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Abstract:  A new and efficient Grey Wolf Optimization (GWO) algorithm is implemented 

to solve real power economic dispatch (RPED) problems in this paper. The nonlinear 

RPED problem is one the most important and fundamental optimization problem which 

reduces the total cost in generating real power without violating the constraints. 

Conventional methods can solve the ELD problem with good solution quality with 

assumptions assigned to fuel cost curves without which these methods lead to suboptimal 

or infeasible solutions. The behavior of grey wolves which is mimicked in the GWO 

algorithm are leadership hierarchy and hunting mechanism. The leadership hierarchy is 

simulated using four types of grey wolves. In addition, searching, encircling and attacking 

of prey are the social behaviors implemented in the hunting mechanism. The GWO 

algorithm has been applied to solve convex RPED problems considering the all possible 

constraints. The results obtained from GWO algorithm are compared with other state-of-

the-art algorithms available in the recent literatures. It is found that the GWO algorithm is 

able to provide better solution quality in terms of cost, convergence and robustness for the 

considered ELD problems. 

Keywords: Grey wolf optimization (GWO), constraints, power generation dispatch, 

evolutionary computation, computational complexity, algorithms. 

1 Introduction 

Real power economic dispatch (RPED) is one of the most important non - linear problem 

to be solved in the modern power system. The objective of the RPED problem is to allocate 

optimal real power generation to the existing thermal units without violating the constraints 

in the system. Conventional methods like lambda-iteration method, and so on are used to 

solve traditional RPED problem with assumptions many assumptions [Park, Lee, Shin et 

al. (2005); Sayah and Hamouda (2013)].  

However, in  practical, the nonlinearities and discontinuities like valve point loading, ramp 

rate limits and so on represent RPED problem as a non-smooth or non-convex optimization 
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problem which makes it difficult for the traditional methods to obtain the global optimum 

[Park, Lee, Shin et al. (2005); Sayah and Hamouda (2013)]. Moreover considerable number 

of researchers has shown interest in developing an efficient algorithm in solving the RPED 

problem with nonlinearities [Mandal, Roy and Mandal (2014)]. Though the conventional 

methods have advantages like few control parameters and less computational time, it fails 

to reach global optima for the ELD problems with large dimensional and discrete search 

space [Nguyen and Vo (2015)]. 

According to No Free Lunch (NFL) theorem, there exist no meta heuristic optimization 

algorithm which is applicable in solving all real world optimization problems [Mirjalili, 

Mirjalili and Lewis (2014); Basu (2014)]. The development of numerous meta heuristic 

algorithms by various researchers around the world over the past two decades has 

successfully solved the ELD problem with superior convergence characteristics, high 

solution quality and robustness, eliminating most of the difficulties of classical methods 

[Mandal, Roy and Mandal (2014); Basu (2015)]. 

Grey Wolf Optimization (GWO) algorithm, a recent swarm intelligence algorithm is 

proposed to solve the non-convex optimization problem [Mirjalili, Mirjalili and Lewis 

(2014)]. The leadership and hunting behaviors of grey wolves in nature is incorporated in 

the algorithm and has superior exploration and exploitation ability. In solving real world 

problems, the GWO algorithm has the capability of providing higher quality solutions and 

good computational efficiency with few parameters and ease of implementation [Mandal, 

Roy and Mandal (2014); Mirjalili, Mirjalili and Lewis (2014)]. These properties have 

motivated few researchers to implement the GWO algorithm in solving problems like 

combined heat and power dispatch [Mandal, Roy and Mandal (2014)], hyper spectral band 

selection [Medjaheda, Ait Saadib, Benyettoua et al. (2015)], load frequency control [Guha, 

Roy and Banerjee (2015)], optimal reactive power dispatch [Sulaimana, Mustaffab, 

Mohameda et al. (2015)], power system stabilizer design [Shakarami and Faraji 

Davoudkhani (2015)], MPPT design [Mohanty, Subudhi and Ray (2016)], flow shop 

scheduling [Komakia and Kayvanfar (2015)], attribute reduction [Emarya, Yamany, 

Hassaniena et al. (2015)], feature selection [Emary, Zawbaa and Hassaniena (2015)], 

parameter estimation [Song, Tang, Zhao et al. (2015)] and automatic generation control 

[Sharma and Saikia (2015)]. In this paper, GWO algorithm is implemented to solve the 

RPED problem to validate its effectiveness over other meta heuristic algorithms. The 

simulation results show that this algorithm performs better than the other algorithms in 

terms of solution quality, convergence efficiency and robustness. 

Section 2 describes the formulation of ELD problem with constraints like ramp rate limits 

and so on. The detailed description of GWO algorithm is discussed in Section 3. Section 4 

describes the implementation of GWO to the complex RPED problem. The numerical 

results and discussion of the GWO algorithm for different test systems are presented in 

Section 5 and conclusion is drawn in Section 6.  

2  Formulation of the ELD problem 

Minimization of the total cost in producing real power in a power system without violating 

constraints is the main aim of RPED [Sahoo, Dash, Prusty et al. (2015)]. In this paper, 

RPED problem without valve point loading is considered. 
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2.1  RPED problem with smooth cost function 

The objective of the RPED problem with smooth cost function is given by    

Minimize  



N

q

qqT PFF

1

                                                                           (1)  

where TF represents total fuel cost of all the thermal units present in the system ($/hr), N  is 

the total number of thermal units existing in the system and  qq PF  represents fuel cost of the 

thq thermal unit ($/hr) and qP represents power generated by the thq thermal unit (MW).  

In general, the fuel cost function  qq PF for thq  thermal unit is expressed in quadratic 

polynomial as  

  qqqqqqq cPbPaPF  2                                                                             (2) 

where qq ba ,  and qc  are the cost coefficients of thq  thermal unit. 

The different practical constraints to which the above minimization problem is subjected 

are power balance or demand constraint, generator output limits, prohibited operating 

zones and ramp rate limits. 

2.2 Power balance or demand constraint   

The sum of individual power generated from each thermal unit existing in the system must 

be equal to the sum of transmission loss and total demand of the system which is 

represented as 

Loss

N

q

q PDP 
1

                                                                             (3)  

where D is the total demand of the system (MW) and LossP is the transmission loss of the 

system (MW). 

The transmission loss of the system LossP  which is a function of power generated by each 

unit is given by  
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where qqr BB 0, and 00B are the loss coefficients or B coefficients. 

2.3 Real power generating limits 

The power generated qP from each thermal unit must lie within its permissible limits which 

is represented as 

max,min, qqq PPP                                                                              (5) 
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where min,qP and max,qP are the minimum and maximum generation of the thq  generator 

(MW) respectively. 

2.4 Ramp rate limit 

Theoretically in RPED problems it is assumed that the output from thermal units is adjusted 

linearly. But in practical, this assumption is not plausible as the operating limits of each 

generators are restricted by their corresponding up-rate limit qUR  , down-rate limit qDR  

and previous hour generations 0
qP .  Hence, for 

thq generating unit, 

qqq URPP  0 , if 0
qq PP                                                                             (6) 

qqq DRPP 0 , if 0
qq PP                                                                             (7)  

Therefore, using the ramp rate limits the real power generating constraints given in Eq. (5) 

can be modified as 

   qqqqqqq URPPMinPDRPPMax  0
max,

0
min, ,,                                                              (8) 

2.5 Prohibited operating zones 

In the characteristic curve of the thermal units, due to some non-linear behavior existing in 

shaft bearing or faults in the machines or its associated auxiliary equipment, some thermal 

unit might have prohibited operating zones which is to be avoided. The input-output 

characteristics of a generator with POZ is shown in Fig. 1 [Subbaraj, Rengaraj and 

Salivahanan (2009)] 

 

Figure 1: Characteristic curve of thermal unit with POZs 



 

 

 

Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints                             29 

Therefore, the operating constraint of the thq unit with POZ is 

 k
qU

k
qLq PPP ,  

i.e., k
qLq PP  and k

qUq PP                                                                             (9) 

where jzk ,...,2,1  is the index of POZ of thq thermal unit, jz is the total number of POZ 

exist for thq generator and k
qLP and k

qUP  are the lower and upper limit of thk POZ of the

thq  thermal unit (MW) respectively 

3  Grey Wolf Optimization (GWO) algorithm 

GWO is a very recent optimization algorithm inspired by gray wolves and is developed in 

2014 [Mirjalili, Mirjalili and Lewis (2014)]. The algorithm imitates the hunting and the 

social hierarchy behaviors of grey wolves. In addition, to the advantages of meta heuristic 

algorithms the GWO algorithm requires no specific input parameters to be initialized. Also, 

the GWO algorithm is straight forward, free from computational complexity and can be 

easily implemented in any programming languages [Guha, Roy and Banerjee (2015)]. The 

interesting fact of grey wolves is that it possesses social dominant hierarchy as shown in 

Fig. 2 and this hierarchy is used in GWO. The leader wolf or alpha    wolf takes decisions 

like hunting, searching, time to wake and so on. The beta    wolf supports alpha    wolf 

in decision making and the delta   wolf follows the alpha    and beta    wolves.  The 

wolves which do not come under these category are called as omega    wolves and are 

used basically as a scapegoat [Medjaheda, Ait Saadib, Benyettoua et al. (2015); Sharma 

and Saikia (2015)].   

 

 

Figure 2: Hierarchy of grey wolves 

In addition, the group hunting another social behavior is considered in the algorithm. The 

three stages by which the grey wolf attacks the prey are explained in Muro et al. [Muro, 

Escobedo, Spector et al. (2011)] and is modeled as follows.  
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3.1   Modeling of GWO 

3.1.1 Social hierarchy 

For modeling the GWO algorithm, the wolves are classified based on the fitness value of 

the problem. The best solution is considered as  wolf, followed by  ,  and  wolves. 

3.1.2 Encircling of prey 

The encircling behavior of grey wolf around the prey is modeled mathematically using Eq. 

(10) and Eq. (11). Using these equations, a grey wolf updates its position within solution 

space around the prey.  

   tYtYBC P



 .                                                                              (10) 

   


 CAtYtY P .1                                                                            (11) 

Where the current iteration in the problem is represented as t ,  tYP



 is the position of the 

prey,  tY


 indicates the position of grey wolf at t ,  1


tY  indicates the position of grey 

wolf at 1t  and 

A  and 


B are the coefficient vectors which are computed using Eq. (12) 

and Eq. (13) respectively. 



 arandaA .2                                                                            (12) 

randB .2


                                                                             (13) 

Where 


a decreases from 2 to 0 linearly as the iteration increases and rand  is the random 

vectors between  1,0 such that A gets values within  aa, . 

3.1.3 Hunting 

Though all the grey wolves can recognize the prey's location,  , and  grey wolves have 

more knowledge about the location. Therefore, the positions of these wolves are saved and 

force the other wolves to update their position using Eq. (14) through Eq. (16).  

   tYtYBC


  .1 ,    tYtYBC


  .2 ,     tYtYBC



 .3             (14) 

    



 CAtYtY .11 ,     



 CAtYtY .22 ,     



 CAtYtY .3         (15) 

 
     

3
1

321 tYtYtY
tY


 

             (16) 



 

 

 

Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints                             31 

Where  tY 



,  tY 



 and  tY 



 are the position of first, second and third best fitness value, 





CC , and 



C is determined using Eq. (10) , iA


 and iB


are determined using Eqs. (12) 

and (13) ,  tY i



, 2,1i and 3 are the updated position of  tY


 based on position of alpha, 

beta and grey wolves respectively. 

3.1.4 Attacking prey (Exploitation) 

During this phase, 


a value gets reduced which reduces the fluctuation of 


A . Since 


A is a 

vector whose value is in the range of  1,1 , the position of grey wolf will be towards the 

position of prey in the next generation. 

3.1.5 Searching the prey (Exploration) 

The  , and  wolves diverges to search the prey and then converges to attack it. All other 

grey wolves search the prey with respect to above three wolves. This process of searching 

the prey emphasizes the exploration capability of grey wolves to search globally. Figure 3 

represents the flowchart of GWO algorithm. 

4  Implementation of GWO algorithm to RPED (GWO-RPED)   

The implementation of GWO algorithm to solve RPED complex problem is described as 

follows: 

Step 1: For the chosen test system, read the input data to compute the total fuel cost of the 

system. 

Step 2: Initialization of GWO parameters i.e. population size N and select the stopping 

criteria. 

Step 3: Select the number of design variables, D  and initialize the design variables i.e. the 

real power outputs for each generating units in the chosen system. In accordance to the 

population size, the design variable is generated randomly using Eq. (17). 

   min,max,min 1, qqqrq PPrandPP                                                                           (17) 
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Figure 3:  Flowchart of GWO 

where Nq ,...,2,1 , Dr ,...,2,1    
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Therefore, the matrix of ND is initialized using Eq. (17).  

Step 4: The fitness of each population is calculated using TF . After sorting the fitness value 

in descending order, the minimal fitness value is saved as alpha   , next minimal as beta

   and third minimal as delta    grey wolves as given in Eq. (18). 

F  NTF , F  1NTF and F  2NTF                                                                 (18) 

Step 5: The individual population corresponding to F , F and F are saved as  tP


 ,

 tP


 and  tP


 respectively. 

Step 6: Determine iA


and iB


using Eqs. (12) and (13). 

Step 7: Update the position of each grey wolf in the population using Eqs. (14)-(16).  

Step 8: Select the termination criterion 

Step 4 to step 7 will be repeated till the termination criteria is reached by the algorithm. 

 

5 Results and discussions 

In this section, the performance of the algorithm in solving various complex RPED 

problems with 6, 15, 20 and 40 thermal unit is discussed. The different constraints 

considered for these test systems are ramp rate limits, POZ and individual generator limits. 

The GWO algorithm for different test system has been implemented in MATLAB 2013a 

on Intel (R) Core (TM) i7-3517U CPU 2.40GHz with 8G-RAM. Simulation results 

obtained are compared with the results reported in the recent literatures in terms of solution 

quality.  

5.1  RPED problem with POZ and transmission line loss 

For RPED problem with POZ and transmission line loss characteristics, the GWO 

algorithm has been implemented on (i) 6 generating unit and (ii) 15 generating unit for 

comparison. The performance of GWO is compared with the results obtained in the recent 

literatures 

5.1.1 Test system 1: 6 unit system 

Initially, the GWO algorithm is applied to a small test system comprising of 6 generating unit 

with load demand of 1263 MW which is referred as SYS1. The system coefficients and loss 

coefficients are listed in Gaing [Gaing (2003)]. The transmission loss, ramp rate limits and POZ 

are considered for this test system. All the six generating units have two sets of prohibited 

operating zones. The minimum fuel cost reported in recent literature [Mandal, Roy and Mandal 

(2013)] is 15,443.06 $/hr.  The best fuel cost obtained by GWO algorithm is 15,443 $/hr. The 

result obtained using GWO indicates that the algorithm attains the global solution with 

reasonable computational time.  The optimal power generation and its corresponding minimum 

cost obtained using GWO algorithm is given in Tab. 1. 
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The comparison of statistical data of GWO algorithm with the results obtained using 

different algorithm is given in Tab. 2. The results presented in Tab. 2 suggest that GWO 

algorithm has the capability of attaining global minimum value for the ELD problems. To 

move further, the GWO algorithm is applied to large sized problems to assess the efficiency 

of the algorithm.  

Table 1: Optimal power for SYS1 using GWO 

Unit  
Real power output 

in MW 
Unit 

Real power output 

in MW 

P1  447.1631 P4  138.368 

P2  173.5742 P5  165.5965 

P3  263.4559 P6 87.2987 

Total power generation in MW               1275.456 

Power loss in MW       12.4563 

Total fuel cost in $/hr                15443 

  

5.1.2 Test system 2: 15 thermal unit system 

Here, 15 thermal unit system is considered to demonstrate goodness of the GWO algorithm 

in solving this convex RPED problems including all the constraints and is referred as SYS2 

in this paper. The system coefficients and loss coefficients for SYS2 are listed in Gaing 

[Gaing (2003)]. The transmission loss, ramp rate limits and POZ are considered. 

Table 2: Comparison of various algorithms with GWO for SYS1 

Algorithm 
Total fuel cost in $/hr 

Minimum Average Maximum 

IPSO [Yu and Li (2016)] 15,449.88 NA NA 

MPSO-TVAC [Abdullah, Baskar, Rahim et al. 

(2013)] 
15,449.91 15,450.17 15,451.57 

New MPSO [Moradi-Dalvand, Mohammadi-

Ivatloo, Najafi et al. (2015)] 
15,447.00 15,447.00 15,455.00 

SGA [Moradi-Dalvand, Mohammadi-Ivatloo, 

Najafi et al. (2015)] 
15,447.00 15,450.00 15,470.00 

BFO [Yu and Li (2016)] 15,443.85 NA NA 

BBO [Moradi-Dalvand, Mohammadi-Ivatloo, 

Najafi et al. (2015)] 
15,443.09 15,443.09 15,443.09 

KHA-IV [Mandal, Roy and Mandal (2014)] 15,443.07 15,443.19 15,443.33 

HCRO-DE [Yu and Li (2016)] 15,443.07 NA NA 

IPSO-TVAC [Yu and Li (2016)] 15,443.06 NA NA 

GWO 15,443.00 15,443.05 15,443.37 

*NA - Not available 
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The total demand is 2630 MW. Thermal units 2, 5, 6 and 12 have prohibited operating 

zones. The best fuel cost reported in Basu [Basu (2016)]  is 32,548.17 $/hr. The best fuel 

cost obtained by GWO algorithm for SYS2 is 32,548.13 $/hr. The optimal power 

generation obtained using GWO algorithm is given in Tab. 3. The comparison of statistical 

results obtained using GWO algorithm and other algorithms are summarized in Tab. 4. 

Table 3: Optimal power for SYS2 using GWO 

Unit 
Real power 

output in MW 
Unit 

Real power 

output in MW 
Unit 

Real power 

output in MW 

P1 455 P6 460 P11 77.0107 

P2 455 P7 465 P12 80 

P3 130 P8 60 P13 25 

P4 130 P9 25 P14 15 

P5 235.8869 P10 29 P15 15 

Total power generation in MW 2656.90 

Power loss in MW  26.90 

Total fuel cost in $/hr  32,548.138 

It can be inferred from Tab. 3 and Tab. 4 that the best result has been obtained using GWO 

algorithm without violating any system constraints. 

Table 4: Comparison of various algorithms with GWO for SYS2 

Algorithm 
Total fuel cost in $/hr 

Minimum Average Maximum 

SARGA [Subbaraj, Rengaraj and 

Salivahanan (2009)] 
32,709.63 32,730.79 32,829.23 

MPSO-TVAC [Abdullah, Baskar, 

Rahim et al. (2013)] 
32,704.47 32,705.00 33,728.99 

RTO [Sayah and Hamouda (2013)] 32,701.81 NA NA 

SSA [Yu and Li (2016)] 32,662.51 NA NA 

DEPSO [Basu (2014)] 32,588.81 32,588.99 32,588.99 

DPD [Parouha and Das (2016)] 32,548.58 32,556.67 32,564.40 

KGMO [Basu (2016)] 32,548.17 32,548.21 32,548.37 

GWO 32,548.13 32,548.14 32,548.15 

 

5.1.3 Test system 3: 20 generating unit system-ELD problem with transmission losses 

For this variant of ELD, a test system with 20 thermal unit is adopted for evaluating using 

GWO algorithm and is referred as SYS3. In this system, POZ is not considered. The 

demand to be met by SYS3 is 2500 MW. The system data and the transmission loss 

coefficients are considered from Su et al. [Su and Lin (2000)]. The authors in Moradi-

Dalvand et al. [Moradi-Dalvand, Mohammadi-Ivatloo, Najafi et al. (2015)] have reached a 

optimum value of 62,456.63 $/hr. The exploration and exploitation of GWO algorithm has 

converged the system to reach a better optimum value of 62,454.27 $/hr without violating 
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any system constraints. Tab. 5 provides the optimal power for each unit in the test system 

obtained using GWO. 

Table 5: Optimal power for SYS3 using GWO 

Unit Real power output in MW Unit Real power output in MW 

P1 505.0337 P11 152.2849 

P2 166.8719 P12 289.7256 

P3 110.7706 P13 117.3326 

P4 110.029 P14 43.8318 

P5 118.6765 P15 111.9407 

P6 75.2081 P16 36.3903 

P7 112.0637 P17 65.0679 

P8 109.4335 P18 93.581 

P9 110.9587 P19 94.4718 

P10 112.6017 P20 56.7383 

Total power generation in MW  2593.012 

Power loss in MW     93.012 

Total fuel cost in $/hr    62454.27 

 
The results obtained using GWO algorithm for SYS3 is compared with the previously 

obtained results using various algorithms and is summarized in Tab. 6. The statistical data 

for these algorithms are obtained from Moradi-Dalvand et al. [Moradi-Dalvand, 

Mohammadi-Ivatloo, Najafi et al. (2015)]. The authors Moradi-Dalvand et al. [Moradi-

Dalvand, Mohammadi-Ivatloo, Najafi et al. (2015)] suggest that the reported results in 

algorithms SOA, CGPSO and CMSFLA do not satisfy the system constraints.  

Table 6: Comparison of various algorithms with GWO for SYS3 

Algorithm 
Total fuel cost in $/hr 

Minimum Average Maximum 

CGPSO [Moradi-Dalvand, Mohammadi-Ivatloo, 

Najafi et al. (2015)] 
59,804.05 61,171.84 63,184.63 

CMSFLA [Moradi-Dalvand, Mohammadi-

Ivatloo, Najafi et al. (2015)] 
60,412.88 60,412.88 60,412.92 

EHSA [Vanitha (2012)] 62,456.75 NA NA 

EBBO [Vanitha (2012)] 62,456.65 NA NA 

GSO [Moradi-Dalvand, Mohammadi-Ivatloo, 

Najafi et al. (2015) (2015)] 
62,456.63 62,456.63 62,456.63 

CQGSO [Moradi-Dalvand, Mohammadi-Ivatloo, 

Najafi et al. (2015)] 
62,456.63 62,456.63 62,456.63 

GWO 62,454.27 62,454.29 62,455.39 
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5.1.4 Test system 4: 40 thermal unit system-RPED problem with POZ 

A complex system with 40 thermal unit with POZ is considered here and is referred as 

SYS4. The transmission line losses are neglected. The total demand for SYS4 is 7000 MW. 

The test system data is available in Chen et al. [Chen and Chang (1995)]. The optimal 

generation schedule for the test system using GWO algorithm is presented in Tab. 7. The 

minimum fuel cost achieved by GWO is 99722.99 $/hr. In the recent literature, the 

minimum fuel cost achieved for the 40 unit system is 100767.68 $/hr in Balamurugan et al. 

[Balamurugan and Subramanian (2008)].   

Table 7: Optimal power for SYS4 using GWO 

Unit 
Real power output in 

MW 
Unit 

Real power output in 

MW 

P1 40.7439 P21 456.6604 

P2 60 P22 459.999 

P3 140.0025 P23 460 

P4 24 P24 460 

P5 26 P25 459.999 

P6 115 P26 460 

P7 110.1324 P27 460 

P8 217 P28 10 

P9 265 P29 10 

P10 130 P30 10 

P11 204.999 P31 20.1001 

P12 205 P32 20 

P13 125 P33 20 

P14 132 P34 20 

P15 125.1357 P35 18 

P16 125 P36 18 

P17 125 P37 20 

P18 456.6654 P38 25 

P19 458.9178 P39 25 

P20 456.6604 P40 25 

Total power generation in MW 7000 

Total fuel cost in $/hr   99722.99 

 

Tab. 8 summarizes the statistical cost achieved by various algorithms for 40 unit system 

with prohibited operating zone over the decade. It can be observed from Tab. 7 that the 

GWO algorithm results in a better solution when compared to others and it reveals the 

capability of algorithm to produce the global optimal cost from a large solution space which 

has large local optima. 
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Table 8: Comparison of various algorithms with GWO for SYS4 

Algorithm Fuel cost in $/hr 

Minimum Average Maximum 

TPNN [Subbaraj, Rengaraj, 

Salivahanan et al. (2010)] 
105,236.00 106,756.48 107,894.59 

PSO [Subbaraj, Rengaraj, 

Salivahanan et al. (2010)] 
101,436.25 102,978.56 103,568.24 

PAPSO [Subbaraj, Rengaraj, 

Salivahanan et al. (2010)] 
101,246.26 101,956.37 102,568.84 

PSO-MSAF [Subbaraj, Rengaraj, 

Salivahanan et al. (2010)] 
101,209.99 101,584.63 101,954.68 

SARGA [Subbaraj, Rengaraj, 

Salivahanan et al. (2010)] 
101,403.99 NA NA 

TSARGA [Subbaraj, Rengaraj, 

Salivahanan et al. (2010)] 
101,226.51 NA NA 

PSARGA-MAS [Subbaraj, 

Rengaraj, Salivahanan et al. (2010)] 
101,187.45 NA NA 

IDP [Balamurugan and 

Subramanian (2008)] 
100,767.68 NA NA 

GWO 99,722.99 99,723.22 99,728.81 

 

5.2  Result analysis 

5.2.1 Parameter selection 

According to many research experts, the efficiency of stochastic search algorithms (such 

as GA, PSO, DE, etc.)  depends on user defined parameters. Using parameter tuning, 

testing and evaluating different combinations of parameters, the  optimal parameter values 

of an algorithm are obtained for a specific test system [Barisal and Prusty (2015); Amjady 

and Sharifzadeh (2010)]. In GWO, the parameter which affects the convergence and search 

capability of the algorithm is the number of grey wolf population. An optimal choice of 

population size is necessary as the other values makes an algorithm slow, computationally 

inefficient and leads to local minima than to the global minima. The optimal population 

size directly depends on problem dimension and complexity to achieve optimum value for 

the problem [Chaturvedia, Panditb and Srivastava (2009); Roy, Roy and Chakrabartic 

(2013)]. The numerical values presented in Tabs. 2, 4, 6 and 8 summarizes that GWO 

algorithm provides the optimal fuel cost when compared to the recent literatures. In 

addition, the performance of GWO algorithm is demonstrated by executing 50 test runs for 

different population sizes and the obtained solutions are presented in Tab. 9. The 

population size selected for different test systems is indicated in Tab. 9. 
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Table 9: Effect of population size on different test systems 

N

Total fuel cost in $/hr 
Number of hits to global 

solution Minimum Maximum  Average 
Standard 

deviation 

SYS1: 6-unit system 

10 

20 

30 

40 

50 

15,449.15 

15,445.14 

15,443.01 

15,443.08 

15,443.08 

15,453.86 

15,444.52 

15,443.35 

15,443.14 

15,443.10 

15,449.92 

15,443.15 

15,443.09 

15,443.10 

15,443.09 

0.2356 

0.0403 

0.0286 

0.0034 

4.61E-7 

18 

44 

48 

49 

49 

SYS2: 15-unit, system 

20 

30 

40 

50 

60 

32,548.383 

32,548.138 

32,548.136 

32,548.133 

32,548.133 

32,548.65 

32,548.23 

32,548.17 

32,548.15 

32,548.14 

32,548.41 

32,548.14 

32,548.13 

32,548.13 

32,548.13 

0.105 

0.0021 

0.0020 

0.0019 

0.0025 

42 

48 

49 

49 

49 

SYS3: 20 Unit system 

40 

60 

80 

100 

120 

62,462.91 

62,459.50 

62,454.27 

62,454.25 

62,454.62 

62,517.56 

62,507.22 

62,484.28 

62,479.20 

62,491.26 

62,485.81 

62,472.09 

62,466.19 

62,462.68 

62,460.42 

1.379 

1.010 

0.787 

0.621 

0.700 

25 

40 

45 

46 

45 

SYS 4: 40-unit system 

100 

120 

140 

160 

180 

99,760.31 

99,754.71 

99,743.01 

99,722.99 

99,722.91 

99,777.73 

99,767.45 

99,748.41 

99,725.48 

99,724.32 

99,761.21 

99,756.01 

99,745.26 

99,724.29 

99,723.80 

10.29 

6.9580 

1.5487 

0.7578 

0.3903 

15 

30 

42 

44 

46 

5.2.2 Convergence characteristics 

The convergence characteristic of GWO algorithm for SYS1,SYS2, SYS3 and SYS4 

discussed in the previous sections is presented in Fig. 4. The search agents in GWO 

explores solution space and determine the optimal solution quickly and since it has good 

search mechanism, the algorithm attains the optimal solution within 100 iterations for small 

test system and within an admissible number of iterations for large test systems. The GWO 

algorithm attains the global solution due to the proper selection of number of grey wolf 

population for a particular test system. This proper tuning of parameters steers the GWO 

algorithm for global optimal solution making it more compatible for RPED problems. 

Premature convergence of the GWO algorithm is avoided by proper tuning of grey wolf 

population. Also, it is to be noted that it determines the optimal global solution for RPED 

problems with large decision varaibles.  
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5.2.3 Robustness 

The minimum cost achieved by GWO algorithm for different test system is given in Tabs. 

1, 3, 5 and 7 and it is least when compared with other well known algorithm. Tabs. 2, 4, 6 

and  8 compares the minimum cost achieved by GWO algorithm with the other algorithm 

listed in the literature which emphasizes the better solution quality of the GWO algorithm. 

In GWO, a stochastic simulation technique, initialization of grey wolf is performed using 

random numbers. 

Due to this inherent randomness involved in the algorithm, performance of the algorithm 

cannot be judged through a single trial. Hence, the performance and strength of GWO 

algorithm is evaluated through number of test runs. Many test runs with different initial 

population values were performed to test the robustness or the consistency level of the 

GWO algorithm. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Convergence characteristics of (a) SYS1 (b) SYS2 (c) SYS3 and (d) SYS4 

The minimum cost attained by the GWO algorithm for different test systems for 100 

different trials is shown in Fig. 5. It can be inferred from Fig. 5 that GWO algorithm has 

the capability of achieving the minimum cost more consistently. The general converging 

characteristic of GWO algorithm for the entire test systems discussed is shown in Fig. 6. It 

is observed that after a certain number of generations the difference between the maximum 

fuel cost and minimum fuel cost is almost the same which gives the strength of GWO 

algorithm in solving complex, non-convex type problems.  
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Figure 6: General convergence characteristics of GWO 
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(d) 

 

 
Figure 5: Robustness of (a) SYS1 (b) SYS2 (c) SYS3 and (d) SYS4 

5.2.4 Superiority of GWO algorithm 

The statistical results presented in Tabs. 2, 4, 6 and 8 show that GWO outperforms many 

algorithms. The mathematical formulation of GWO, reveals that total generations is 

allotted to exploration and exploitation equally. This type of allocation promotes the 

exploration of the solution space which leads in determining the diverse solution space 

during algorithm process. Also, the parameter B which randomly forces the search agents 

to take random steps towards the optimum solution which is very helpful in resolving the 

local optima problem.  

These adaptive parameters which smoothly balance the solution space between the 

exploration and exploitation is the main reason for the success of GWO algorithm. In 

addition, in GWO in every generation the best  three solutions are saved which also guides 

the search agents to exploit the most promising regions of solution space. These are the 

reasons which assist the GWO algorithm to provide good exploration, exploitation, local 

optima avoidance and fast convergence simultaneously. These performances of GWO 

algorithm on the ELD problems with and without valve-point loading with or without all 

the constraints conveys that the GWO algorithm can be successfully applied to different 

types of practical power system optimization problems in future 

6  Conclusion 

This paper presents a novel GWO algorithm in solving non-convex and convex ELD 

problems. The effectiveness, feasibility and robustness of the GWO algorithm has been 
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investigated on six ELD problems including the system with 6, 15, 20 and 40 generating 

units. Tests were carried on systems with different kinds of constraints. The simulation 

results show that the proposed algorithm has succeeded in achieving minimum fuel cost 

and the statistical results were compared with recent results reported in the literature.  The 

success of GWO algorithm on the test system illustrates the efficiency and robustness of 

the GWO algorithm in solving ELD problems. In future, a study can be taken on dynamic 

ELD problems and the multi-objective ELD problems considering environmental impact 

and to implement the successful GWO algorithm to it. 
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