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 The Reduced Space Method for Calculating the Periodic 

Solution of Nonlinear Systems 

Haitao Liao1, * 

Abstract: A hybrid method combined the reduced Sequential Quadratic Programming 

(SQP) method with the harmonic balance method has been developed to analyze the 

characteristics of mode localization and internal resonance of nonlinear bladed disks. With 

the aid of harmonic balance method, the nonlinear equality constraints for the constrained 

optimization problem are constructed. The reduced SQP method is then utilized to deal 

with the original constrained optimization problem. Applying the null space decomposition 

technique to the harmonic balance algebraic equations results in the vanishing of the 

nonlinear equality constraints and a simple optimization problem involving only upper and 

lower bound constraints on the optimization variables is formed and solved. Finally, 

numerical results are given for several test examples to validity the proposed method. The 

efficiency of the solution method to trace the family of energy dependent nonlinear modes 

is illustrated. The localization nonlinear normal modes of bladed disks related to various 

types of internal resonances are explored. 

KeyWords: Nonlinear normal modes, internal resonances, reduced SQP method, 

harmonic balance method.  

1 Introduction 

Systems encountered in practice generally exhibit some amount of nonlinear behavior. 

Nonlinearity introduces phenomena including amplitude dependant response frequencies, 

sub- and super- harmonic responses, and multiple stable responses to a given excitation 

[Nayfeh and Mook (1979); Neild, Champneys, Wagg et al. (2015); Dai, Wang and 

Schnoor (2017)]. Yet more complexity emerges when multiple Degrees of freedom (Dof) 

are present, because the superposition principle that greatly simplifies the decomposition 

of linear problems cannot hold for nonlinear systems. 

Common tools for performing dynamical analysis of elastic structures are the Nonlinear 

Normal Modes (NNMs) for free vibration problems and the nonlinear frequency response 

curve for forced vibration problems. NNMs can be regarded as the extension of the 

concept of linear normal modes to nonlinear systems. Rosenberg [Rosenberg (1959, 

1966)] first defined NNMs as certain synchronous oscillations exhibited by the 

conservative nonlinear equations of motion. Inspired by the center manifold technique, 

Shaw et al. [Shaw and Pierre (1991); Shaw (1994)] constructed the NNMs by introducing 

two dimensional invariant manifolds for both conservative and non-conservative system. 

Recently, periodic orbits of nonlinear dynamic systems are viewed as the nonlinear 
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normal modes, which give theoretical and mathematical tools for performing mode 

analysis of nonlinear structures. 

Many nonlinear continuous or multi-degree of freedom systems exhibit some particularly 

novel responses whenever one mode of free vibration has a natural frequency that 

approaches an integer ratio to that of another, a condition known as internal resonance. 

The internal resonances have strong energy dependence on the oscillation frequency of 

the corresponding NNMs.  

The nonlinear phenomena of modes coupling and internal resonances have been 

intensively investigated for nonlinear structures. For example, Nayfeh et al. [Nayfeh and 

Mook (1979)] conducted the research works of the analysis of nonlinear oscillators with 

modal interactions and multi-degree-of-freedom system with internal resonance. Using an 

L-shaped piezoelectric structure with quadratic nonlinearity, Cao et al. [Cao, Leadenham, 

Erturk (2015)] showed exploitation of its two-to-one internal resonance increased 

significant frequency bandwidth compared to its 2-DOF counterpart. Ghayesh et al. 

[Ghayesh (2011); Ghayesh, Kafiabad, Reid (2012)] discussed the internal resonances by 

using a numerical approach. Sze et al. [Sze, Chen and Huang (2005)] studied the sub- and 

super-harmonic resonance under the internal resonance condition of a translating strip by 

using the incremental harmonic balance method. Kerschen et al. [Kerschen, Peeters, 

Golinval et al. (2009); Peeters, Viguié, Sérandour et al. (2009) defined NNMs as the 

periodic motions of nonlinear systems and developed numerical iteration continuation 

techniques for NNMs. Goncalves et al. [ Gonçalves and Del Prado (2004)] studied the 

effect of non-linear modal interaction on the dynamic instability of cylindrical shells 

under axial loads. Hill et al. [Hill, Cammarano, Neild (2015)] applied the backbone curves 

to study internal resonance phenomena in systems of coupled nonlinear oscillators. Arvin et 

al. [Arvin and Bakhtiari-Nejad (2013)] investigated nonlinear modal interactions in rotating 

composite Timoshenko beams and considered the nonlinear coupling of transverse, shear 

and longitudinal motions. Amano et al. [Amano, Gotanda and Sugiura (2013)] analyzed 

internal resonances of a flexible rotor supported by a magnetic bearing. More detail on this 

topic can be referred to Renson et al. [Renson, Kerschen, Cochelin (2016)]. 

Identification of severe mode localization in the design process can help prevent failure 

due to High Cycle Fatigue (HCF) in periodic structures such as turbine blades. Many 

efforts have been devoted to the study of localization phenomena of bladed disks. For 

example, Chen et al. [Chen and Shen (2015)] provided useful mathematical insights into 

linear mode localization in nearly cyclic symmetric rotors with parameter uncertainty. 

However, this study deals with the mode localization of linear bladed disks. For nonlinear 

bladed disk, mode localization is unavoidable. By virtue of the continuation technique 

and the shooting method, Georgiades et al. [Georgiades, Peeters, Kerschen et al. (2009)] 

investigated the NNMs of periodic structure with cubic nonlinearity. Some of the recently 

works on the localization of nonlinear periodic structures can be found in Grolet et al. 

[Grolet, Hoffmann, Thouverez et al. (2016); Papangelo, Grolet, Salles et al. (2017)].  

There have been some studies on the literatures that propose gradient based optimization 

methodologies to solve nonlinear dynamic problems [Liao (2014); Coudeyras, Sinou and 

Nacivet (2009); Liao (2015)]. In an earlier work [Liao and Sun (2013)], a hybrid 

approach combining the harmonic balance method and Sequential Quadratic 
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Programming (SQP) method is employed to determine the worst resonance response of 

nonlinear systems. Under the nonlinear equality constraints which are constituted from 

the corresponding system of harmonic balance equations, the unknown Fourier 

coefficients and vibration frequency are optimized simultaneously. In Liao et al. [Liao 

(2015)] as a continuation of Liao et al. [Liao and Sun (2013)], the constrained 

optimization harmonic balance method is extended to solve the fractional order nonlinear 

systems and a general formulation for operational matrix of multiplication for polynomial 

nonlinearity is achieved.  

It is clear that considering the Fourier coefficients as optimization variables, the 

optimization problem would become much more difficult as the size of optimization 

problem grows. With respect to the large number of variables and constraints, the use of 

SQP method is very costly or even impossible, due to the fact that gathering second order 

information for the approximation of the Hessian matrix could be an insuperable task. In 

generally, the constrained optimization harmonic balance method is not suitable for 

solving large size optimization problems. Therefore, an adequate treatment of the large 

system of nonlinear equality constraints is required, which motivates the search for new 

approaches with considerably lower computational cost.  

The development of more realistic and efficient optimization technique has been the 

focus of extensive research efforts. The application of reduced SQP method to more 

general optimization problems is a viable way to tackle large scale optimization 

problems0. For typical nonlinear dynamics applications, the nonlinear optimization 

problem may have several thousand variables, but only relatively few degrees of freedom 

according to the number of control parameters. This makes the reduced SQP method a 

suitable candidate for solving large scale optimization problems. For example, a reduced 

Hessian method is developed in Biegler et al. [Biegler, Nocedal, Schmid et al. (2000); 

Biegler, Nocedal and Schmid (1995) for large scale constrained optimization problem. In  

Schulz et al. [Schulz and Book (1997)], the partially reduced SQP m0ethod is devoted to 

design the shape of turbine blades. Motivated by the above discussion, the reduced SQP 

method is exploited in this paper to solve the worst resonance response problem. To the 

best of author’s knowledge, there seems to be no contributions on the harmonic balance 

method considering the reduced SQP method. 

The rest of the paper is organized as follows: In Section 2, the nonlinear constrained 

optimization problem and its sensitivity gradients are formulated. The process of 

reducing the original nonlinear equality constraints optimization problem to the simple 

boundary constraints optimization problem is described in detail. Typical numerical 

simulations are implemented in Section 3 to validity the present method. In Section 4, 

nonlinear mode analysis of nonlinear cyclic structure is conducted via the proposed 

method. Finally, the paper is concluded in Section 5.  

2 The proposed method   

This section gives a formal statement of the reduced space harmonic balance method. 

With the nonlinear equality constraints derived from the harmonic balance method, the 

formulation and implementation of the reduced SQP method used for solving the 

nonlinear constrained optimization problem is presented. 
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2.1 System equation of motion 

The general equation of motion of nonlinear systems with n Dof is expressed as 

( ) ( )M D K , p
nl

t t+ + + =u u u f u                                          (1) 

where M, D and K represent the mass, damping and stiffness matrices, respectively. u ,

u  and u  are the displacement, velocity and acceleration of the structure and 

( ), ,
nl

tf u u  represents the vector of nonlinear effects in the system and p(t) is the vector 

of the external forces. 

2.2 Optimization problem formulation 

Based on the harmonic balance method, the unknown periodic displacement is expressed 

as a truncated Fourier series truncated at an order NH selected. 

H

0

( ) cos( ) sin( )U U

N

c s

k k

k

t kωt kωt
=

 = + u                                 (2)

where U
c

k
 and U

s

k
 are the cosine and sine coefficients of the kth harmonic, 

respectively.  

The substitution of Eq. (2) into Eq. (1) results in the following algebraic equation: 

(U, ) A( )U b(U, ) 0  = − =g                                           (3) 

where
H H0 1 1

b C C S C S C S
T

T T T T T T T

k k N N
 =  

corresponds to the Fourier 

coefficients of the nonlinear forcing term and the external force; A( )  and U are 

respectively defined by  

H H

22 2

H H

22 2

H H

0 1 1

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

K M DK M D K M D
A diag K, , , , ,

D K MD K M D K M
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T

T c T s T c T s T c T s T

k k N N

N ω N ωω ω kω kω

N ω N ωω ω kω kω

      −− −
=       − −− − − −      

 =  

 

 (4) 

In order to evaluate the term b(U, ) , the Alternate Frequency/Time(AFT) domain 

method is used. This method consists in evaluating the nonlinear forces in the time 

domain over a period and computes the discrete Fourier transform to obtain its influence 

in the frequency domain. This process is shown in the form of a flowchart in Eq. (5). 

( ) ( ) ( )
IFFT FFT

U , , b U
nl

t t ,  u f u u                                        (5) 

where FFT and IFFT represent the Fourier transform and its inverse operation, 

respectively. 

To improve the computational efficiency related to the Fourier transform operation, the 

following relationship can be utilized for the polynomial nonlinearity0 

   1( ) ( ) [ ( )]T E U U
l lu   −=                                              (6) 
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where

H
H H 1 1 2

( ) 1 cos( ) sin( ) cos( ) sin( ) cos( ) sin( )
( * )

T
N

k k N N      
 +

=     

with the non dimensional time ωt = ,

H H0 1 1
U U U U U U UU

T
c s c s c s

k k N N
 =   and ( )E U  is called 

operational matrix given as follows 
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Following the recursive procedure expressed in Eq. (6) the Fourier coefficients of the 

polynomial nonlinear terms are obtained analytically, leading to a significant reduction in 

computational time.   

Since the Fourier coefficients and vibration frequency are considered as optimization 

variables in the framework of the constrained optimization harmonic balance method 

[Liao and Sun (2013); Liao (2015)], the nonlinear equality constraints must be imposed 

in the optimization problem which can be stated as follows: 

min ( ) ( , )

( ) ( , ) ( ) ( , )
.

U

U A U b U 0

L U

f f

s t

=

= = − =


 

x x

g x g x x x

x x x

                           (8) 

where  ,= U
T

T T
x x .The vibration frequency and system parameters and/or 

uncertainty parameters can be included in x . ( )g x  represents the nonlinear equality 
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constraints. Inequality constraints 
Lx  and 

Ux  refer to lower bound and upper bound 

specifications.  

The iterative process of the gradient optimization algorithm requires the sensitivity 

analysis of the nonlinear optimization problem. Therefore, sensitivities (gradients) of the 

objective and constraint functions with respect to the optimization variables are required. 

For the AFT method , the term 
b

U




 in the Jacobian matrix of the nonlinear equality 

constraints takes the form 

( ) ( ) ( ) ( )( )1 1( ) ( )

( ) ( )

, , , ,b
E I E I E I E I

U

nl nl
τ τ

τ τ

− −    
=   +      

     

f u u f u u

u u  
 (9) 

where the corresponding matrices are given by 
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with
H H2 1

( 0,1,2, , )i2
i N

n 2N
+

= = .  

If the analytically expression in Eq. (6) is used for polynomial nonlinearity, the gradient 

of 
b

U




 is given in Eq. (14) of [Liao (2015)].  

The sensitivity of the nonlinear equality constraints with respect to x  can be derived 

easily. By incorporating these gradient formulas into a gradient based optimization 

method, the nonlinear programming problem can be solved. 

Tackling problem in Eq. (8) is quite challenging due to the relatively large number of 

variables and constraints. Therefore, further actions should be taken. In this work, the 

solution to the optimization problem stated in Eq. (8) is accomplished by using the 

reduced SQP algorithm. 

2.3 The reduced Sequential Quadratic Programming method for solving the 

constrained optimization problem 

A short introduction to the reduced SQP approach will be provided for completeness. The 

SQP method which is well-suited to solve the constrained optimization problem in Eq. 

(8) can be considered as extensions of quasi-Newton methods taking constraints into 

account. It solves Eq. (8) iteratively by improving the current iterate 
kx . An update 

kd  

is calculated by making a linear approximation of the constraints and a quadratic 

approximation of the gradient of the Lagrangian ( ) ( ) ( )L f= +x x λg x , where λ  is 

the Lagrangian multiplier. The quadratic programming subproblem can be described as:

 

 

1
( )

2

.
( )+ ( ) = 0

T T

k k k k k

T

k k k

L k k U

f

s t

 +

 


 + 

x d d H d

g x g x d

x x d x

                                      (15) 

in which 
kH  is the Hessian of the Lagrangian function. The symbol   is used to 

denote gradients with respect to the optimization variable x .  

For dynamic optimization problems, the dimension of state variables is generally much 

larger than that of control variables. In order to obtain a simpler optimization problem, 

the gradients of nonlinear equality constraints can be exploited to simplify the 

optimization problem in Eq. (15). According to the reduced SQP method, the tangent 

space of the nonlinear equality constraints is divided into range space and null space. The 

search direction 
kd  is decomposed in a range space solution 

k

Y
d  and a nullspace 

solution 
k

Z
d . 

It is clear that the success of decomposition methods relies on a wise choice of the 

reduced basis. Three techniques have been developed to build the reduced basis. The use 

of orthonormal basis for the space decomposition is first investigated. However, this 

decomposition scheme involves expensive QR factorization. To avoid the expensive 
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computational cost for QR factorization, alternative numerical techniques such as orthogonal 

basis and coordinate basis methods have been proposed. Orthogonal basis and coordinate 

basis methods rely upon the gradients of nonlinear equality constraints in Eq. (15).  

On the basis of the null space technique, 
k

d  is represented with the combination of the 

range space solution 
k

Y
d  and the null space solution 

k

Z
d : 

k k k k k
= +Y Z

d Y d Z d                                                     (16) 

where 
k

Y  consists of the range space basis matrix while 
k

Z  is related to the null space 

basis matrix. The matrix 
k

Z  satisfies the relationship ( ) 0
k

T

k
 =  g x Z . 

The reduced SQP method relies on the matrices 
kY  and 

kZ  such that [
kY ;

kZ ] is 

square and full rank. The derivatives of the nonlinear equality constraint define the null 

space and the range space related matrices. For the decomposition method related to the 

orthogonal basis, the most popular choice of 
kY and 

kZ  is built as 

 
  

1

1
( ) ( )

,
( ) ( )

U

U

I

I

N M
k k

Tk k T

k kM

− −

−

     = = 
 −      

x

x

g x g x
Y Z

g x g x
            (17) 

where N is the number of optimization variables and M represents the size of the 

nonlinear equality constraints. 

In the case of the coordinate basis decomposition method, the basis matrix 
kZ  in the null 

space is the same as in Eq. (17) while the basis matrix in the range space is replaced by 

0

I
k

M

 
=  
 

Y                                                            (18) 

Given the particular selection of 
kY  and 

kZ  in Eq. (16), the range space solution for 

Eq. (15) is determined by   
1

( ) ( )
T

k k k k

−

= − Y
d g x Y g x . Note that the invertibility of 

 ( )
T

k kg x Y  follows from the non-singularity of the Jacobian matrix of harmonic 

balance equations, which is a required condition for the construction of 
kZ  and the 

solution of k

Y
d . For some occasions, the Jacobian matrix may become singular. However, 

the application of the reduction techniques requires the Jacobian to be non-singular. To 

overcome this drawback, the basis change is adopted in this paper. The reader may 

consult  [Biegler, Nocedal, Schmid (2000); Biegler, Nocedal and Schmid (1995)] for a 

detailed discussion about the basis change. 

By inserting Eq. (16) into Eq. (15) and utilizing the coordinate basis decomposition 

scheme with the property ( ) = 0
T

k kg x Z , the following reduced space optimization 

problem is resulted: 
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( ) ( )
1 1

min ( )
2 2

.

T
T T T

k k k k k k k k k k k k

L k k k k k U

f

s t

 
 + + 

 

 + + 

Y Z Z Z

Y Z

Z x Z H Y d d d Z H Z d

x x Y d Z d x

             (19) 

Obviously, the nonlinear equality constraints are eliminated in Eq. (19). The original N 

dimensional quadratic subproblem in Eq. (15) has been replaced by a N-M dimensional 

quadratic subproblem expressed in Eq. (19). It is very beneficial to the reduction of the 

computational complexity and the improvement of calculation efficiency. 

To accomplish the optimization iteration in accordance with Eq. (19), the cross term 
T

k k k k

Y
Z H Y d  and the reduced Hessian matrix are needed. It should be noted that the 

calculation of 
T

k k k k

Y
Z H Y d  incurs a substantial computational burden. In order to avoid 

the need to compute the cross term 
T

k k k k

Y
Z H Y d at every iteration, 

T

k kZ H  is replaced 

by an approximation matrix 
kΒ and the vector 

k k k k= Y
w Β Y d  is calculated. For every 

iteration, the approximation matrix 
T

k kZ H  is updated with the expression proposed by 

Broyden: 

( )
1

T

k k k k

k k T

k k

+

−
= +

y Β s s
Β Β

s s
                                             (20) 

where the vectors 
ky  and 

ks  are given by  1 1 1( , ) ( , )T

k k k k k kL L+ + + −y = Z x λ x λ

1, k k k+= −s x x . 

The BFGS algorithm which can iteratively calculate a better approximation to update the 

reduced Hessian matrix is adopted as follows 

1k k k+=y H s                                                          (21) 

with  1 1 1( , ) ( , )T

k k k k k k kL L+ + + − −y = Z x λ x λ w ,
k k k= Z

s d  where 

1k k k k k += Y
w B Y d . 

Based on the calculated cross term and reduced Hessian matrix, Eq. (19) can be solved 

for k

Z
d  and thus 

kd  can be obtained. Finally, the update 
k

d  is assessed by a 

globalization strategy which enforces convergence to the optimization solution regardless 

of the quality of the initial solution guess.  

A line-search of the globalization strategy is performed to find a new iterate 

1
+

k+ k k k
α=x x d  with 

k
α  being the step length which provides a sufficient decrease of 

the merit function 

1
( ) ( ) ( )f = +x x g x                                                (22)  

where the penalty coefficient   is chosen large enough to ensure that 
k

d  is a descent 

direction for ( ) x  
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By virtue of a one dimensional optimization technique, the step length 
k
α  is iteratively 

determined based on a sufficient decrease condition, i.e. the so-called Armijo condition 

[Wright and Nocedal (1999, 2006a)]: 

( + ) ( ) 0 1 D ( ; ).
k k kk k k k k k k

α α     +x d x x d                                (23) 

where D ( ; )
k k k x d  represents the directional derivative for the merit function. For the 

direction 
k

d , the directional derivative is given by 

1
D ( ; ) ( ) ( )( )

k k k k k k k k k k
f =  + −Y Z

x d x Y d Z d g x   (24) 

Additional details of the reduced SQP technique can be found in the Refs. [Wright and 

Nocedal (1999, 2006a, 2006b)]. 

The key features of the proposed work are the use of harmonic balance principle within 

the constrained optimization framework and the suitability for handling nonlinear 

equality constraints exploiting the reduced SQP method. 

3 The validation of the proposed method 

In this section, three numerical examples which have been taken from recent publications 

are implemented to verify the effectiveness of the proposed method. The equation of 

motion is given by: 

1 23

1 2
K D K D cos( )

p p
mu cu+ku+γu + u+ u = F ωt+        (25) 

where overdot denotes the differentiation with respect to time. F is the forcing amplitude 

and ω  is the frequency of the external excitation. m , c and k  are the mass, damping 

and stiffness coefficients, respectively. γ  denotes the cubic nonlinear coefficient. 
1

K ,

2K  are the coefficients of the fractional derivative terms with the orders p1 and p2, 

respectively. 

From an engineering view point, the Caputo definition for fractional derivative is adopted 

and defined as follows: 

( )10
1<

1 ( )d
D ( )

Γ( ) ( )

( )

− +
= −

m
t

t m
mm m,

f s s
f t

m - t - s
  (26) 

where
1

0
Γ( )= d

+


-t s-s e t t  is the Gamma function. 

In this paper, the fractional derivative is considered in the frequency domain using the 

expression in Eq. (3) of Liao [Liao (2015)]. The interested reader is referred to the 

aforementioned paper for further details about the fractional differentiations. 

3.1 Numerical results for the Duffing oscillator  

For a first demonstration of the methodology, a Duffing oscillator is considered. The 

Duffing model is an example of dynamical systems that exhibit nonlinear behavior. The 

model is used with the following parameters: m = 1, c = 0.04, k = 1, γ =1, 
1

K =
2

K
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=0, F= 0.1. The structural parameters are taken from an example in Eq. (2) of Wang et al. 

[Wang and Zhu (2015)]. 

In order to demonstrate the feasibility of the proposed algorithm, a continuation 

technique is used to get the reference numerical solutions for comparison. The 

continuation of the periodic motion is accomplished by the pseudo arclength continuation 

method. In the numerical computations, only the first five harmonics are retained in the 

Fourier expansion of the response. The frequency response curves are depicted in Fig. 1 

where solid and dashed lines represent stable and unstable periodic solutions, 

respectively. In Fig. 1, Hi denotes the ith harmonic. It can be seen from Fig. 1 that the 

system reaches the top amplitude at resonant frequency ω =1.6545. 

 

Figure 1: The frequency response curves of the Duffing oscillator  

The resonant peak in Fig. 1 is searched by utilizing the proposed method. The vibration 

displacement is maximized. The unknown variables that have to be determined are the 

unknown Fourier coefficients and the resonant frequency of the worst case resonance 

response. The excitation frequency is considered to be independent optimization variable 

which is suitable for nonlinear optimization analysis. The optimization is conducted by 

retaining only 5 harmonics of the temporal response of the structure. The initial guess of 

the frequency is set to k
m

=1. The maximum number of iterations is set to 500 under 

the convergence tolerance of 10-8. A smaller tolerance will lead to a higher precision, but 

more iterations are required meanwhile.  

A convergence curve is ended, after the corresponding algorithm finds the optimal 

solution or the termination condition is satisfied. The L1 norm of the nonlinear equality 

and inequality constraints is used for the convergence criteria. To provide an intuitive 

illustration, Fig. 2 plots the convergence processes of the proposed algorithm. In Fig. 2, 

the results tend to converge after 101 generations and additional generations will not 

produce better solutions. 

http://www.tandfonline.com.proxy.lib.buaa.edu.cn/doi/full/10.1080/15397734.2015.1056882#M0007
http://www.tandfonline.com.proxy.lib.buaa.edu.cn/doi/full/10.1080/15397734.2015.1056882#F0001
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Figure 2: Evolution of the optimization algorithm 

A direct comparison of the numerical results between the two methods for the peak solution 

is presented in Fig. 3. As shown in Fig. 3, there is one main harmonic term in the system 

response and the presence of several higher harmonic components can be detected. 

Moreover, the harmonic coefficients associated with even harmonics are zero. Observe in 

Fig. 3 that the peak solutions obtained from both the proposed method and the continuation 

method are verified to be in a good agreement although minor discrepancy remains. 

 

Figure 3: Numerical optimization results of the Duffing oscillator obtained by the 

proposed method 

In order to fully validate the present approach, direct numerical integration has been 

carried out for the peak solution. The initial conditions can be readily supplied by the 

results of the presented method. The portrait for the worst case response solution is 

presented in Fig. 4 using the time integration method (denoted by TI) and the proposed 

method (denoted by RSHBM). From Fig. 4, it is evident that the present approach 

http://www.tandfonline.com.proxy.lib.buaa.edu.cn/doi/full/10.1080/15397734.2015.1056882#F0004
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solution matches well with the numerical integration solution. Therefore, the validity of 

the presented method is confirmed. 

 

Figure 4: The comparison of the phase portrait for the peak solution between the time 

integration method and the proposed method 

3.2 Numerical results for the fractional Duffing oscillator  

The second example is selected from Eq. (1) of Shen et al. [Shen, Wen, Li et al. (2016)]. 

Three cases are investigated by utilizing the proposed method. The values of the system 

parameters are listed in Tab. 1.  

Table 1: The selected parameter sets 

 m  c  k  α  1
K  

1
p  

2
K  

2
p  F 

Case 1 1 0.04 1.6 1 0.1 0.5   0.2 

Case 2 1 0.04 2 1.5 0.3 0.5   2 

Case 3 1 0.5 1.6 1.5 0.3 0.5   5 

The resonance peak response can be found by using the numerical continuation method. 

Fig. 5 shows the continuation frequency response curves for the three cases given in Tab. 

1. Observe in Fig. 5 that not only major resonances occur, but also super harmonic 

resonances are detected. Although the response curves for the three cases are roughly in 

similar shape, the curvatures and turning points are different. Case 1 results in relatively 

weak nonlinear behavior. The highest amplitude for case 1 is around ω =1.6962. For 

case 2, the vibration amplitude achieves the maximum value 3.5307 and the peak 

frequency is located at ω = 3.9911. The maximum displacement for case 3 occurs close 

to ω =3.0841. 

http://www.tandfonline.com.proxy.lib.buaa.edu.cn/doi/full/10.1080/15397734.2015.1056882#M0004
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Figure 5: The frequency response curves of the fractional Duffing oscillator for the three 

cases  

The proposed reduced SQP algorithm is implemented to find the peak solution which 

satisfies the harmonic balance constraints to a sufficient degree of accuracy and efficiency. 

The tolerance is set to be 10-8. The convergence histories of the objective function and the 

L1 norm of the nonlinear constraints are shown in Fig. 6. As illustrated in Fig. 6, the peak 

solutions converge reasonably well within 100 iterations. The iteration numbers for cases 2 

and 3 are 76 and 35 times respectively, as shown in Fig. 6(b) and 6(c). 

 
(a) Case 1 



 

 

 

The Reduced Space Method for Calculating the Periodic                       247 

 

 
(b) Case 2 

 
(c) Case 3 

Figure 6: Evolution of the objective and constraint functions 

Based on the proposed method, the optimization results together with the peak solutions 

of the continuation method are summarized in Fig. 7 for the three cases. As can be seen 

in Fig. 7, the first harmonic component is the strongest component in the total response 

and the values of the other harmonic terms are much smaller than the values of the first 

harmonic term. The harmonic components calculated with the present method reproduce 

the reference solutions from the continuation method.  
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(a) Case 1                        (b) Case 2 

  
(c) Case 3  

Figure 7: The optimization results for the fractional Duffing model 

For case 1, the optimization simulation predicts a maximum amplitude of 1.2701 at ω
=1.6963. A maximum vibration amplitude of 3.5307 for case 2 is found at ω =3.9912. 

For case 3, the predicted worst resonance response occurs at ω =3.0829 and the 

maximum vibration amplitude is up to 2.6677. In comparison with the top resonance in 

Fig. 5, the resonance frequencies as well as the resonance amplitudes calculated by the 

present method agree well with the results obtained the conventional continuation 

method. The results of the present method have satisfactory accuracy.  
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3.3 Numerical results for the Duffing oscillator with two kinds of fractional derivative 

terms  

The third example considered is a fractional order Duffing system with two fractional 

order derivative terms. This example is borrowed from the author’s previous work. Tab. 2 

which is taken from Tab. 8 of Liao [Liao (2015)] furnishes an overview of the main 

parameters used for the numerical model.  

Table 2: The numerical simulation parameters 

 m  c  k  α  1
K  

2
K  

1
p  

2
p  

Case 1 

5 0.1 10 15 

0 0.5 0.2 1.8 

Case 2 0.2 0.6 0.3 1.7 

Case 3 0.5 0.8 0.4 1.6 

Case 4 0.8 1.0 0.5 1.5 

Case 5 0.8 1.0 0.6 1.4 

Case 6 1.1 1.2 0.6 1.4 

Case 7 1.4 1.4 0.7 1.3 

Case 8 1.6 1.5 0.8 1.2 

The optimization results with the proposed method are presented in Tab. 3 where the 

iteration numbers are presented in the second column. From Tab. 3, it can be easily 

observed that the reduced SQP method is more robust and has stable iteration numbers. 

For all cases, the proposed method can produce the convergent solutions less than 100 

iterations. When compared with the published reference solutions given in Tab. 9 of Liao 

[Liao (2015)], good agreement is achieved although slight discrepancies are observed. 

The agreement of comparison between the proposed method and the benchmarks 

indicates that the resonance peaks are captured well by the proposed method and the 

present analysis is accurate. The validity of the present method is verified. 

Table 3: Summaries of numerical analysis results 

 Iteration number ω  
max

( )u τ   

Case 1 80 3.7568 2.4648  

Case 2 36 3.2356 2.0620  

Case 3 41 2.7297 1.6619  

Case 4 21 2.3836 1.3679  

Case 5 22 2.3170 1.2941  

Case 6 22 2.1369 1.1439  

Case 7 12 1.9573 0.9729  

Case 8 14 1.8635 0.8790  
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In all these examples considered, the solutions obtained from both the conventional 

continuation method or other researches in the literature and the proposed method are 

verified to be in a good agreement. The simulations show that the reduced SQP algorithm 

has good global convergent ability and can quickly converge to the global optimal 

solution with few iteration. 

4 NNMs of the bladed disks with geometrical nonlinearity 

The proposed algorithm for several examples against the standard continuation method is 

verified. In the following section, the present approach is utilized to perform nonlinear 

modal analysis of periodic structures.  

4.1 The two-Dof-per-sector model 

The numerical application example is inspired from Georgiades et al. [Georgiades, 

Peeters, Salles et al. (2009)]. The system is a simplified mathematical model of a bladed 

disk assembly.A periodic structure with 30 substructures is considered. A sector of the 

model used in the analysis is shown in Fig. 8. Each sector is modeled using disk (M) and 

blade(m) lumped masses, coupled by linear (k) and cubic (knl) springs. The nonlinear 

springs can be representative of geometrically nonlinear effects in the blades. The disk 

masses are connected together by linear springs K.  

 
(a) Continuous structure                (b) Discrete model 

Figure 8: One sector of the system configuration and the corresponding discrete model 

The motion equation of the ith sector is described as follows: 

( ) ( )

( ) ( ) ( ) ( )

3

3

1 1

0

0

1,2, ,30

i i i nl i i

i i i+ i i- i i nl i i

mu k u U k u U

MU K U U K U U k U u k U u

i

+ − + − =

+ − + − + − + − =

=
 

(27) 

where 31 1U U= , 0 30U U= , iu , iU  represent the blade and disk motion, respectively, for 

the ith sector. The parameters of the system come from Georgiades et al. [Georgiades, 

Peeters, Salles et al. (2009)], and are given in the following: 
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0.10.3, 1, 1, 1, 0.1m M K k k= = = = = . 

Natural frequencies of the tuned bladed disk without geometrical nonlinearity are given 

in Tab. 4 for all Nodal Diameters (NDs). As can be seen in Tab. 4, since the structure is 

not fixed, the first mode is a rigid-body mode, which is obviously not affected by the 

nonlinearities. In addition, due to cyclic symmetry of the structure, the bladed disk 

system possesses repeated eigenvalues. 

Table 4: Natural frequencies of the underlying linear system 

Nodal 

Diameters 
Mode Frequencies(rad/s) Nodal Diameters Mode 

Frequencies 

(rad/s) 

0 1 0 0 31 2.082 

1 2,3 0.183 1 32,33 2.084 

2 4,5 0.363 2 34,35 2.092 

3 6,7 0.536 3 36,37 2.104 

4 8,9 0.700 4 38,39 2.123 

5 10,11 0.850 5 40,41 2.147 

6 12,13 0.985 6 42,43 2.178 

7 14,15 1.103 7 44,45 2.215 

8 16,17 1.202 8 46,47 2.258 

9 18,19 1.282 9 48,49 2.304 

10 20,21 1.346 10 50,51 2.350 

11 22,23 1.394 11 52,53 2.394 

12 24,25 1.428 12 54,55 2.431 

13 26,27 1.452 13 56,57 2.460 

14 28,29 1.465 14 58,59 2.478 

15 30,31 1.470 15 60 2.485 

4.2 The localized NNMs 

The proposed algorithm is used as the dynamic analysis tool to compute NNMs of 

nonlinear systems. A NNM is defined as a (nonnecessarily synchronous) periodic motion 

of the unforced conservative system. Due to the frequency energy dependence of 
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nonlinear oscillations, NNMs are depicted in a frequency energy plot. In analogy with the 

frequency energy plot, the evolution of NNMs in this paper is presented in the frequency 

amplitude plot. In order to obtain the frequency amplitude curve, the vibration frequency 

is considered as the control parameter. The curve is obtained by varying the value of ω  

with a step length of 0.05 and calculating the extreme point numerically. 

The proposed method is stepped up in the downward frequency sweep. The NNM 

initiates at the predicted localized solution at higher energy and continues to lower 

response amplitude as energy decreases. The first guess with localized solution predictor 

can be corrected using the proposed method. After finding the solution with a certain 

higher vibration frequency, the obtained periodic solution is used to define prediction for 

the next frequency decreasing point in the frequency amplitude curve. The periodic 

solution computed from the previous step is used as initial guess for the periodic solution 

in the next step so that the convergence of the iteration process can be improved. By 

repeating the same procedure, the frequency amplitude curve is constructed. 

The frequency is tuned from 5 to 0 with a step of 0.05 Hz. The NNM initiates at ω =5 

which starts as different harmonic component interaction. The amplitude frequency curve 

of the NNMs can be constructed by sequentially decreasing the vibration frequency and 

using the result of each step as the initial guess of the next point. 

Using the new guess predictor, the response of the next step can be determined by the 

present method. The proposed method is applied to solve Eq. (8) for a given frequency. It 

uses a known periodic motion to identify the next solution and the maximum 

displacement is taken to be the objective function. 

 
(a)                              (b) 

Figure 9: The localized NNMs with single harmonic component 

The results as a function of amplitudes with respect to frequencies are presented in Fig. 9. 

It can be seen in Fig. 9 that only the first harmonic emerges. The NNMs are energy 

independent and the vibration amplitude decreases as the vibration frequency decreases. 

Moreover, the localized motion occurs when the frequency is greater than ω =2.5 where 

the slopes of the curves are deeper. Fig. 10 shows two NNMs at two frequencies. Observe 

in Fig. 10 that all the Dofs vibration synchronously. The NNM at ω =5 is severely 

localized, with the significant energy mainly limited to a single blade. The Fourier 
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coefficients corresponding to NNMs in Fig. 10 are given in Fig. 11. It has been found that 

the Fourier coefficients in Fig. 11(a) are positioned symmetrically with respect to blade 1. 

 
(a) ω =2.5                        (b) ω =5 

Figure 10: Modal response time histories at the two solutions 

 
(a) ω =2.5                         (b) ω =5 

Figure 11: The Fourier coefficients for the solutions in Fig. 10 

4.3 The case of 1:2 internal resonance NNMs 

In this section, the NNMs corresponding to the internal resonance of type 1:2 are 

searched through the present method. The evolution of the NNMs as a function of the 

vibration frequency is presented in Fig. 12. Resembling the previous results, the vibration 

amplitude in Fig. 12 also monotonically decreases with decreasing the vibration 

frequency. The slopes of the curves are much deeper when the vibration frequency is 
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small. The 1:2 harmonic interaction is recognized to take place at frequency greater than 

2.5. The first and second harmonic components may interact with each other and energy 

exchange between these two harmonic contents exists. Decreasing   weakens the 

nonlinear interaction due to the one to two internal resonance. The NNMs in the 

frequency range [1.25, 2.5] posses single harmonic motion. The first harmonic 

component vanishes as   approaches to 1.25. 

 
(a)                              (b) 

Figure 12: The amplitude variation with respect toω  

The time histories at three NNMs in Fig. 12 are shown in Fig. 13. In Fig. 13(b), the 

vibration energy is concentrated in blade 10. For the case 1:2 internal resonance in Fig. 

13(c), NNM at  =5 is a localized NNM with high deformation around blades 1 and 10. 

Blade 10 oscillates at a frequency two times that of blade 1. Moreover, the response 

amplitude of blade 10 is nearly twice that of blade 1.  

 
  (a) ω =1.25                   (b) ω =2.5 
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 (c) ω =5  

Figure 13: Time histories over a period motion for the three NNMs 

The corresponding Fourier spectrums of these NNMs are given in Fig. 14. It can be seen 

in Fig. 14(a) that the Fourier coefficients are purely symmetric with respect to the 

localization blade. In addition, the NNM at  =5 shows a significant contribution from 

the second harmonic component to the system response. A contribution from the first 

harmonic component is observed, but the contributions from the other harmonic 

components are negligible.  

 
(a) ω =1.25                        (b) ω =2.5 
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(c) ω =5  

Figure 14: The Fourier coefficients related to the solutions in Fig. 13 

4.4 The case of 1:2:3 internal resonance NNMs 

The same strategy can be extended to study the NNMs of type 1:2:3 internal resonance. 

Fig. 15 depicts how the maximum amplitude of NNM changes in accordance with  . 

Observe in Fig. 15 that as the frequency decreases from high values, the stable response 

amplitude decreases continuously. The response amplitude of the second and third 

harmonic contents is decreased more profoundly compared to the first harmonic 

component. However, the slopes of the curves are quite constant.  

 
(a)                               (b)  

Figure 15: The NNM amplitude versus  

In Fig. 25, 1:2:3 internal resonance is observed for a wide range of vibration frequency. A 

transition between 1:2:3 to 2:3 internal resonance takes place at  =2.5. The two-to-

three internal resonance between the second and third harmonic components is activated. 
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Nonlinear interactions are weakened with further decreases in  . Beyond a certain 

frequency threshold, the second harmonic component disappears. Single-harmonic vibration 

is observed at frequency range from 0.85 to 1.25 and the sole third harmonic remains. 

The time histories of the four NNMs are shown in Fig. 16. For NNM at  =0.85, blade 

20 will experience a much larger displacement relative to the other blades. Confinement 

of a significant magnitude of free response on blade 20 is observed in Fig. 16(b) at a 

frequency of 1.25. The localized NNM at  =2.5 is evident in Fig. 16(c) where blades 

10 and 20 oscillate with non-negligible amplitude. In Fig. 16(d), the vibration 

corresponding to NNM at  =5 is confined mostly to three blade. The amplitude of 

blade 20 is nearly three times larger than that of blade 1.  

 
(a) ω =0.85                        (b) ω =1.25 

 
(c) ω =2.5                         (d) ω =5 

Figure 16: Modal response time histories at the four solutions 
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The Fourier coefficients for the four NNMs in Fig. 16 are demonstrated in Fig. 17. In Fig. 

17(a), the response spectrum indicate that 3ω  is the dominant frequency in the response 

and the obtained Fourier coefficients regarding the localized blade 20 are symmetric. The 

third harmonic component becomes more significant at higher ω  as indicated in Fig. 

17(b). Considerable participation of superharmonic components (2ω , 3ω ) is observed 

in Fig. 17(c). The numerical result in Fig. 17(d) shows a strong contribution to the 

structural response in terms of the third harmonic component with some interaction from 

the first and second harmonics.  

 
(a) ω =0.85                        (b) ω =1.25 

 
(c) ω =2.5                        (d) ω =5 

Figure 17: The Fourier spectra of the four NNMs in Fig. 16 

The direct numerical integration of the dynamical system is carried out to confirm the 

exist of NNMs. The initial conditions for the numerical integration are obtained from the 

present method solutions. The system of differential equations is integrated over 1000 
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periods of vibration. The portraits for NNM at ω =5 are depicted in Fig. 18. It can be 

observed in Fig. 18 that the present method coincides with the time integration method 

well at ω =5 where stable response exists. Direct numerical simulation of the equations 

of motion indicates the NNMs at all frequencies are stable. 

 

Figure 18: The comparison of the phase portrait of the NNM at ω =5 between the two 

approaches 

The numerical results indicate that the proposed method can accurately predict different 

internal resonance NNMs. A infinity of periodic internal resonances exist for nonlinear 

bladed disk. Various types of the internal resonance could happen in cyclic nonlinear 

systems regardless of the commensurate condition of the eigenfrequencies of the 

underlying linear system. It is apparent that 1:1, 1:2 and 1:3 internal resonances are the 

special cases of the 1:2:3 internal resonance combination. All figures present quite 

similar type of amplitude frequency curve. The presence of harmonic component 

interaction with a strcit integer ratio of oscillating frequency violates the perfect condition 

of internal resonance. Due to the occurrence of separation, it is obvious that the 

continuation method is not able to capture some types of NNMs.  

5 Conclusions  

An approach which rests on the reduced SQP method combined with the harmonic 

balance method is proposed to search the localization nonlinear normal modes of various 

types of internal resonance. The proposed methodology includes two steps. The harmonic 

balance method is first employed to construct the nonlinear equality constraints for the 

constrained optimization problem. Then, the highly non-linear constrained optimization 

problem is solved by making recourse to the reduced SQP technique. The reduced 

optimization problem is formed by projecting the original optimization problem onto the 

null space basis which exploits the structure of nonlinear equality constraints. Therefore, 

the corresponding nonlinear equality constraints can be eliminated via the null space 

decomposition transformation and the simplified optimization problem subjected to 

bound constraints is established. Hence, the calculation process in the standard 



 

 

 

260  Copyright © 2018 Tech Science Press    CMES, vol.115, no.2, pp.233-262, 2018 

optimization iteration analysis becomes much simpler. The novelty of the approach 

described lies in the way in which the nonlinear equality constraints are removed. 

The effectiveness of the proposed algorithm is demonstrated by several benchmark 

examples seen in the literatures. Simulation results demonstrate that the proposed 

algorithm has a fast convergence speed for finding the optimal solution. Nonlinear 

normal modes of nonlinear bladed disk are computed via the present method. It is shown 

that there is interaction between the harmonic components due to internal resonances and 

localization nonlinear normal modes of various types of internal resonances are detected. 

Higher order harmonics affect the system response more significantly. NNMs involving 

even harmonics are also observed for nonlinear systems with cubic nonlinearity. Another 

interesting phenomenon is that the Fourier coefficients of the localization NNM exhibit 

symmetry. It is worth mentioning that nonlinear modes with deformation localized to 

specific components of the structure appear. Localization can exist in the perfectly 

nonlinear symmetric structure, it does not dependent on the existence of parameter 

uncertainty or weak coupling between substructures. 
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