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Abstract: ωB-splines have many optimal properties and can reproduce plentiful 

commonly-used analytical curves. In this paper, we further propose a non-stationary 

subdivision method of hierarchically and efficiently generating ωB-spline curves of 

arbitrary order of ωB-spline curves and prove its Ck−2-continuity by two kinds of methods. 

The first method directly prove that the sequence of control polygons of subdivision of 

order k converges to a Ck−2-continuousωB-spline curve of order k. The second one is 

based on the theories upon subdivision masks and asymptotic equivalence etc., which is 

more convenient to be further extended to the case of surface subdivision. And the 

problem of approximation order of this non-stationary subdivision scheme is also 

discussed. Then a uniform ωB-spline curve has both perfect mathematical representation 

and efficient generation method, which will benefit the application of ωB-splines.  

   

Keywords: ωB-spline, subdivision, Ck−2-continuity, asymptotic equivalence, approximation 

order. 

1 Introduction 

Polynomial B-splines and NURBS are important modeling tools in CAD/CAM. But 

polynomial B-splines are not able to exactly represent often-used conics (except for 

parabola), trigonometric functions and hyperbolic functions etc. NURBS can represent 

conics, but its ration form results in complicated computations about differential and 

integral. Then all kinds of B-like splines are proposed [Fang and Wang (2008); Zhang 

(1996); Vasov and Sattayatham (1999); Mainar and Pe˜na (2002)]. In paper [Wang, Chen 

and Zhou (2004)], we further unified these B-like splines into ωB-splines, which are 

constructed over  cos ,sin ,1, ,..., ,...nt t t t  . ω can be non-negative real 

number and pure imaginary number. If taking the value of ω as a constant 0,1 or i, we 

will get usual polynomial B-splines, trigonometric polynomial B-splines and hyperbolic 

polynomial B-splines respectively. ωB-splines inherit most of optimal properties from 

polynomial B-splines, including the subdivision property. Due to optimal properties of 

these B-like splines, many applications are studied in recent years [Mannia, Pelosi and 

Speleers (2012); Xu, Sun, Xu et al. (2017)]. In this paper, we perfect the subdivision 
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method and theory of ωB-splines in order to apply them better in the future. 

Subdivision is a standard technique of recursively generating smooth curves/surfaces 

from an initial polygon/mesh. Please see paper [Chaikin (1974); Doo and Sabin (1978); 

Catmull and Clark (1978); Dyn (1992); Stam (2001); Jena, Shunmugaraj and Das(2002);  

Jena, Shunmugaraj and Das (2003); Andersson, Lars-Erik, Stewart et al. (2010); Conti 

and Romani (2011); Conti, Cotronei and Sauer (2017)] for more details. This kind of 

modeling method is popularly applied in geometric modelling and 3D animation because 

of its numerical stability, simple implement and suitability for arbitrary topology. But 

most of subdivision curves and surfaces lack exactly mathematical representations, which 

are the fundamental of all kinds of differential/integral computations. So subdivision 

methods which have spline backgrounds are very interesting. Subdivision models with 

spline backgrounds include all merits mentioned above. For example, Doo-Sabin method 

[Doo and Sabin (1978)], Catmull-Clark method [Catmull and Clark (1978)], and the 

subdivision method proposed in paper [Stam (2001)] respectively have their spline 

backgrounds of B-splines of degree 2, cubic B-splines, polynomial B-splines of arbitrary 

order. These subdivision methods are all stationary, i.e, their subdivision rules persist 

unchanged in each level of subdivision. While stationary subdivision can not generate 

ωB-spline curves with frequency parameters. 

In this paper, we introduce a parameter relative to the frequency parameter to build a non-

stationary subdivision method with the background of ωB-splines. Then this kind of 

modeling method has the merits of both subdivision and ωB-splines. Concretely, we consider 

the subdivision of uniform ωB-splines with uniform knot intervals and ω taking a certain 

constant. At first, we derive the definition of uniform ωB-spline bases and curves according 

to the corresponding definitions in paper [Wang, Chen and Zhou (2004)]. 

Definition 1.1 (uniform ωB-spline bases) Let T be a given uniform knot sequence 

{
i
t =i }i

+

=−
,  be the length of uniform knot intervals, k refers to the order of splines .ω be 

a given frequency parameter, where ω can take value as a non-negative real number (ω  ∈ 

)0, in this case) or a pure imaginary number whose imaginary part is positive. 
,
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and ( ) ( ),2 0,2
.
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In formula (1.1), when ω = 0, we compute it by the L’Hospital rule about ω. 
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For ( ),
3,

i k
k N t  are defined recursively by 

( ) ( )−−
= , , 1

1
  

t

i k i kt
N t N s ds                                                                                                            (2) 

Definition 1.2 (uniform ωB-spline curves) Let  ( )3

,1
,

n

i i ki
P N t

=
   be uniform 

ωB-spline bases of order k corresponding to the partition  i i
T t i

+

=−
= =  of 

the parameter axis t .  

Then ( ) ( ) ( ) ( )( ),
1

, 1 1 , 1
n

i k i
i

P t N t P k t n n k
=

= −   +  −  is called 

an uniform ωB-spline curve of order k corresponding to the knot vector T. 

( )1,...,
i
P i n=  are control points. 

ωB-spline curves can reproduce conics, trigonometric and hyperbolic curves. They also 

have many useful properties for geometry modelling, including those inherited from 

common B-spline curves and some special merits. Please refer to paper [Fang and Wang 

(2008)] for details. But we can see that the basic functions need to be recursively 

computed by integration from their definition, which results in low efficiency of 

evaluation. In this paper, we devote to build a high-efficiency subdivision method of 

generating ωB-spline curves. 

The rest of this paper is organized as follows. In Section 2, we derive the relation formula 

of control points between two representations of the same uniform ωB-spline curve of 

order k respectively with the original knot intervals and their bisections. Then the explicit 

subdivision rule is constructed based on this. By this kind of subdivision rule of order k, a 

sequence of control polygons generates from the original control polygon of an uniform 

ωB-spline curve of order k. We directly prove that the limit of this sequence converges to 

the 
−2kC -continuous uniform ωB-spline curve in Section 3. But this kind of proof 

method is hard to be applied in the corresponding proof of the continuity for the case of 

surface subdivision. So in Section 4, we reconsider the proof from the aspect of 

subdivision masks and provide a more general proof of the continuity of subdivision 

which will be easier to be extended to the case of surface subdivision. Because our 

proposed surface scheme is non-stationary, we use the theories of asymptotic equivalence 

between non-stationary subdivision and the corresponding stationary subdivision with the 

rule in limit status to complete the proof. The approximation order of the proposed 

subdivision scheme is also discussed. Section 5 makes a conclusion. 
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2 The subdivision method of uniform ωB-spline curves 

According to Definition 1.1 and Definition 1.2, we find that an uniform ωB-spline curve 

can also be equivalently represented by another uniform ωB-spline curve with knot 

intervals after bisection. 

Theorem 2.1 Let ( ),
,

i k
N t  and ( ),

2 ,
i k

N t represent bases with knots 

( )0, 1, 2,...
i
t i i= =    and ( )2 0, 1, 2, ..´ .

i
t i i= =   respectively. 

Then an uniform ωB-spline curve of order ( )3k k   defined by 
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k i i k
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Proof. According to the meanings of ( ) ( ),2 ,2
,  and 2 ,

i i
N t N t , it is easy to obtain 

their representation formula by formula (1). And the relation formula between two bases 

can be deduced as below: 

( )
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, 2, 2, 2,

2 cos 2 2 cos 2 ii i i
N t N t N t N t

  −− −
=  + + 

Furthermore by the above formula, formula (1.1) and the recursive formula (2), we get 
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When k=4, 
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So the conclusion holds for k + 1. 

Based on this, an uniform ωB-spline curve can be generated by continuously using 

formula (4) from its initial control polygon. Let ( )cos 2u =  , we get the following 

definition of generating uniform ωB-spline curves by subdivision (ωBS for short). 

Definition 2.1 (ωBS scheme) Let  1 2
, ,...

n
P P P P=  be the initial control polygon 

and u be the tension parameter. The subdivision rule of ωBS curves of order 

( )3  S
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k k  is defined as:  
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Using the subdivision rule 
k

S ，the iterative process of ωBS is described as below. 
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Table 1: The time report of generating ωBS curves and ωB-spline curves from the same 

control polygon 

the type of curve k=3 k=4  k=5 k=10 

ωBS 0.007531 s 0.011816 s  0.013624 s 0.013835s 

ωB-spline 0.014133 s 0.076115 s 2.027394 s 35.855619 s 

1. Give an initial control polyline P, a tension parameter u (u≥0) and the subdivision 

order k; 

2. Determine a subdivision times 
0N in advance; 

3. N = 0; 

4. ( ): = , ;´ 1
k k

S P S P N N= +  

5. If N =
0N  

                go to step 6; 

else 

          
+

=
1

;
2

u
u  

 ́;P P=   

go to step 3;  

      end 

6. Output P´; 

From the above definition, we can see that the parameter u  updates in each level of 

subdivision. So ωBS method is a non-stationary subdivision method. The updating 

formula 
1

:
2

u
u

+
=  is derived from the half-angle cosine formula because 

( )cos 2 .u =  

Fig. 1 illustrates the proposed subdivision rules and an example. 
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            （a）                                     （b）                                        （c） 

 

 

（d）                                     （e）                                        （f） 

Figure 1: The subdivision rules (a)(b)(c) and an example (d)(e)(f). 

In Fig. 1 (a),  
7

3

0i i
P

=
 is computed by formula (5) from the initial control 

polyline  
4

0
.

i i
P

=
In Fig. 1(b),  

6
4

0i i
P

=
 is computed by formula (5) from  

7
3

0
.

i i
P

=
 

Similarly,  kiP  can be computed by formula (5) from 1k
i
P −

when 4.k   In Fig. 1(c), 

the black poly lines are respectively the results after one level and two levels of 

subdivision from the initial control poly line when k=5, u=3. The red curve is the results 

after six levels of subdivision which can be seen as the approximation of the limit curve. 

The green and purple curves respectively correspond to the cases of k=5, u=1 and k=5, 

u=0.5. In Fig. 1(d), the profile of an industrial model which consists of three pieces of 

circular arcs (red), some line segments and some cushioning curves. In Fig. 1(e), the 

control polygon of the profile is computed according to the ωB-spline representation 

proposed in paper [Fang and Wang (2008)]. In Fig. 1(f), the profile is reproduced by 
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subdividing the control polygon according to the proposed method in this paper, 

with ( )3, cos 10k u = = . 

Comparing Definition 2.2 with Definition 1.1 and 1.2, we can see that ωBS curves only 

include linear computations, which is much simpler and more efficient than those 

recursive integral computations included in the definition of uniform ωB-spline bases. 

This is very important for real-time rendering and hierarchically displaying curves and 

surfaces. Taking the control polygon illustrated in Fig. 1(e) with 33 control points as an 

example, Tab. 1 shows the comparison of the efficiency of both methods to render the 

curve jointed with the same number (about 300) of points. Apparently, the efficiency of 

rendering ωBS curves is much faster than rendering ωB-spline curves. And with the 

increase of order, the difference between them becomes bigger and bigger. 

From Theorem 2.1, we know ωBS curve is derived by the knot interpolation method of 

uniform ωB-spline curves. The sequence of control polygons formed by continuous 

bisections of knot intervals will converge to smooth ωB-spline curves, which are 
2kC −
 -

continuous. That is to say, ωB-spline curve is the limit curve of ωBS curve with the same 

control polygon when the subdivision level tends to infinity. In the next two sections, we 

prove that ωBS curves are also 
2kC −
continuous using two proving methods. 

3 One proof of C k−2 -continuity of ωBS curves 

Theorem 2.1 shows how the new control polygon can be obtained from the old control 

polygon after a round of subdivision. We have the following theorem. 

Theorem 3.1 Let ( ) ( ) ( ) ( )0 0

1 ,
; n

k k i i i k
B P t p t P N t

=
= =  be an uniform ωB-spline 
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1 2
, ,..,
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Proof. By Theorem 2.1 and simple induction on N, we have 
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Furthermore, we get 
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=  in the first case, and cosh 1
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P P                                                                                               (6) 

for any  

( )  ( )1,...,2 1 1 ,1,..., , 2 1 1.N Ni n k k k i j n k k − + + − +  − + + −  

From the convex hull property, for any ( )   +
 0

, 1 ,t k n  we know that 

( ) ( )0

0
;

k
B P t lies within the convex hull of 

, , ,

i+1
, ,...,k N k N k N

i i k
P P P

+
 for some i. 

Together with (6), we conclude that 

( ) ( ) ( )0 0lim ; .
N

k kN
S P B P t

→

  =    

Theorem 3.2 ωBS curves of order k (k≥3) converge to 
2kC −
-continuous uniform ωB-

spline curves. 
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Proof. Based on Definition 2.1 and Theorem 3.1, we can conclude that ωBS curves of 

order k (k≥3) converge to uniform ωB-spline curves of order k whose 
2kC −
-continuity 

are obvious according to the definition of ωB-spline basis functions and paper [Wang, 

Chen and Zhou (2004)]. So the conclusion holds.   

4 Another proof of 
2kC −
-continuity of ωBS curves 

The proof in Section 3 is simple. But this proof method is difficult to be extended to the 

case of surface subdivision, especially non-tensor product surface subdivision. So we 

provide another proof method for 
2kC −
-continuity of ωBS curves based on those theories 

upon subdivision masks, which will be advantageous to be applied in the proof of our 

further surface subdivision. 

From the steps of ωBS described in Definition 2.2, we can see that the tension parameter 

is changing with the subdivision level, so ωBS is a non-stationary subdivision scheme. 

For convenience of proving its continuity, we introduce the corresponding notions of the 

mask of ωBS at first. 

Given a set of control points  0 0 3 :
j

P P j=   , a non-stationary subdivision 

scheme for curves defines recursively new sets of control points  

 3 :N N
j

P P j=   formally by 

( )+ =1 ,  =0,1,...
NN NP S P N   

Each point in 1NP +  is defined by a linear combination of points in NP . The rule defining 

the new points in 1NP + is denoted by  : :
N N

i
m m i=  such that 

+

−


= 1

2
.                

NN N
j j i i

i

P m P             (7) 

The sequence
N

m
   of coefficients is called the subdivision mask at level N. If 

N
m

    is 

independent of N, i.e. 
N

m
   = m, the corresponding scheme is said to be stationary. It is 

assumed that only a finite number of coefficients
k

i
m

  

are non-zero so that changes in a 

control point affect only its local neighborhood. 

The specific rules of ωBS are given as follows. First consider the case k = 3. For a given 

tension parameter
0

0u  ,the ωBS scheme of order 3 generates a new set of the control 

points by the rule
( )
3

N
S : 
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( )( )

( )( )

+

+
+

−
= +

−
= +

3 1
2

3 1
2 1

4 1 1
 ,

4 4

4 11
 .                 

4 4

N N N NN
i i

i
N N

N N N NN
i i

i
N N

u
S P P P

u u

u
S P P P

u u

             (8)                                           

At each subdivision level N, the parameters 
N

u are also updated as 

+

+
=

1

1
 .                      

2
N

N

u
u

           (9) 

Since 
0

0u  ,we see that the sequence  
0N N

u


=
is monotone and bounded such that it 

converges to 1 as N →  .When ( )0
1 .., 1  all N

N
u ie u for= =  , the 

scheme becomes stationary and it is the well-known Chaikin’s algorithm [Chaikin 

(1974)]. In view of (4.1), the non-stationary mask 
N

m
    for

1NP +
can be written as 

  
 − −

=  
 

4 1 4 11 1
, , , .            

4 4 4 4

N N N

N N N N

u u
m

u u u u
    (10) 

Further, based on the rule in (8), the scheme 
( )N

k
S  for k > 3 is defined recursively by 

( )( ) ( )( ) ( )( )+
+

 = + 
 

1
1

1
                

2

N N NN N N
k k k

j j j
S P S P S P          (11) 

It can be easily checked that the support of the mask 
 N

m is indeed the same as the one of 

the classical B-spline of order k [Stam (2001)]. 

It’s difficult to directly prove the continuity of a kind of non-stationary subdivision 

scheme. So we prove 
2kC −

-continuity of ωBS curves according to the theorems 

including asymptotic equivalence proposed in paper [Dyn and Levin (1995)]. Here we 

cite the notion of asymptotic equivalence between two schemes defined in paper [Dyn 

and Levin (1995)]. 

Definition 4.1 A non-stationary scheme with the masks  N
m

   is said to be 

asymptotically equivalent to a stationary scheme with the mask m if 

 
+

  



−                      
N

N

m m
     (12) 

 Lemma 4.1 Let 
( ) N

S be a non-stationary subdivision scheme with the mask 

 N
m

   .Assume that 
( ) N

S  is asymptotically equivalent to a stationary scheme S with 

https://www.baidu.com/link?url=l_wRwrp0vJt-lez_VoLGp5Hq6JnyZUx8AxLKmTHMkOy7J72iFL_h98kIe8kvIYG6NHTPBXFc7ypBRFOK1Acw-ZqhvHJVbp309s2kusqLyRTGjKHXSS6mGKgTyYAe1YbwvyOj36so5Qe56SHAg1ez8gPIHtXJrv2Yy3uZWtu7DwTRucP7_9bKuqSnPhq53krk&wd=&eqid=825b96a40004584f000000065ab999c3
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the mask m. If S is in 
qC  with q  and  

0

2 ,
NqN

N

m m


  

=

−     

then the non-stationary scheme 
( ) N

S  is also 
qC . 

Theorem 4.1 The ωBS scheme of order 3 with the mask (10) generates 
1C -continuous 

limit curves. 

Proof. For a given parameter 
0

0u  , we can induce from (9) that  
1N N

u


=
 is a 

monotone and bounded sequence. To be more precise, if 
0

0 1u  , the sequence 

 
1N N

u


=
is monotonically increasing to 1. Otherwise, it is monotonically decreasing to 1. 

Hence, it is immediate that 
N

m
    converges to 

 
=  
 

3

1 3 3 1
: , , ， .

4 4 4 4
m   

This is the mask of the Chaikin’s corner cutting algorithm and it generates 
1C  limit curve 

(see Chaikin [Chaikin (1974); Dyn and Levin (1995)]). Now, to estimate the 
1C -

smoothness of the proposed scheme of order 3, it is necessary to estimate the difference 

between 
N

m
    and 

3
m  . From (9), we see that 

3

4 11 1 3
max , .

4 4 4 4

N N

N N

u
m m

u u

  



 −
− = − − 

 
 

  

If 
0
=1u ,then 

3
=1, .., =

N

N
u ie m m

    .Thus, in what follows, we assume that 
0

1u  .In 

fact, some elementary calculation easily reveals that 

3

1-1
- =                 

4

N N

N

u
m m

u
  



            (13) 

Then, following Lemma 4.1, we only need to show that 

 3
0

2 -                  
NN

N

m m


  

= 

                     (14) 

for the proof of the
1C -smoothness of the proposed scheme of order 3. To this end, for 

simple notation, we use the abbreviation 

2

3

1-
: =2 - =2

NN N N
N

N

u
U m m

u

  − 



  

https://www.baidu.com/link?url=l_wRwrp0vJt-lez_VoLGp5Hq6JnyZUx8AxLKmTHMkOy7J72iFL_h98kIe8kvIYG6NHTPBXFc7ypBRFOK1Acw-ZqhvHJVbp309s2kusqLyRTGjKHXSS6mGKgTyYAe1YbwvyOj36so5Qe56SHAg1ez8gPIHtXJrv2Yy3uZWtu7DwTRucP7_9bKuqSnPhq53krk&wd=&eqid=825b96a40004584f000000065ab999c3
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Here, by (9), it is clear that 
2

1
=2 -1

N N
u u

+
. Hence, 

( )2

1

2

1

2 1-
=

2 -1

N

N

N

u
U

u

+

+

. Thus, we have 

( )

1 1

1

2

1 1

2

1 1

2

1

1 1

1-
=2

1-

1- 2 -1
    =2

2 2

2 -1
    =

1+

N N N

N N N

N N

N N

N

N N

U u u

U u u

u u

u u

u

u u

+ +

+

+ +

+ +

+

+ +




−

  

Consequently, since 
N

u converges to 1 asN →  , it follows that 

1 1
lim 1

2
N

N
N

U

U
+

→
=    

Following the D’Alembert criteria for convergence of positive series and in view of (13), 

the claim (14) is proved. 

We are now ready to prove the smoothness of the proposed scheme of order k>3. In the 

following analysis, we will see that it is convenient to represent a subdivision rule with 

the mask 
N

m
    in terms of the symbol 

( ) :N N j
j

j

m z m z
      



=    

Since 
N

m
   is finitely supported, the symbol ( )N

m z
   is in fact a Laurent polynomial. 

The following lemma is obtained from Dyn et al. [Dyn and Levin (1995)]. 

Lemma 4.2 Let  N
a

S
  

 be a non-stationary subdivision scheme associated with the 

symbol of the form 

( ) ( ) ( )
1

1
2

N N
a z z b z
   = +   

and the non-stationary scheme corresponding to  N
b

S
  

 is  with qqC
+

 .Then the 

scheme  1 is CN

q

a
S

  

+
. 

Theorem 4.2 The ωBS scheme of order k ≥3 generate
2kC −
-continuous limit curves. 

Proof. We prove this theorem by mathematical induction for k. The case k=3 indeed holds 

immediately by Theorem 4.2. For the case k>3, we use the notation 
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 , ,
:

k N k N

j
m m j

      =  for the mask of the ωBS scheme of order k at level N. By 

construction, the mask 
,k N

m
    can be iteratively obtained by using the equation 

 ( )     − −     

+
= +

, 1, 1,

1
2                  

k N k N k N

j j jm m m          (15) 

which is an immediate consequence of the relation (11). Accordingly, the Laurent 

polynomial associated to the mask
,k N

m
    can be written as 

 ( ) ( )
3

3

1
z : z ,  k>3 .

2

k

N N

k

z
m m

−

      
 +

=  
 

  

where ( )3

N
m z

    is the symbol of the ωBS scheme of order 3 with the mask 
3,N

m
   in (10). 

By Theorem 4.1, the scheme associated to the Laurent polynomial ( )3

N
m z

    is 
1C . 

Hence, applying Lemma 4.2 inductively, we can conclude that the proposed scheme of 

order k is 
2kC −
. 

The approximation order of the proposed non-stationary subdivision is also important. In 

the following, we discuss this problem. Theorem 4.3 shows that it is of approximation 

order k-1, where k refers to the order of the corresponding ωB-splines. 

Theorem 4.3 For the ωBS scheme 
[ ]NS of order k ≥ 3, the approximation order of this 

non-stationary subdivision is k-1. 

Proof.Based on Lemma 4.1, the proposed non-stationary subdivision scheme is 

asymptotically equivalent to a stationary scheme S . S  converges to ωB-splines of order 

k, with a constant frequency sequence, which can reproduce polynomials of order k-1. 

According to the results concluded in paper [Conti, Dyn, Manni et al. (2015); Conti, 

Romani and Yoon (2016)], we know a non-stationary subdivision implies approximation 

order k-1 (k-1 refers to the degree of ωB-splines) asymptotic similarity to stationary 

scheme is assumed. So based on the above, the conclusion of Theorem 4.3 is proved. 

5 Conclusion 

In this paper, we proposed the subdivision scheme for uniform ωB-spline curves. Then a 

uniform ωB-spline curve has both perfect mathematical representation and efficient 

generation method. We also provide two proofs of 
2kC −
-continuity ωBS curves of k-

order in two different aspects and discuss its approximation order. The first method is 

direct and simple. The second kind of proof is based on subdivision masks and some 

corresponding theories, which will be advantageous to prove the corresponding 

conclusions of surface subdivision. In the future, we will extend the subdivision scheme 

to the case of surfaces with tensor product form and further arbitrary topology as well. In 

addition, we will apply ωB-splines and especially the subdivision scheme in the all kinds 

of applications relative to finite element method (FEM) and isogeometric analysis (IGA) 

to improve the accuracy during modeling and analysis [Wang, Shen, Zou et al. (2018); 
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Guo and Nairn (2017); Xu, Sun, Xu et al. (2017)].  
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