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Abstract: Monte Carlo Simulations (MCS), commonly used for reliability analysis, 

require a large amount of data points to obtain acceptable accuracy, even if the Subset 

Simulation with Importance Sampling (SS/IS) methods are used. The Second Order 

Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic 

analysis of laminated composite structures, when compared to the slower MCS techniques. 

However, SORM requires differentiating the performance function with respect to each of 

the random variables involved in the simulation. The most suitable approach to do this is 

to use a symbolic solver, which renders the simulations very slow, although still faster than 

MCS. Moreover, the inability to obtain the derivative of the performance function with 

respect to some parameters, such as ply thickness, limits the capabilities of the classical 

SORM. In this work, a Neural Network-Based Second Order Reliability Method 

(NNBSORM) is developed to replace the finite element algorithm in the stochastic analysis 

of laminated composite plates in free vibration. Because of the ability to obtain expressions 

for the first and second derivatives of the NN system outputs with respect to any of its 

inputs, such as material properties, ply thicknesses and orientation angles, the need for 

using a symbolic solver to calculate the derivatives of the performance function no longer 

exists. The proposed approach is accordingly much faster, and easily allows for the 

consideration of ply thickness uncertainty. The present analysis showed that dealing with 

ply thicknesses as random variables results in 37% increase in the laminate’s probability 

of failure.  

Keywords: Reliability analysis, artificial neural network, composite laminates, subset 

simulation, importance sampling, Monte Carlo. 

1 Introduction 

Composite materials are used extensively in primary and secondary aeronautical and 

aerospace structures, such as aircrafts, UAV, helicopters, missiles, space stations, etc. 

Mechanical vibrations cause more structural and mechanical failures than any other 
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individual phenomenon. In addition, vibration is often a source of physical discomfort due 

to vibration-induced noise. The factors affecting the dynamic behavior of composite 

laminates are their geometrical and material properties, i.e. material mechanical properties 

and density, stacking sequence, as well as ply thicknesses and orientation angles. However, 

these properties are always uncertain because of the statistical nature of the material 

properties of the constituents, and the inevitable fabrication inaccuracies in layup and 

curing. Hence all such material and geometrical properties should be treated as random 

variables, and their uncertainty can be quantified either experimentally or computationally. 

In addition, computer simulations of some configurations of the aforementioned 

aeronautical and aerospace installations often show closely packed/ overlapping natural 

frequencies of some of their components. In such cases, even a slight shift in the 

characteristics of any of its components can have a pronounced effect on the response of 

the structure as a whole. For proper control of the dynamic behavior of a laminate, and to 

accurately predict its failure probability, the sensitivity of the laminate behavior to the 

uncertainty of each of its random variables needs to be investigated using a numerical 

procedure.  

Chiachico et al. [Chiachico, Chiachico and Rus (2012)] presented a review on the reliability 

analyses of composite laminates. Reliability analysis of composite laminates under static 

loads or in free vibration have been performed using different methods. For example, Oh 

et al. [Oh and Librescu (1997)] developed a mean-centered second-moment method to 

study the free vibration and reliability of composite cantilevers. Salim et al. [Salim, Yadav 

and Iyengar (1992, 1993); Salim (1995)] employed a First-Order Perturbation Technique 

(FOPT) to perform static analysis of composite plates using classical laminated plate theory 

with random material properties. Haldar et al. [Haldar and Mahadevan (2000)] proposed a 

stochastic finite element method (SFEM) for the analysis of composite plates. Gosling et 

al. [Gosling, Faimun and Polit (2014)] used the First-Order Reliability Method (FORM) to 

study shear deformable laminated composite plates. Monte Carlo Simulations (MCS) are 

commonly used for reliability analyses, but they require a large amount of data points, and 

accordingly large computational time, to obtain acceptable accuracy, even if the Subset 

Simulation (SS) with Importance Sampling (IS) methods are used. Reliability analysis of 

composite plates under free vibration was performed using SFEM by Shaker et al. [Shaker, 

Abdelrahman, Tawfik et al. (2008)] using the FORM and the Second-Order Reliability 

Method (SORM). The basic random variables included only laminae stiffness properties, 

material density, as well as uncertainty in ply orientation angles, but uncertainty in ply 

thickness was not considered. SORM proved to be an excellent rapid tool in the stochastic 

analysis of freely vibrating composite plates, when compared to the slower MCS technique. 

However, SORM requires the derivatives of the performance function with respect to all 

random variables involved in the simulation, and the most suitable approach to do this is 

to use a symbolic solver. This renders the simulations very slow, although still faster than 

MCS [Shaker, Abdelrahman, Tawfik et al. (2008)]. Also, getting the derivative of the 

performance function with respect to the ply thickness symbolically was impossible, 

limiting the capability of the method. Zhang et al. [Zhang, Zhang, Wang et al. (2016)] 

recently showed the importance of considering the ply thickness uncertainty in the 

reliability analysis of fiber-reinforced composites under static uniaxial and multiaxial loads.  
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Artificial Neural Networks (ANN) have been successfully employed in the structural 

reliability analysis and optimization studies [Chapman and Crossland (1995); Papadrakakis, 

Papadopoulos and Lagaros (1996); Papadrakakis, Lagaros and Tsompanakis (1998); 

Hurtado (2002, 2004); Deng, Gu, Li et al. (2004); Schueremans and Gemert (2005); Nazari, 

Abolbashari and Hosseini (2015)]. In their review on reliability analyses of composites, 

Chiachico et al. [Chiachico, Chiachico and Rus (2012)] specified that integrating ANN and 

Genetic Algorithms (GA) to the reliability analysis of large composite structures may 

drastically reduce the computational cost and provide sufficient accuracy for small 

probabilities cases. The approach of combining ANN with the classical reliability methods 

such as FORM, SORM, and MCS method is called “Neural Network-based Reliability” 

(NNBR) method. Gomes et al. [Gomes and Awruch (2004)] compared ANN with other 

methods used for reliability analysis and showed that a significant reduction in 

computational time is achieved when ANN is used. Hurtado et al. [Hurtado and Alvarez 

(2001)] presented a comparison between Multi-layer Perceptrons (MLP) and Radial Basis 

Functions (RBF) neural network architectures in replacing FEM in probabilistic analysis 

of structures. Hosni et al. [Hosni, Mesbahi and Pu (2006)] and Lopes et al. [Lopes, Gomes 

and Awruch (2010)] substituted FEM by a trained neural network to perform reliability 

analysis of composite plates under static loads, while Apalak et al. [Apalak, Yildirim and 

Ekici (2008)] substituted FEM by a trained ANN to reduce the searching time of the 

optimal lay-up sequence of a composite plate.  

The present paper focuses on expanding the stochastic analysis of laminated composite 

plates in free vibration beyond its current limitation by considering ply thickness 

uncertainty and improving the computational time. A Neural Network-based Second Order 

Reliability Method (NNBSORM) is developed for the stochastic analysis of laminated 

composite plates in free vibration. Multi-Layer Perceptrons (MLP) neural network 

architecture is used, but the approach can still be extended to the Radial Basis Functions 

(RBF) neural network architectures which will be the subject of a future work. Because of 

the ability to obtain expressions for the first and second derivatives of the outputs of the 

ANN system with respect to any of its inputs, the need for using symbolic solvers no longer 

exists, rendering the proposed approach much faster. Moreover, the proposed method can 

easily handle the ply thickness uncertainty. In training the ANN, nine-noded rectangular 

plate element with seven degrees of freedom per node, based on third order shear 

deformation theory (TSDT), is used to model the composite laminate [Shankara and 

Iyengar (1996); Singh, Yadav and Iyengar (2002)]. The results show large reduction in 

computational time compared to published results based on stochastic finite element 

method (SFEM). The work can be extended to cover the optimization of composite 

laminates using any efficient optimization algorithm such as those presented by Santos et 

al. [Santos, Matiolo and Beck (2012)].  

The paper is organized as follows: Section 2 presents the finite element model of the 

vibrating laminated composite plate that is used to train the ANN, Section 3 introduces the 

ANN based on Multi-Layer Perceptron (MLP) network architecture, and the approximate 

expressions of the performance function derivatives. FORM and SORM are presented in 

Section 4. Numerical examples are provided in Section 5 to demonstrate the efficiency of 

the proposed technique, and final conclusions are summarized in Section 6. 
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2 Finite element model used for training the ANN 

Consider a rectangular plate with Cartesian coordinate system. The origin of the Cartesian 

coordinates is located at a corner of the plate mid-plane, with the x and y axes along the 

plate edges and z axis perpendicular to its mid-plane. The plate dimensions are taken as 

length a along x, width b along y and thickness h along z direction as shown in Fig. 1 (left).  

 

Figure 1: (left) laminated plate with Cartesian coordinate system, (right) 9-noded element 

with element local non-dimensional coordinates 

The displacement fields are taken as 
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where t is time, , ,and u v w are the x-, y- and z-displacements of a point away from the 

middle surface whereas uo, vo and wo are the x-, y- and z-displacements of a point on the 

middle surface, respectively. (ϕx, ϕy), (φx, φy), and (ψx, ψy) are functions to be determined.  

The stresses in each ply are related to the strains through the reduced stiffness matrix Q  

as 
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where ijQ  (i,j =1,2,4,5,6) are given in Appendix A. Imposing vanishing shear stress 

boundary condition on the top and bottom faces of the laminate,  

( , , , ) 0; ( , , , ) 0
2 2

    yzxz
h h

x y t x y t ,              (3) 

the displacement fields can be expressed as [Shankara and Iyengar (1996)] 
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Using such displacement fields requires employing an element with C1 continuity. 

Realizing the computational difficulties associated with C1 continuity elements, the 

derivatives of the out-of-plane displacement are themselves considered as separate 

independent degrees of freedom (DOFs). Thus, the 3 DOFs per node with C1 continuity 

element are transformed into 7 DOFs per node with C0 continuity element [Reddy and 

Robbins (1994)].  

The displacement vector is defined as 
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whereas the mechanical displacement vector u  can be expressed as 
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The strain vector is defined as 
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This can be written in terms of the displacement vector as 
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In an iso-parametric element, shape functions ( , )iN   ; i = 1-9 (for 9-noded element as 

shown in Fig. 1 (right)), are used to express the position and the displacement vectors in 

each element in terms of the nodal coordinates and the degrees of freedom respectively as 
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The strain vector can then be expressed in terms of the element nodal degrees of freedom 

as 

e eε GNq = Βq ,              (12) 

where x   and y   in the G  operator are expressed first in terms of    and    

using the inverse of the Jacobian matrix J 
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The elastic strain energy of a laminated composite plate with NL laminae is the summation 

of the elastic strain energy of its individual elements discretizing the plate domain 
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The kinetic energy in bending of a vibrating plate within the domain of small displacement 

is 
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where eM  is the elemental mass matrix and is given by 
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After assembly, the elastic strain and kinetic energies can be represented in global form as 

   ; T TU Tq Kq q Mq ,                                                          (19) 

where K is the global stiffness matrix, M is the global mass matrix, and q  is the global 

displacement vector. Using variational principles, the governing equations for the free 

vibration of the system can be derived as 

    Kq Mq 0 .                               (20) 

Assuming that the system vibrates in its principal mode, Eq. (20) can be expressed as 

( - ) =K M q 0 ,                                             (21) 

where 2   and   is the natural frequency of vibration in rad/sec. If M is a positive 

definite matrix, it is always possible to transform Eq. (21) into a standard eigenvalue 

problem in the form 

1;  Sq q S M K .                               (22) 

3 Artificial neural network based on Multi-Layer Perceptron (MLP) architecture 

A schematic of a multilayer neural network (NN) is shown in Fig. 2. Each element of the 

input vector p is connected to each neuron input through a column of the weight matrix W. 

The ith neuron has a summer that gathers its weighted inputs and bias to form its own scalar 

output in . The various in  taken together form an S-element net input vector n. The neuron 

layer outputs form a column vector a. Each layer has its own weight matrix W, its own 

bias vector b, a net input vector n and an output vector a. The NN architecture shown in 

Fig. 2 has an output layer (layer 3) and two hidden layers (layers 1 and 2) and is denoted 

as .1 2 3S S S   
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Figure 2: Multi-Layer Perceptron network 

The output of one layer becomes the input to the next layer, 
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The neurons in the first layer receive external inputs, which provides the starting point for 

Eq. (23), and the outputs of the neurons in the last layer are considered the network outputs, 

;  o M
a p a a .               (25) 

For our case, the inputs to the ANN system are all the variables involved in the dynamic 

analysis of the laminated composite plate, which could include the material properties of 

the plies ( 11E , 22E , 12G , 13G , 23G , 12  and  ), ply fiber-orientation angles ( i , i=1-NL) 

and ply thicknesses ( it , i=1-NL). We have only one output which is the fundamental natural 

frequency. 

The standard back-propagation algorithm, presented by Hagan et al. [Hagan, Demuth and 

Beale (1996)], is used to adjust the different weights as well as the biases of the neural 

network. The back-propagation algorithm is a generalization of the Least Mean Square 

(LMS) algorithm. The LMS algorithm adjusts the weights and biases in order to minimize 

the mean square error performance index, where the error is the difference between the 

target output T and the network output a. 
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where P  is the vector of network weights and biases. 

3.1 Approximating function derivatives 

Expressions for the first- and second-order derivatives were proposed in Deng et al. [Deng, 

Gu, Li et al. (2004); Breitung (1984)] considering only a single output for the ANN 

architecture. In the following two subsections, we present general expressions for the first- 

and second-order derivatives of any output of the ANN with respect to any input of any 

layer, not necessarily the input layer. 

3.1.1 First-order output derivatives 

First-order output derivatives are computed by applying a simple backward chaining partial 

differentiation rule. First, the derivatives of the NN outputs (outputs of the output layer M) 

with respect to the inputs of the same layer are calculated. Backward chaining is then 

employed to calculate the derivatives of the NN outputs with respect to its inputs. This is 

done as follows: 

(i) For layer M: 
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where is the kth output of the output layer M. 
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where 1: mi S , and mS  is the number of neurons in layer m. 

(iii) For the input layer: 
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where i is the input index, 1:i R , and l is the neuron index of the 1st layer, 
 11:l S , and 

pi is the ith input to the input layer. 

3.1.2 Second-order output derivatives 

The second-order partial derivatives of the network outputs, with respect to the inputs, are 

calculated using a backward chaining rule similar to that used for the first-order derivatives 

in previous section. 

(i) For the neurons in layer M by substituting from Eq. (27): 
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(ii) For a hidden layer m (m ═ M - 2, …, 2, 1): 
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where 
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Substitute this expression into Eq. (31), we have 
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(iii) For the input layer: 
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Higher-order derivatives may be obtained in a similar fashion; however, the first- and 

second-order derivatives are the most commonly used for many practical applications. 

4 Reliability models for the composite laminate 

The first step in studying the variation of the fundamental frequency of a composite plate, 

P , due to uncertainties in its geometric and material properties is to define a suitable and 

specific performance function. A composite plate is subjected to a harmonic load of 

frequency L , which can take any value up to P . In probabilistic design, P  is not a 

unique value, but is regarded as a random variable which has a certain distribution 

quantified by its mean and standard deviation. At the design point, the plate fundamental 

frequency P , is equal to a certain specified value r . To ensure a safe design, the value 
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of r  should be lower than the plate natural frequency P . Accordingly, a suitable 

performance function is defined as 

( ) 1
p

r

g




 
   
 

X ,              (35) 

where 2   are the plate eigenvalues, and X is a vector of basic random variables, given 

by 

11 22 12 13 23 12 1 2 1 2[ ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ]
L LN NE E G G G t t t    X .       (36) 

A failure surface or a limit state of interest can then be defined as g(X) = 0, with the 

probability of failure calculated as 

 

 

1 2 1 2

  0

( ,. ,.. , )



   f X n n

g

P f x x x dx dx dx

X

,                       (37) 

where 1 2( , , , )X nf x x x , is the joint probability density function (JPDF) for the n basic 

random variables, where n = 7+2NL. The integration is performed over the failure region 

g(X) <0. 

There are several methods to calculate Pf. Here we shall use two types of analytical 

approximations that lead to two methods; the First-Order Reliability Method (FORM), and 

the Second-Order Reliability Method (SORM). Both methods will be used to predict the 

probability of failure and the Most Probable Point (MPP) of the system. A detailed 

description of both methods can be found in [Haldar and Mahadevan (2000); Shaker, 

Abdelrahman, Tawfik et al. (2008)] and will be summarized here. 

In FORM and SORM, the partial derivatives of the performance function g(X) with respect 

to each random variable Xi, i=1, 2,…, n are required. These can be expressed as 

1
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Therefore, the partial derivatives of the fundamental eigenvalue p  with respect to the 

problem basic variables Xi are required. These derivatives can be easily obtained from 

trained neural network as expressed in the previous section. 

 

4.1 First-Order Reliability Method (FORM Method-2) 

It is applicable to normal random variables. It first defines the reduced variables as 

, 1,2,3 ,
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where X are random variables with zero mean and unit standard deviation. X coordinate 

system is referred to as the original coordinate system, while X  is referred to as the 

transformed or reduced one; in which the transformed limit state equation is g( ) 0. X

The reliability (safety) index β is defined as the minimum distance from the origin of the 

axes in the reduced coordinate system to the limit state surface (failure surface, Fig. 3 (left)). 

It can be expressed as 

( ) ( )T   x x
* *

.              (41) 

 

 

Figure 3: (left) The reliability index, (right) FORM for nonlinear performance function 

The minimum distance point on the limit state surface is called the checking point, design 

point, or Most Probable Point (MPP). It is denoted by the vector x
*

 in the original 

coordinate system and by x
*

 in the reduced one. 

For a nonlinear performance function, the gradient varies from point to point. The MPP 

has to be searched through the recursive formula given by Shaker et al. [Shaker, 

Abdelrahman, Tawfik et al. (2008)] 
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x x x x x

x

.          (42) 

This formula can be geometrically interpreted from Fig. 3 (right). At each iteration point, 

the performance function is approximated by the tangent at this point, that is, the 

performance function is linearized with * *( ) and ( ). k kg gx x
 

The algorithm is repeated until convergence, satisfying the following two criteria 

 * * *
1 1; g      k k kx x x ,                                                                                      (43) 

where δ and ε are reasonably small numbers [Shaker, Abdelrahman, Tawfik et al. (2008)]. 

4.2 Second-Order Reliability Method (SORM) 

A limit state function could be nonlinear either due to nonlinear relationship between 

random variables in the limit state equation or due to some variables being non-normal 
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[Kaminski and Szafran (2015)]. A linear limit state in the original space becomes nonlinear 

when transformed to the standard normal space if any of the variables is non-normal. 

FORM methods use a first order Taylor series to approximate the limit state equation, 

ignoring its curvature, Fig. 4 (left). The SORM method improves the FORM results by 

including additional information about the curvature of the limit state equation using the 

second-order derivatives with respect to the basic random variables. Taylor series 

expansion of a general nonlinear function g(X) at the value (x1
*, x2

*, …, xn
*) is 

* * * *
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Figure 4: Reliability Index for nonlinear performance functions (left), Rotation of coordinates 

(right) 

A simple closed-form solution for the computation of the probability of failure using 

second-order approximation is derived using the theory of asymptotic approximations 

[Breitung (1984)] as 

1
1/2
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Φ( )  (1   )
S

n
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P   
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



   .             (45) 

where β is the reliability index using FORM method, and κi denotes the principal curvatures 

of the limit state at the minimum distance point. Φ  is the cumulative distribution function 

of a standard Gaussian distribution with zero mean and unit standard deviation. 

Let Xi denotes a random variable in the original space, and Yi denotes the same random 

variable in the uncorrelated standard normal space. The Yi variable is rotated to another 

variable, denoted by Yi′, such that the Yi′ variable coincides with the vector α, the unit 

gradient vector of the limit state at the design point. This is shown in Fig. 4 (right) for two 

random variables. 

The transformation from Y to Y′ is an orthogonal transformation 

Y = RY ,               (46) 
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where R is the rotation matrix, computed as follow 

(i) For two random variables: 

( ) ( )

( ) ( )

cos sin

sin cos

 

 

 
  

 
R ,             (47) 

where θ is the rotation angle as shown in Fig. 4 (right). 

(ii) For more than two random variables, R is computed in two steps: 

(a) Construct the matrix R0 as follow: 
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...

...

...
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 
 

R ,             (48) 

where α1, α2, …, αn are the components of the unit gradient vector α at the design point. 

(b) Apply a Gram-Schmidt orthogonalization procedure [Haldar and Mahadevan 

(2000)] to R0 whose rows are r01, r02, …, r0n, to get the matrix R whose rows are 

r1, r2, ..., rn. This procedure may be written as follows. The nth row of R is simply 

rn ═ r0n, the other rows of R are computed in a backward order using the formula: 

0
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.              (49) 

Once the R matrix is obtained, a matrix A, whose elements are denoted by ijA  is computed 

as 

 
*

, , 1,2, , 1
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   


t

ij
ijA i j n

G y

RdR

,             (50)  

where d is the n×n second-derivative matrix of the limit state surface in the standard normal 

space evaluated at the design point and 
*( )G y is the length of the gradient vector in the 

standard normal space. 

In the rotated space the last variable Yn′ coincides with the β-vector computed in FORM; 

thus, the last column and last row in the A matrix and the last row in the Y′ vector are 

dropped to take this factor into account. The limit state can be rewritten in terms of a 

second-order approximation in the rotated Y′ space as 

1
 

2

t
n    Y y A y  ,               (51)  

where A is now of the size ( 1) ( 1)n n   . Finally, the main curvatures κi are computed as 

the eigenvalues of the matrix A. 
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4.3 Monte Carlo Simulation (MCS) with Subset Simulation/Importance Sampling 

Method (SS/IS) 

Monte Carlo simulation (MCS) techniques involve ‘sampling’ at ‘random’ to simulate 

artificially large number of experiments and to observe the results. The generation of 

random values for a random variable according to a specific distribution is the heart of 

Monte Carlo simulation. Solving the problem N times deterministically will give N sample 

points which can be used to calculate the entire sample statistics required: the frequency 

diagram, the PDF, the CDF, the corresponding parameters, and to evaluate the risk or 

reliability of an engineering system. The accuracy of the simulation increases as N 

increases. Plotting the estimated Pf and its corresponding variance show that these 

measures are reduced as the number of samples is increased and that a degree of stability 

is reached at a sufficiently high number of sample points. To overcome the inefficiency of 

the direct MCS, numerous variants of MCS (importance sampling, subset simulation) have 

been developed in the last two decades especially for the efficient solution of reliability 

problems where the calculation of small failure probabilities requires a very large sample 

size. Subset Simulation (SS) has been proposed in Au et al. [Au and Beck (2001); Song, 

Lu and Qiao (2009)]. It is a powerful tool, simple to implement and capable of solving a 

broad range of reliability problems. The basic idea of SS is to express the failure probability 

Pf as a product of larger conditional probabilities by introducing a decreasing sequence of 

intermediate failure events (subsets). The problem of simulating rare events in the original 

probability space is thus replaced by a sequence of simulations of more frequent events in 

the conditional probability spaces. Importance Sampling (IS) method is an efficient method 

for estimating conditional failure probability [Song, Lu and Qiao (2009)]. The choice of 

the intermediate failure events Fi (i ═1, 2,…, m-1) plays a key role in the SS procedure. 

The more the simulation levels m is introduced, the larger the conditional failure 

probabilities, and smaller the sample size that estimations require. Then, the total sample 

size 
1

m

i
i

N N


   is large in the whole procedure. Conversely, if m is reduced, the conditional 

failure events become rare to obtain. Consequently, to have an accurate estimate of the 

conditional failure probabilities in each simulation level a larger sample size is required. It 

can be seen that the choice of the intermediate failure events is a compromise between Ni 

(the sample size required in each simulation level) and m (the number of simulation levels). 

5 Numerical examples 

MATLAB code was created to build a sample set, of size m, using the FEM model 

considering uncertainty of material properties, ply orientations and thicknesses. The 

sample set that includes the inputs (material properties, ply orientations and thicknesses) 

and the single target output (laminate fundamental natural frequency) is then used to train, 

validate and test the ANN, and obtain the corresponding weights and biases. This trained 

ANN is then used to calculate the safety index (β) and probability of failure (Pf) using 

FORM, SORM or MCS. Fig. 5 presents a schematic of the main files of the developed 

MATLAB code. 

 



 

 

 

 
120  Copyright © 2018 Tech Science Press             CMES, vol.115, no.1, pp.105-129, 2018 

 

Figure 5: Schematic of the developed MATLAB code 

In all the examples presented in this section a square SSSS laminate of dimensions 

1a b  m, composed of four plies, with / 10a h   is considered. Twenty-five (5×5) 9-

noded elements are used in the FEM model, resulting in 121 nodes and 847 degrees of 

freedom. Unfortunately, there are no available established criteria for the selection of the 

MLP ANN architecture, and an educated guess based on the problem in hand is usually 

used to determine the best architecture [Lopes, Gomes and Awruch (2010)]. In all 

simulations, we used three layers of neurons, where the first layer has a number of neurons 

equal to the number of random variables, and the third layer has one neuron corresponding 

to the single output, whereas the middle layer has x neurons, where x is selected based on 

an educated guess in the range 0.6 n<x<1.4 n. Hence the architecture is: [n, x, 1]. Log-

sigmoid activation function was used in all the ANN layers except for the output layer 

where a linear activation function is used. All computations were done on a PC computer 

equipped with Intel Core i7, 3.4 GHz CPU, and 8 GB RAM, with a 64-bit WINDOWS10 

operating system. The mean values and standard deviation of the basic random variables 

(mechanical properties in GPa, material density in Kg/m3, ply orientation angles in degree, 

and ply thickness in m) used in subsections 5.2 to 5.4 are shown in Tab. 1 [Singh, Yadav 

and Iyengar (2002); Shaker, Abdelrahman, Tawfik et al. (2008)]. The most used values of 

r p   is 0.97, so this value is used all over this study. 

Table 1: Statistical distribution of the basic random variables 

Property E11 E22 G12 G23 G13 υ12 ρ Δθ t 

Mean 16.48 1.4 0.87 0.45 0.87 0.334 1000 0.00 0.025 

SD 0.61 0.05 0.052 0.014 0.052 0.01 36 01.8 0.001 

5.1 Code validation 

First we present a validation for the FE model used to train the ANN by considering a 

square laminate with SSSS boundary condition and a/h=10 in order to compare the results 

with those given in Singh et al. [Singh, Yadav and Iyengar (2001); Shaker, Abdelrahman, 
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Tawfik et al. (2008)]. The properties of the two materials used in Singh et al. [Singh, Yadav 

and Iyengar (2001)] are listed in Tab. 2. Tab. 3 and Tab. 4 show a comparison of the first 

five calculated non-dimensional natural frequencies, defined in Eq. (52), of a symmetric 

[0̊/90]̊s laminate of Material-1 and an anti-symmetric [0̊/90̊] laminate of Material-2. Two 

different mesh sizes are used and the results are compared with those presented in Singh et 

al. [Singh, Yadav and Iyengar (2001)]. It is clear from Tabs. 3 and 4 that a good agreement 

is obtained for the 2×2 mesh and an excellent agreement is obtained using the fine 5×5 

mesh. The maximum difference is only 1.351% in the fifth non-dimensional natural 

frequency in Tab. 3. This small difference is believed to be due to the use of the full 3×3 

integration rule in Singh et al. [Singh, Yadav and Iyengar (2001)]. The calculated values 

in Tab. 3 are identical to those reported in Shaker et al. [Shaker, Abdelrahman, Tawfik et 

al. (2008)]. 

2

22

a

h E

 
  .               (52)  

Table 2: Material properties used in the validation [Singh, Yadav and Iyengar (2001)] 

Material name E22 E11 G12 = G13 G23 υ12 ρ 

Material-1 10.3 GPa 25 E22 0.5 E22 0.2 E22 0.25 1 

Material-2 6.92 GPa 40 E22 0.6 E22 0.5 E22 0.25 1 

 

Table 3: Non-dimensional natural frequency   for a SSSS [0̊/90]̊S square plate made of 

Material-1 

[Singh, Yadav and 

Iyengar (2001)] 
Present Work 2×2 Present Work 5×5 % Δ5×5 

11.77252 11.9187 11.7364 -0.306 

21.83344 22.2978 21.8645 0.142 

27.37726 28.0998 27.3512 -0.095 

33.23205 34.4660 33.2477 0.047 

37.43603 44.4042 37.9417 1.351 

Table 4: Non-dimensional natural frequency   for a SSSS [0̊/90]̊S square plate made of 

Material-2 

[Singh, Yadav and 

Iyengar (2001)] 
Present Work 2×2 Present Work 5×5 % Δ5×5 

10.56565 10.8615 10.5589 -0.064 

26.30276 27.9129 26.2667 -0.137 

36.34791 38.4794 36.3033 -0.123 

48.7006 48.9898 48.8484 0.303 

55.14367 72.8828 55.2474 0.188 
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Now we present the validation for the ANN code by using a sample set of 1000 points with 

COV = 0.1 for material properties, density and ply orientation angles of a SSSS [0/̊45̊/-

45̊/90]̊ laminate, to train the ANN with [11,10,1] architecture. The ANN has been trained 

using 500 points, validated using 250 points and tested using 250 points. Training, 

validation and testing errors are plotted against the iteration number in Fig. 6. After 44 

iterations, the training error reached 3×10-6, validation error reached 2.7×10-5, and the 

testing error reached 2×10-5. The mean, median and maximum error percentages of the test 

sample are as follows: mean=0.1183, median=0.0984, maximum=0.5119. Validation of 

the reliability analysis code (NNBSORM) is presented in subsection 5.3. 

 

Figure 6: Training, validation and testing errors of the ANN. Case of SSSS [0̊/45̊/-45̊/90̊] 

laminate with [11,10,1] ANN architecture and 0.1 COV for material properties, density 

and ply orientation angles 

5.2 Effect of considering Ply thickness uncertainty 

One of the advantages of using the ANN to the reliability methods of analysis, such as 

FORM and SORM, is that it makes it possible to treat the ply thicknesses as random 

variables. This was impossible in previous attempt [Shaker, Abdelrahman, Tawfik et al. 

(2008)] where the reliability methods used the FEM model directly with the symbolic 

solver to differentiate the performance function with respect to all random variables. This 

is because it is impossible to explicitly express the derivatives of the D matrix (Eq. (15)) 

with respect to the thicknesses of the plies ti that are not explicitly present in the 

components of D; rather the definitions of these components have terms that are function 

of z raised to some power as given in Eq. (16): 
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The effects of the uncertainty of the material properties, density, ply orientation angles and 

thicknesses on the coefficient of variance (COV) of the fundamental natural frequency of 
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a [0̊/90]̊s and [0̊/45̊/-45̊/90]̊ laminates are presented in Fig. 7 and Fig. 8 respectively. The 

mean values of the material properties are listed in Tab. 1. One thousand randomly 

generated points were used to generate each of these two figures. It can be seen from the 

figures that the uncertainty of the ply thicknesses has a more significant effect on the 

fundamental natural frequencies than that due to the uncertainty of ply orientation angles. 

In symmetric laminates (Fig. 7), the error in calculating COV () by assuming deterministic 

ply angles is insignificant, but this error is significant if the ply thicknesses are assumed 

deterministic. In anti-symmetric laminates (Fig. 8), the error in calculating COV () by 

assuming deterministic ply angles and thicknesses is significant and larger than that for the 

case of symmetric laminates. Hence it is concluded that, in addition to the uncertainty of 

the ply orientation angles, the uncertainty of the ply thicknesses should always be 

considered in the stochastic and reliability analysis of laminated composites.  
 

 

Figure 7: Variation of COV () with simultaneous changes of the random variables for a 

SSSS [0o/90o]s square laminate 

 

Figure 8: Variation of COV () with simultaneous changes of the random variables for a 

SSSS [0 o/45 o/-45 o/90 o] square laminate 
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The first curve in Fig. 7 and Fig. 8 are almost identical to those presented in Singh et al. 

[Singh, Yadav and Iyengar (2001, 2002)], and the first three curves in these figures are 

almost identical to those presented in Shaker et al. [Shaker, Abdelrahman, Tawfik et al. 

(2008)]. This demonstrates once again the validity of our code. The upper two curves 

present for the first time the effect of ply thickness uncertainty on COV(λ) in addition to 

the uncertainty of the material properties and density of the plies, as well as the ply 

orientation angles in the uppermost curve. 

5.3 Reliability analysis of a square composite laminate with deterministic ply thickness 

In this example, the thicknesses of all plies are assumed deterministic in order to compare 

the results with published work [Shaker, Abdelrahman, Tawfik et al. (2008)]. The neural 

network architecture is [11,10,1] and 1000 points sample is used. Half of the sample points 

were used for training, quarter for validation, and quarter for testing. The mean error in λ 

obtained using the NN for this sample size was found to be 0.04%. The results using NNBR 

method are tabulated and compared with those obtained using SFEM [Shaker, 

Abdelrahman, Tawfik et al. (2008); Singh, Yadav and Iyengar (2002)] in Tab. 5 and Tab. 

6 for stacking sequence [0o/-45o/45o/90o]. The CPU time for SFEM with SORM [Shaker, 

Abdelrahman, Tawfik et al. (2008)] is reported as 2,484 sec which was very efficient 

compared to MCS that required 59,606 sec. The CPU time for the current model using 

NNBSORM is composed of the time (t1) required to generate the data points using FEM, 

the time (t2) required to train the ANN, and the time (t3) for calculating the MPP, β, and Pf. 

t1 depends on the sample size, and t2 depends on the ANN architecture used. For a big 

sample of 1000 points, t1 = 1,348 sec, and for a [11, 10, 1] NN architecture, t2 = 45 sec, and 

t3 = 0.05 sec. Hence the total time is 1,393 sec, which is only about 56% the CPU time 

required for SFEM. As the number of plies increases, the saving in the CPU time gets 

bigger, making NNBSORM a much more efficient approach.  

Table 5: MPP for SSSS [0/̊45̊/-45̊/90̊] square laminate with a/h = 10 for 0.97r p    

Random variables Present Work (SORM) 
SFEM [Shaker, Abdelrahman, 

Tawfik et al. (2008)] 

E11 16.099 16.305 

E22 1.398 1.3828 

G12 0.857 0.8399 

G23 0.4491 0.4496 

G13 0.867 0.8641 

υ12 0.3343 0.3337 

ρ 1034.8 1036.6 

θ1 0.2490 0.2580 

θ2 44.52620 44.5250 

θ3 -45.2040 -45.4800 

θ4 89.3180 90.2580 
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Table 6: Comparison of the safety index and probability of failure for SSSS [0/̊45/̊-45̊/90̊] 

square laminate with a/h = 10 for 0.97r p    

Method  β Pf 

FORM 

Present Work 1.3248 0.0926 

[Shaker, Abdelrahman, 

Tawfik et al. (2008)] 
1.3268 0.0923 

SORM 

Present Work 1.4187 0.0780 

[Shaker, Abdelrahman, 

Tawfik et al. (2008)] 
1.4102 0.0792 

Monte 

Carlo 

Present Work 1.4207 0.0777 

[Shaker, Abdelrahman, 

Tawfik et al. (2008)] 
1.4293 0.0765 

When the uncertainty in some variables is of a negligible effect on COV (λ), it is reasonable 

to ignore this uncertainty consider these variables deterministic. This will simplify the 

computation and makes it faster with almost no effect on the accuracy as was shown in the 

previous section for symmetric laminates. To verify this, the same laminate was analyzed 

considering the ply orientation angles (θ’s) as deterministic, and the results are shown in 

Tab. 7. By ignoring the uncertainty in the ply orientation angles, the ANN architecture is 

simpler, more efficient and requires a smaller sample size with almost no effect on the 

accuracy of the results.  

Table 7: Comparison between random and deterministic stacking sequences with 

different NN architectures in an SSSS [0̊/45/̊-45̊/90̊] laminated composite plate 

 
N.N. 

architecture 

CPU Time 

(sec) 

Sample 

size 

Mean Error 

in λ (%) 
Pf 

Random Stacking 

sequences 
[11,10,1] 45 1000 0.04064 0.0774 

Deterministic 

Stacking sequences 
[7,5,1] 3 500 0.02177 0.0766 

5.4 Reliability analysis of a square composite laminate with random Ply thickness 

As mentioned in subsection 5.2 there has been no detailed investigation for the uncertainty 

in ply thicknesses on the laminates’ failure probability. In Section 5.2, it was shown that 

the uncertainty of ply thickness has a significant effect on the value of COV (). In this 

example, we analyze a [0 o/45 o/-45 o/90 o] SSSS composite plate with uncertain material 

properties (E11, E22, G12, G13, G23, υ12, ρ), and geometric properties (θi, ti). A sample of 1000 

points was used for training the ANN, and the architecture used is [15, 20, 1]. The results 

using the proposed approach are tabulated in Tab. 8, showing more than 37% increase in 

the laminate probability of failure when ply thickness uncertainty is considered. This 

confirms the conclusion that was drawn previously that the uncertainty of the ply 

thicknesses should not be ignored in the reliability and optimization analyses of composite 

laminates. 
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Table 8: The probability of failure for SSSS [0°/45°/-45°/90°] square laminate with a/h=10 

for 0.97r p    

Present Work 
Thicknesses of all plies 

are deterministic 

Thicknesses of all plies are 

random 

FORM 0.0926 0.115 

SORM 0.0780 0.109 

Monte Carlo 0.0777 0.107 

6 Summary and conclusion 

This paper presents reliability analysis of freely-vibrating fiber-reinforced laminated 

composite plates taking into account the uncertainty of its material and geometric 

properties. The analysis was performed using a new method that combines the Second 

Order Reliability Method (SORM) with a trained artificial neural network (ANN). The use 

of ANN improves the efficiency of the simulations because the need for using symbolic 

solvers to differentiate the performance function with respect to the random variables was 

totally eliminated. Moreover, the utilization of the ANN allowed for the consideration of 

ply thicknesses uncertainty. The effect of ply thicknesses randomness, which was not 

considered in previous published works, was found to be pronounced and should not be 

ignored if an accurate reliability analyses of composite structures are to be done. 

Explicit expressions for the first and second derivatives of the ANN output (laminate 

fundamental natural frequency) with respect to any of the inputs (ply material and 

geometrical properties) are presented. The implementation of these expressions made the 

whole process to be numeric without any symbolic calculations. The finite element model 

is just used to train the ANN. 

Using the proposed NNBSORM, a significant saving in the computational time without 

loss in accuracy was achieved. The probability of failure Pf was calculated using the 

proposed methodology. The comparison between the results obtained and those given in 

published works has shown that more than 40% reduction in the computation time for the 

case of a laminate composed of four plies was achieved. The efficiency of the simulations 

is higher than that of the SFEM especially for problems containing a large number of 

random variables, as in the case of laminates with large number of plies. Future work will 

focus on utilizing the Radial Basis Functions ANN architecture in the formulation of the 

NNBSORM. 
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Appendix A. Expressions of ijQ  

 

11 1 2 3 22 1 2 3

12 4 3 66 1 4 3

16 2 3 26 2 3
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where the lamina invariants are: 

11 22 12 66 11 22
1 2

11 22 12 66 11 22 12 66
3 4

44 55 44 55
5 6

3 3 2 4
; ;

8 2

2 4 6 4
; ;

8 8

;
2 2

Q Q Q Q Q Q
U U

Q Q Q Q Q Q Q Q
U U

Q Q Q Q
U U

   
 

     
 

 
 

 

and 

11 22 12 22
11 22 12 44 23 55 13 66 12

12 21

;  ;  ;  ;  ;  

1

E E E
Q Q Q Q G Q G Q G

d d d

d



 

     

 

 

References 

Apalak, M. K.; Yildirim, M.; Ekici, R. (2008): Layer optimisation for maximum 

fundamental frequency of laminated composite plates for different edge conditions. 

Composites Science and Technology, vol. 68, no. 2, pp. 537-550. 

Au, S. K.; Beck, J. L. (2001): Estimation of small failure probabilities in high dimensions 

by subset simulation. Probabilistic Engineering Mechanics, vol. 16, no. 4, pp. 263-277. 

Breitung, K. (1984): Asymptotic approximations for multinormal integrals. ASCE Journal 

of Engineering Mechanics, vol. 110, pp. 357-366. 

Chapman O. J.; Crossland, A. D. (1995): Neural networks in probabilistic structural 

mechanics. In C. (Raj) Sundararajan, editor, Probabilistic Structural Mechanics Handbook, 

pp. 317-330. Chapman & Hall, New York, USA. 

Chiachio, M.; Chiachio, J.; Rus, G. (2012): Reliability in composites-a selective review 

and survey of current development. Composites: Part B, vol. 43, pp. 902-913. 

Deng, J.; Gu, D.; Li, X.; Yue, Z. (2004): Structural reliability analysis for implicit 

performance functions using artificial neural network. Structural Safety, vol. 26, pp. 123- 139. 

Gomes, H.; Awruch, A. M. (2004): Comparison of response surface and neural network 

with other methods for structural reliability analysis. Structural Safety, vol. 26, no. 1, pp. 

49- 67. 



 

 

 

 
128  Copyright © 2018 Tech Science Press             CMES, vol.115, no.1, pp.105-129, 2018 

Gosling, P. D.; Faimun, Polit, O. (2014): A high-fidelity first-order reliability analysis for 

shear deformable laminated composite plates. Composite Structures, vol. 115, pp. 12-28. 

Hagan, M. T.; Demuth, H. B.; Beale, M. H.; De Jesus, O. (2014): Neural Network 

Design. PWS, Oklahoma, USA. 

Haldar, A.; Mahadevan, S. (2000): Probability, reliability and statistical methods in 

engineering design. Wiley, New York, USA. 

Hosni Elhewy, A.; Mesbahi, E.; Pu, Y. (2006): Reliability analysis of structures using 

neural network method. Probabilistic Engineering Mechanics, vol. 21, no. 1, pp. 44-53. 

Hurtado, J. E. (2002): Analysis of one-dimensional stochastic finite elements using neural 

networks. Probabilistic Engineering Mechanics, vol. 17, pp. 35-44. 

Hurtado, J. E. (2004): Structural reliability. statistical learning perspectives. Springer, 

Heidelberg Springer-Verlag, Berlin Heidelberg, Germany. 

Hurtado, J. E.; Alvarez, D. A. (2001): Neural-network-based reliability analysis: A 

comparative study. Computer Methods in Applied Mechanics and Engineering, vol. 191, 

no. 1-2, pp. 113-132. 

Kaminski, M.; Szafran, J. (2015): Least squares stochastic finite element method in 

structural stability analysis of steel skeletal structures. Computer Modeling in Engineering 

& Sciences, vol. 107, no. 1, pp. 27-57. 

Lopes, P. A. M.; Gomes, H. M.; Awruch, A. M. (2010): Reliability analysis of laminated 

composite structures using finite elements and neural networks. Composite Structures, vol. 

92, no. 7, pp. 1603-1613. 

Nazari, F.; Abolbashari, M. H.; Hosseini, S. M. (2015): Three dimensional natural 

frequency analysis of sandwich plates with functionally graded core using Hybrid Meshless 

Local Petrov-Galerkin method and artificial neural network. Computer Modeling in 

Engineering and Sciences, vol. 105, no. 4, pp. 271-299. 

Oh, D. H.; Librescu, L. (1997): Free vibration and reliability of composite cantilevers 

featuring uncertain properties. Reliability Engineering & System Safety, vol. 56, pp. 265-272. 

Papadrakakis, M.; Papadopoulos, V.; Lagaros, N. D. (1996): Structural reliability 

analysis of elasticplastic structures using neural networks and Monte Carlo simulation. 

Computer Methods in Applied Mechanics and Engineering, vol. 136, pp. 145-163. 

Papadrakakis, M.; Lagaros, N. D.; Tsompanakis, Y. (1998): Structural optimization 

using evolution strategies and neural networks. Computer Methods in Applied Mechanics 

and Engineering, vol. 156, pp. 309-333. 

Reddy, J. N.; Robbins, D. H. (1994): Theories and computational models for composite 

laminates. Applied Mechanics Reviews, vol. 47, no. 6, pp. 147-169. 

Salim, S. (1995): Analysis of Composite Plates with Randomness in Material Properties 

(Ph.D. Thesis). Department of Aerospace Engineering, IIT Kanpur, India. 

Salim, S.; Yadav, D.; Iyengar, N. G. R. (1992): Deflection of composite plates with random 

material characteristics. Proceedings of Symposium on Recent Advances in Aerospace 

Science and Engineering Conference, vol. 1, Bangalore, New Delhi, pp. 236-239. 



 

 

 

 

Neural Network-Based Second Order Reliability Method (NNBSORM)                          129  

 

 

 

Salim, S.; Yadav, D.; Iyengar, N. G. R. (1993): Analysis of composite plates with random 

material characteristics. Mechanics Research Communications, vol. 20, no. 5, pp. 405-414. 

Santos, S. R.; Matioli, L. C.; Beck A. T. (2012): New optimization algorithms for 

structural reliability analysis. Computer Modeling in Engineering and Sciences, vol. 83, 

no. 1, pp. 23-55. 

Schueremans, L.; Gemert, D. V. (2005): Benefits of splines and neural networks in 

simulation based structural reliability analysis. Structural Safety, vol. 27, pp. 246-261. 

Shaker, A.; Abdelrahman, W. G.; Tawfik, M.; Sadek, E. (2008): Stochastic finite 

element analysis of the free vibration of laminated composite plates. Computational 

Mechanics, vol. 41, pp. 493-501. 

Shankara, C. A.; Iyengar N. G. R. (1996): A Co element for the free vibration analysis of 

laminated composite plates. Journal of Sound and Vibration, vol. 191, no. 5, pp. 721-738. 

Singh, B. N.; Yadav, D.; Iyengar N. G. R. (2001): Natural frequencies of composite 

plates with random material properties using higher order shear deformation theory. 

International Journal of Mechanical Sciences, vol. 43, pp. 2193-2214. 

Singh, B. N.; Yadav D.; Iyengar N. G. R. (2002): A Co element for free vibration of 

composite plates with uncertain material properties. Advanced Composite Materials, vol. 

11, no. 4, pp. 331-350. 

Song, S.; Lu, Z.; Qiao, H. (2009): Subset simulation for structural reliability sensitivity 

analysis. Reliability Engineering & System Safety, vol. 94, no. 2, pp. 658-665. 

Zhang, S.; Zhang, L.; Wang, Y.; Tao, J.; Chen, X. (2016): Effect of ply level thickness 

uncertainty on reliability of laminated composite panels, Journal of Reinforced Plastics 

and Composites, vol. 35, no. 19, 1387-1400. 

http://journals.sagepub.com/author/Zhang%2C+Li
http://journals.sagepub.com/author/Wang%2C+Yashun
http://journals.sagepub.com/author/Tao%2C+Junyong
http://journals.sagepub.com/author/Chen%2C+Xun

