) the comparison of the numerical and exact solutions 

Example 4. In this example we solve a non-harmonic boundary value problem of the 

Laplace equation, which is still a difficult issue, especially for the three-dimensional 

problem in an irregular bounded domain. Although the exact solution is not available, the 

maximum principle is still valid and one can evaluate the maximum error in the whole 

domain from the maximum error on boundary. 

We consider a non-harmonic boundary condition of the Laplace equation: 

3( ) 0,v  x x ,                                                                                                (52) 

2 2 2( , , )|v g x y z x y z

 

x
,                                                                                            (53) 
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where 0.g   The problem domain is similar to that in Eq. (51); however, we change it to 

 
1

, 1 sin(6 )sin(7 )
6

      ,                                                                                    (54) 

in order to compare it with [Lv, Hao, Wang et al. (2017)]. 

Let 

( , , ) ( , , ) ( , , )u x y z v x y z g x y z                                                                                    (55) 

be a new variable, and then we come to the Poisson equation under a homogeneous 

boundary condition: 

Poisson equation: 

( , , )

( , , ) ( , , ),

( , , ) 0,|
x y z

u f x y z g x y z

u x y z


   





                                                      (56) 

where ( , , ) 0f x y z   because ( , , )g x y z  is a non-harmonic boundary function. When 

( , , )u x y z  is solved we can find ( , , ) ( , , ) ( , , )v x y z u x y z g x y z  . 

We apply the MSPM and MSDTM to solve Eq. (56). For 8cN  , 10N   2M  , 

0 0.01R  , 2000cn  , 451n  , 15m  , and 
1 15m  , we apply the MSPM and the 

MSDTM to solve this problem. The root-mean-square-error (RMSE) at totally 1600 points 

over the surface is 
31.06 10 , while the maximum error is 

33.99 10 . The accuracy is 

better than that obtained by Lv et al. [Lv, Hao, Wang et al. (2017)] using the Trefftz method 

in Eq. (44). They obtained the RMSE to be 
32.28 10  with 2000cn   and 578n  . 

In Tab. 1 we list the maximum error (ME) and the RMSE of ( , , )v x y z  at totally 2500 

points on the surface for different m , but other parameters are fixed to be 8cN  , 

10N   2M  , 
0 0.01R  , 3600cn  , 

1 15m  , and 
1010  . It can be seen that the 

MSDTM is convergent. 

Table 1: For the non-harmonic boundary value problem of the Laplace equation, 

comparing the accuracy with different values of m  

m  6 8 10 12 14 

ME 1.33×10-2 9.24×10-3 5.8×10-3 5.14×10-3 4.20×10-3 

RMSE 2.98×10-3 2.45×10-3 1.46×10-3 1.26×10-3 1.07×10-3 

In above, it can be seen that the number of collocation points cn  used in the MSDTM is in 

general much larger than the number of unknown coefficients 12 1n mm  . Because 

1mm  is the number of the Trefftz bases used in the numerical solution, it cannot be too 

large to avoid the highly ill-conditioned behavior of the resultant linear system. On the 

other hand, in order to match the given boundary conditions accurately, we impose more 
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collocation points to generate more linear equations. Due to these reasons the linear system 

is usually highly over-determined. 

4.2 Inverse Cauchy problems 

Before embarking the numerical tests of the presented method to solve the inverse Cauchy 

problems, we concern with the stability of the MSPM and the MSDTM, in the case when 

the boundary data are contaminated by the random noise. Thus we investigate the 

numerical results by adding a different level of random noise on the boundary data: 

, , , ,
ˆˆ ( ) ( ) ( , ), ( ) ( ) ( , )i j i j i j i jg g sR i j h h sR i j           ,                                        (57) 

where s  is the level of noise, and the noise ( , )R i j  are random numbers in [-1, 1]. 

Example 5. In this example we consider an inverse Cauchy problem of Poisson equation 

as following: 

sin cosh ,( , , )xu e y z x y z   ,                                                                                (58) 

( , , ) sin cosh ,( , , )xu x y z e y z x y z  ,                                                                       (59) 

where   is an ellipsoidal vessel with non-uniform thickness with the boundary   as 

shown in Fig. 5. The inner surface of the ellipsoidal vessel is a sphere with a radius 1a  . 

The outer surface is an ellipsoid where the short axis is 1.5b   along the 
3x -direction and 

the long axis 2c   along the 1x -and 2x -directions. The Dirichlet and Neumann boundary 

conditions are given on the outer surface, while the boundary conditions on the inner 

surface are not accessible. 

 
Figure 5: An ellipsoidal vessel with non-uniform thickness, domain for example 5 
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(a) 

 
(b) 

 
(c) 

Figure 6: For example, 5 of a 3D Poisson problem in an irregular domain, (a) the 

convergence rate, (b) the comparison of the numerical and exact solutions, and (c) the 

numerical error 
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In the MSPM with 1575cN  , 56N  , 5M  , 
0 0.01R   and 

310  , the CGM is 

convergent with 11 steps. Under 1600cn  , 217n  , 12m   and 
1 9m  , the MSDTM 

is convergent with 40 ( 1%s  ), 41 ( 5%s  ), 41 ( 10%s  ) steps under as shown in 

Fig. 6(a). Figs. 6(b) and (c) present the numerical results and errors for u on 

 ( , , ) | cos , sin , 0,0 2x y z x a y a z        , obtained by using the MSPM and 

the MSDTM with various levels of data noise. As shown in these figures, the numerical 

solutions converge to their corresponding analytical solutions as the amount of noise 

decreases. Even for a relatively high amount of noise (10%) added into the data, the 

numerical results still agree quite well to the analytical solution. The maximum error with 

10%s   is 
28.18 10  as shown in Fig. 6(c). 

In Tab. 2 we list the ME and the RMSE of u  at totally 8000 points in   for different m , 

but other parameters are fixed to be 1575cN  , 56N  , 5M  , 
0 1R  , 

310  , 

1800cn  , 
1 10m  . It can be seen that the MSDTM is convergent fast and then situates. 

Table 2: For example 5 comparing the accuracy with different values of m  

m  2 3 4 5 

ME 4.23×10-1 1.18×10-1 5.32×10-2 5.29×10-2 

RMSE 9.28×10-2 1.94×10-2 1.31×10-2 1.53×10-2 

Example 6. In this example we consider the following inverse Cauchy problem of Poisson 

equation: 

6 , ( , , )u x x y z   ,                                                                                                   (60) 

3 2 2 2( , , ) 2 , ( , , )u x y z x x y z x y z     ,                                                               (61) 

where   is a torus with the boundary   as shown in Fig. 7 prescribed by 

 ( , , ) (2 cos )cos , (2 cos )sin , sinx y z x y z           ,                          (62) 

where 0 2 , 0 2       . In this 3D case, the Dirichlet and Neumann boundary 

conditions are prescribed on the upper half portion of the torus, while the lower half portion 

of the torus are under-specified, i.e. 

( , , ) ( , , )u x y z g x y z ,                                                                                                        (63) 

( , , )
( , , ) ( , , )

u x y z
u x y z h x y z

n


  


n ,                                                                             (64) 

where  ( , , ) (2 cos )cos , (2 cos )sin ,sin ,0 2 , 0x y z                . The 

normal direction is given by 

 cos cos ,sin cos ,sin    


n .                                                                              (65) 
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Figure 7: A torus centered at origin, domain for example 6 

In the MSPM with 3375cN  , 84N  , 6M  , 
0 0.001R  , and 

310  , the CGM 

is convergent with 5 steps. Under 1600cn  , 181n  , 6m  , 
1 15m  , the MSDTM is 

convergent with 16 steps under 
310   as shown in Fig. 8(a). Fig. 8(b) presents the 

numerical solutions of u on  ( , , ) | 2cos , 2sin , 1,0 2x y z x y z          

obtained by using the MSPM and the MSDTM under 10%s  . It can be observed the 

numerical solutions are in good agreement with the analytical solution. 

Fig. 9 lists the analytical solution and numerical solutions for u on lower half portion of 

the torus with 10% level of data noise. Even for a relatively high amount of noise 10% 

added into the data, the numerical results still agree quite well with the analytical solution, 

indicating that the MSPM and the MSDTM yields accurate and stable numerical results for 

noisy data. 
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(a) 

 

(b) 

Figure 8: For example, 6 of a 3D Poisson problem in a torus domain, (a) the convergence 

rate, (b) the comparison of the numerical and exact solutions. The error reads with respect 

to the right axis 
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(a)                                                            (b) 

Figure 9: Distributions of (a) the analytical solutions and (b) the numerical solutions for u 

on the under-specified surface obtained using the MSPM and the MSDTM with s=10% 

Example 7. We consider the following inverse Cauchy problem of the Poisson equation: 

sin cos sin , ( , , )u x y z x y z      , 

( , , ) sin cos sin , ( , , )u x y z x y z x y z    ,                                                              (66) 

where   is a peanut-shaped domain with the boundary  as shown in Fig. 10, defined by 

the following parametric equation: 

 ( , , ) ( )cos , ( )sin sin , ( )sin cosx y z x y z               ,                    (67) 

where, 
2( ) cos(2 ) 1.5 sin (2 ) ,0 2 ,0              . 

The Dirichlet and Neumann boundary conditions are over-specified via 

 ( , , ) ( , , ), ( , , ) ( )cos , ( )sin sin , ( )sin cosu x y z g x y z x y z             ,      (68) 

 
( , , )

( , , ), ( , , ) ( )cos , ( )sin sin , ( )sin cos
u x y z

h x y z x y z
n

          


 


,   (69) 

in which 0 , 0       . 
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Figure 10: A peanut-shaped domain, domain for example 7 

In the MSPM with 3375cN  , 35N  , 4M  , 
0 0.01R  , and 

610  , the CGM 

is convergent with 21 steps. Under 1600cn  , 49n  , 4m  , 1 6m   the MSDTM is 

convergent with 42 steps under 
610   as shown in Fig. 11(a). In Fig. 11(b) we 

compare the numerical and exact solutions of u  on the circle 

 ( , , ) | ( )cos , ( )sin , 0,0x y z x y z             , whose maximum error is 

27.73 10  as shown in Fig. 11(b) by dashed-dotted line. 

Fig. 12(a) gives the distribution of the analytical solution for u on the under-specified 

surface. Figs. 12(b-d) show the distributions of the numerical solutions on the under-

specified surface obtained by using the MSPM and the MSDTM with 1s  %, 5s  % and 

10s  % noisy Cauchy data, respectively. As shown in these figures, the numerical results 

under different noise level are in good agreement with the analytical solution. Furthermore, 

the numerical solutions converge to the corresponding analytical solutions as the amount 

of noise decreases. This clearly shows the computational efficiency and accuracy of the 

proposed numerical scheme. On the other hand, Figs. 13(a-d) display the error surfaces of 

the numerical results on the under-specified surface, with exact input data, 1% noisy 

Cauchy data, 5% noisy Cauchy data, and 10% noisy Cauchy data, respectively. It can be 

seen that, even for a relatively high amount of noise level (10%), the numerical results 

remain accurate and stable, and converge to the corresponding analytical solution as noise 

level decreases. 
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(a) 

 

(b) 

Figure 11: For example 7 of a 3D Poisson problem in a peanut-shaped domain, (a) the 

convergence rate of MSDTM, (b) comparing numerical and exact solutions and numerical 

error. The error reads with respect to the right axis 
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(a)                                                                       (b) 

  

(c)                                                                       (d) 

Figure 12: Distribution of (a) the analytical solutions and distributions of the numerical 

solutions for u on the under-specified surface obtained using the MSPM and the MSDTM 

with (b) s=1%, (c) s=5% and (d) s=10% noisy Cauchy data 
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(c)                                                               (d) 

Figure 13: Error surfaces of u on the under-specified surface obtained using the MSDTM 

with (a) s=0, (b) s=1%, (c) s=5% and (d) s=10% noisy Cauchy data 

Example 8. In this example we consider an inverse Cauchy problem of the Laplace 

equation in a central hollow sphere [Wang, Chen, Qu et al. (2016)]. The inner and outer 

radii of the spherical shell are 1 and 2, respectively. The Dirichlet and Neumann boundary 

conditions are over-specified on the outer surface. The analytical solution is 

10 10 10u xyz x y z    .  

It should be noted that the MSPM is not needed due to the absence of the nonhomogeneous 

term. To compare with the boundary element method (BEM), Fig. 14 displays the relative 

error surfaces of the numerical results for the flux on the inner boundary, with exact input 

data, 1%, 3%, and 5% noisy Cauchy data, respectively. We take 1600cn  , 217n  , 

9m  , 
1 12m  , 0 0.01R  , and 

810  . Comparing with Fig. 4 in Wang et al. [Wang, 

Chen, Qu et al. (2016)], our numerical results are slightly accurate for the various noise 

level. Furthermore, the proposed method is simpler and faster to implement than the 

boundary element methods since the MSDTM does not require the time-consuming 

numerical integrations. 
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Figure 14: Relative error surfaces of the fluxes on the inner boundary obtained using the 

MSDTM with (a) exact input data, (b) 1%, (c) 3% and (d) 5% noisy data 

Example 9. As the last example we consider an inverse Cauchy problem of the Laplace 

equation in a torus [Wang, Chen, Qu et al. (2016)], prescribed by the following parametric 

equation: 

 ( , , ) | cos , sin , sin ,0 2 ,0 2x y z x y z                 .               (70) 

In this 3D case, the accessible part of the boundary is specified as 

 1 ( , , ) | cos , sin , sin ,0 2 ,0 3 2x y z x y z                 .          (71) 

In Eqs. (70) and (71), 3 cos   . The analytical solution of this problem is 

u xy yz xz   . 

To compare with the boundary element method, Tab. 3 lists the MEs and CPU times of the 
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numerical results on the under-specified surface obtained by using the BEM and the 

MSDTM with various noisy Cauchy data. In the calculation, the BEM used 48 torus exact 

elements is in conjunction with the TSVD-GCV regularization technique. In the MSDTM 

we take 1600cn  , 109n  , 6m  , 
1 9m  , 

0 0.01R  , and 
810  . It can be seen 

from Tab. 3 that the MSDTM is more accurate than the BEM for various noise levels. On 

the other hand, the BEM requires high amount of CPU time because of expensive 

numerical integration and regularization. 

Table 3: For example 9 comparing the MEs and CPU time by using the BEM and the 

MSDTM with various noise levels 

 Noise level 1% 3% 5% 

BEM 
ME 3.11×10-1 6.21×10-1 6.15×10-1 

CPU time 106.19 106.09 106.45 

MSDTM 
ME 5.11×10-2 2.69×10-1 4.07×10-1 

CPU time 0.66 0.67 0.67 

5 Conclusions 

A simple multiple/scale polynomial method (MSPM) and multiple/scale/direction Trefftz 

method (MSDTM) were developed for the Poisson equation in an arbitrary three-

dimensional (3D) domain. The scales and directions are fully determined by the collocation 

points and the planar orientations. The proposed method is truly mesh-free and integration-

free and its equation system has a small number of unknown coefficients. By using a simple 

multiple-scale post-conditioner and a simple three-dimensional Trefftz basis, the method 

can reduce the ill-condition of the resultant linear system. The numerical results 

demonstrated that the MSPM and the MSDTM is very efficient, even for that adding a 

large random noise up to 10%. 
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