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Abstract: A spike response model (SRM) based on the spikes generator circuit (SGC) of 

adaptive fuzzy spiking neurons (AFSNs) is developed. The SRM is simulated in MatlabTM 

environment. The proposed model is applied to a configuration of a fuzzy exclusive or 

(fuzzy XOR) operator, as an illustrative example. A description of the comparison of 

AFSNs with other similar methods is given. The novel method of the AFSNs is used to 

determine the value of the weights or parameters of the fuzzy XOR, first with dynamic 

weights or self-tuning parameters that adapt continuously, then with fixed weights obtained 

after training, finally with fixed weights and a dynamic gain or self-tuning gain for a fine 

adjustment of amplitude. 

Keywords: Spike response model, spikes generator circuit, fuzzy XOR, adaptive fuzzy 

spiking neuron, learning algorithm, fuzzy neuron, self-tuning. 

1 Introduction 

The artificial neurons are mathematical models inspired by the functioning of biological 

neurons. These had been developed for several decades [McCulloch and Pitts (1943); 

Widrow, Lehr and Michael (1990); Gupta and Qi (1992); Gupta (1993); Gupta and Rao 

(1994); Pérez and Ramírez (2001); Ramírez and Pérez (2002); Ghosh-Dastidar and Adeli 

(2009); Pérez, Garcés, Cabiedes et al. (2009); Ramírez-Mendoza, Pérez-Silva and Lara-

Rosano (2011); Ramírez-Mendoza (2014); Ramírez-Mendoza (unpublished); Ramírez-

Mendoza (unpublished)]. Among the operations artificial neurons can perform with the 

purpose of imitating the neuronal characteristics are memory, learning, axonic delay time, 

the refractory period and the generation of spikes.  

The models of fuzzy neurons are based on the human reasoning, the approximate reasoning 

and fuzzy logic [Zadeh (1977); Lara-Rosano (2017)]. Also, different models of neural 

networks and learning methods have been developed [Widrow, Lehr and Michael (1990); 

Gupta and Qi (1992); Gupta (1993); Gupta and Rao (1994); Pérez and Ramírez (2001); 

Ramírez and Pérez (2002); Pérez, Garcés, Cabiedes et al. (2009); Ramírez-Mendoza, 

Pérez-Silva and Lara-Rosano (2011); Ramírez-Mendoza (2014); Ramírez-Mendoza 

(unpublished)], as spiking neural networks [Ghosh-Dastidar and Adeli (2009); Chaturvedi 
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(2011); Ramírez-Mendoza (unpublished); Ramírez-Mendoza (unpublished)], with 

applications in various areas. 

The application areas are control [Yu and Rosen (2013)], instrumentation and measurement 

[Jiang, Guo and Zhang (2015)], electrophysiological recordings [Rossant, Goodman, 

Platkiewicz et al. (2010)], pattern recognition [Espinosa-Ramos, Cruz-Cortes, and 

Vazquez (2013)], and Drones and Induction Motors [Ramírez-Mendoza, Covarrubias-

Fabela, Amezquita-Brooks et al. (2018)].  

Also, neural networks (NNs) had been applied for stochastic analysis of composite 

materials for aeronautical and aerospace structures of aircrafts, UAVs, helicopters, 

improving the efficiency of the simulations of the effects of mechanical vibrations, instead 

of traditional methods such as the algorithm of the finite element [Tawfik, Bishay and 

Sadek (2018)].  

Other application of artificial neural networks (ANNs) with an optimization algorithm is the 

prediction of the modulus of rupture values of glass fiber reinforced concrete panels as a 

preliminary criterion for quality check of fabricated products, the results presented in 

[Yildizel and Öztürk (2016)], exhibit ANNs with back propagation algorithm models have 

more fitting performance compared with a classic multiple linear regression (MLR) model. 

The spiking neuron models are popular for studies of memory, neural coding, neural 

network dynamics and reproduce spiking behavior of cortical neurons or fast spiking 

cortical interneurons [Gerstner and Kistler (2002); Izhikevich (2003)]. The simple SRM 

proposed here is like that of the nonlinear integrate and fire model, the parameters depend 

on the time since the last output spike, however, the formulation of the equations is 

different. The main contribution of this paper is a SRM based on a SGC [Ramírez-Mendoza, 

Pérez-Silva and Lara-Rosano (2011)], of Adaptive Fuzzy Spiking Neurons (AFSNs) with 

a learning algorithm developed in Ramírez-Mendoza et al. [Ramírez-Mendoza (2014); 

Ramírez-Mendoza (unpublished); Ramírez-Mendoza (unpublished)].  

Spiking neural networks (SNNs) had been developed for imitating the behavior of 

biological neurons, the ANNs, are based on the training of the weights, but the SNNs also 

include a delay parameter, the signal delay from one neuron to another is different, giving 

more flexibility and an additional parameter for the training of the SNN, with applications 

in pattern recognition and image processing [Rosado-Muñoz, Bataller-Mompeán and 

Guerrero-Martínez (2012)]. 

The SRM of the AFSNs proposed in this work, presents also the neuronal characteristics 

such as the refractory time, axonal delay and the generation of spike trains. An important 

point is that neuronal characteristics such as refractory time and axonal delay are performed 

before the generation of the spike trains and therefore, the shape of the spikes remains 

along the neural network for neuronal coding [Ramírez-Mendoza, Pérez-Silva and Lara-

Rosano (2011)].  

Learning systems with a hardware spike timing dependent plasticity (STDP) learning rule 

applied to memristor-based NN, had been implemented in discrete-time where spikes are 

expressed as pulses, the neurons are synchronous with a global clock [Zheng and 

Mazumder (2018)], the results demonstrate the efficacy of the learning algorithms. 

A SNN third generation neural network model presented in Lashkare et al. [Lashkare, 

Chouhan, Chavan et al. (2018)], with hardware realization for high integration, the spike 
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frequency depends on the input current. The spike trains frequency of the SGC presented 

in Ramírez-Mendoza et al. [Ramírez-Mendoza, Pérez-Silva and Lara-Rosano (2011)], is 

proportional to the amplitude of the response of the activation function of the AFSN. 

The operator XOR is very important in the computational programming, it performs a 

primitive operation used in different encryption algorithms [Bedregal, Reiser and Dimuro 

(2009)]. Therefore, a fuzzy XOR is proposed as a primitive fuzzy operator to perform 

different configurations with AFSNs and thus model systems and processes. 

As an illustrative example of the good functioning of the spike model, a configuration of a 

fuzzy XOR is proposed. The fuzzy XOR is very important for the comprehension and future 

applications of AFSNs in different areas of knowledge such as systems identification, 

experimental aerodynamics, industrial applications [Ramírez-Mendoza, Covarrubias-Fabela, 

Amezquita-Brooks et al. (2018)], process control in the design of control rules for proportional 

integral derivative controllers (PIDs) [Ramírez-Mendoza (unpublished); Ramírez-Mendoza 

(unpublished)], and navigation systems and trajectory tracking of low-scale unmanned aerial 

vehicles (UAVs) [Álvarez, Olascoaga, Rivera et al. (2017); Amezquita-Brooks, Liceaga-

Castro, González-Sánchez et al. (2017)], among others. The following section presents a 

description of the AFSNs and the main contribution of this paper the modeling of the spike 

response of the AFSNs. The complete development of the AFSNs is presented in Ramírez-

Mendoza et al. [Ramírez-Mendoza, Pérez-Silva and Lara-Rosano (2011); Ramírez-Mendoza 

(2014); Ramírez-Mendoza (unpublished); Ramírez-Mendoza (unpublished); Ramírez-

Mendoza, Covarrubias-Fabela, Amezquita-Brooks et al. (2018)]. 

2 Adaptive fuzzy spiking neurons description 

The AFSNs are fuzzy neurons with synaptic and somatic operations. Fig. 1 shows the block 

diagram of the AFSN with crisp or non-fuzzy inputs. The AFSN model has dendritic input 

signals 𝑧𝑖𝑛𝑗(𝑘)  ∈  [0, 1] for unipolar signals, and 𝑧𝑖𝑛𝑗(𝑘)  ∈  [−1, 1] for bipolar signals. 

 

Figure 1: Block diagram of the AFSN model 
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2.1 Somatic aggregation operation 

The somatic aggregation operation is performed according to Gupta [Gupta and Qi (1992); 

Gupta (1993); Gupta and Rao (1994)], as a Gupta fuzzy integrator (GFI) or generalized 

fuzzy OR of N inputs formed by N-1 fuzzy OR operators (MAX operators), Eq. (1).  

�̃�𝑚𝑎𝑥(k)  =  𝑀𝐴𝑋𝑗=1
𝑁 min(𝑧𝑖𝑛𝑗(𝑘), 𝑤𝑖𝑛𝑗(𝑘))                    (1) 

Where: 

𝑘 is the time variable. 

𝑧𝑖𝑛𝑗(𝑘) are the dendrite inputs. 

𝑤𝑖𝑛𝑗(𝑘) are the synaptic weights. 

�̃�𝑖𝑛𝑗(k) = min(𝑧𝑖𝑛𝑗(𝑘), 𝑤𝑖𝑛𝑗(𝑘)) are the synaptic operations. 

2.2 Non-linear somatic operation 

For the non-linear somatic operation of the AFSN model, a sigmoid activation function with 

threshold and a learning algorithm were developed in Ramírez-Mendoza et al. [Ramírez-

Mendoza, Pérez-Silva and Lara-Rosano (2011); Ramírez-Mendoza (2014); Ramírez-

Mendoza (unpublished); Ramírez-Mendoza (unpublished)], the activation function is 

defined by Eq. (3), 

�̃�𝑜𝑢𝑡(k) = max (�̃�𝑚𝑎𝑥(k), 𝜆1(𝑘))               (2) 

• For bipolar signals, 

�̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑘) =
2

1+ 𝑒
(−𝑚𝑖𝑛(𝛾,�̃�𝑜𝑢𝑡(𝑘))⋅𝑎)

− 1              (3) 

Where 

𝜆1(𝑘) is a threshold signal. 

−1 ≤ 𝛾 ≤ 1, is the somatic gain that determines the slope of the activation function, and 

the learning factor that regulates the speed of learning.  

𝑎 is a real number, usually, 𝑎 > 0. 

• For AFSNs without input spikes, only no fuzzy inputs, and no learning algorithm, �̃�(k) 

is calculated with Eq. (4) and �̃�𝑡𝑟𝑎𝑖𝑛(k) with Eq. (6). 

�̃�(k) =  {
1      𝑖𝑓  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑘)  ≥  𝜆2(𝑘)

−1     𝑖𝑓  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑘)  <  𝜆2(𝑘)
                 (4) 

�̃�𝑡𝑟𝑎𝑖𝑛𝑝(k) =  min (�̃�(k), 𝑉𝑐𝑙𝑜𝑐𝑘(𝑘))                (5) 

�̃�𝑡𝑟𝑎𝑖𝑛(k) = {
1      𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛𝑝(𝑘)  >  0

−1     𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛𝑝(𝑘)  ≤  0
                   (6) 

Where: 

�̃�(k) is a fuzzy mapping of the Gupta fuzzy sum-integral �̃�𝑚𝑎𝑥(k). 

𝜆2(𝑘) is a threshold signal, for example, triangular shape. 

𝑉𝑐𝑙𝑜𝑐𝑘(𝑘) is the clock signal. 
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• For AFSNs with spikes as inputs, that is, pulses as inputs after a step function with 

threshold, and learning algorithm, �̃�(k) is calculated with Eq. (7). 

�̃�(k) =  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑘)                                  (7) 

�̃�𝑡𝑟𝑎𝑖𝑛(k) = {
𝑉𝑐𝑙𝑜𝑐𝑘(𝑘)      𝑖𝑓  �̃�(k)  >  𝑉𝑟𝑒𝑓(𝑘)

−1                 𝑖𝑓  �̃�(k)  ≤  𝑉𝑟𝑒𝑓(𝑘)
                                (8) 

Where 

𝑉𝑟𝑒𝑓(𝑘) is a reference voltage 

Because of the spikes are bipolar signals for �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k), 

�̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) = {
+𝑉      𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛(k)  >  𝑉𝑟𝑒𝑓(𝑘)

−𝑉     𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛(k)  ≤  𝑉𝑟𝑒𝑓(𝑘)
                 (9) 

Where, 

+V is a positive saturation voltage 

-V is a negative saturation voltage 

𝑉𝑟𝑒𝑓(𝑘) is a reference voltage 

The error for the adaptive learning algorithm for AFSN model with a Gupta integrator, is 

defined in Eq. (10). 

𝑒(𝑘) =  �̃�𝑑𝑠𝑑(k) −  �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k)                          (10) 

Where, 

 �̃�𝑑𝑠𝑑(k) is the desired output of AFSNj and is the �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) of some other AFSN.  

The learning algorithm for bipolar signals requires a reference input to each AFSN, the 

input reference value is the maximum value in the interval [-1, 1] for bipolar signals. The 

ideal values of the weights are unknown, even though, are calculated by the adaptive 

learning algorithm, based on proposed initial values. 

2.3 Spike model based on the spikes generator circuit 

Based on Eq. (9), the spikes are obtained according to Eq. (11), the mathematical model of 

the SGC [Ramírez-Mendoza, Pérez-Silva and Lara-Rosano (2011)], 

�̃�𝑠𝑝𝑖𝑘𝑒(k) = 𝑅3 ∙ 𝐼𝑠 ∙ (𝑒
𝐾∙𝑉𝐷(𝑘)

𝑇𝐾 − 1) − 
𝑅3

𝑅1
∙ �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) −  (

𝑅2

𝑅1
+ 1) ∙ 𝑅3 ∙ 𝐶1 ∙

𝑑�̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k)

𝑑𝑘
           

                 (11) 

A spike model is developed based on the SGC Fig. 1 and Eq. (11). The positive part of the 

spike model [Desoer and Kuh (1969); Esfandiari and Lu (2014)], is defined by the 

equations: 

𝑑�̃�𝑠𝑝𝑖𝑘𝑒(k)

𝑑𝑘
 + (

(𝑅2+𝑅3)

𝑅2∙𝑅3∙𝐶
) ∙ �̃�𝑠𝑝𝑖𝑘𝑒(k) =  

𝑅2∙𝐼𝐷(𝑘) + �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k)

𝑅2∙𝐶
                              (12) 

�̃�𝑠𝑝𝑖𝑘𝑒(k) =
(𝑅2∙𝐼𝐷(𝑘) + �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k))∙𝑅3

𝑅2 + 𝑅3
∙ (1 −  𝑒

−(
𝑅2+ 𝑅3
𝑅2∙𝑅3∙𝐶

)∙𝑘
)          (13) 

The negative part of the spike model [Esfandiari and Lu (2014)], is defined by the equations: 
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𝑑�̃�𝑠𝑝𝑖𝑘𝑒(k)

𝑑𝑘
 + (

1
(𝑅1+𝑅2)∙𝑅3∙𝐶

𝑅1+𝑅2+𝑅3

) ∙ �̃�𝑠𝑝𝑖𝑘𝑒(k)  = 0                   (14) 

�̃�𝑠𝑝𝑖𝑘𝑒(k)  =  �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) ∙ 𝑒

−(
1

(𝑅1+𝑅2)∙𝑅3∙𝐶
𝑅1+𝑅2+𝑅3

∙𝑘)

                (15) 

• Based on Eqs. (13) and (15), if only the spikes are available, �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) could be 

obtained with Eq. (16). 

�̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) =  {
1      𝑖𝑓  �̃�𝑠𝑝𝑖𝑘𝑒(k)  >  𝑉𝑟𝑒𝑓(𝑘)

−1    𝑖𝑓  �̃�𝑠𝑝𝑖𝑘𝑒(k)  ≤  𝑉𝑟𝑒𝑓(𝑘)
                         (16) 

Where, 

𝑘   is the time variable [seconds]. 

𝑅1, 𝑅2, 𝑅3  are resistances [Ω]. 

𝐶   is a capacitance [F]. 

𝐼𝐷   is the diode current [A]. 

The comparison between the traditional models of adaptive neurons, fuzzy adaptive 

neurons and fuzzy adaptive spiking neurons with the AFSN model is shown in Tab. 1. 

Table 1: Comparison of Neuron Models 

Neuron Model Learning 

Algorithm 

Fuzzy Pulse train 

proportional in 

frequency to the 

neuron response. 

Spike 

Response 

Neural Networks with back 

propagation algorithms. 

 

 
✓  

   

Fuzzy Adaptive Neurons of 

Gupta. 

✓  ✓    

Spiking Neural Networks ✓    ✓  

Adaptive Fuzzy Spiking 

Neurons 

✓  ✓  ✓  ✓  

3 Results of the simulation of the Fuzzy XOR based on the AFSNs 

In this section, a configuration for realizing a fuzzy XOR based on the AFSNs is proposed. 

To obtain the fuzzy XOR, it is proposed that the weights adapt continuously, that is, 

dynamically, all the parameters are adapted online. Also, with values of fixed weights 

obtained after training. Finally, with fixed weights and a dynamic gain for a fine adjustment 

of amplitude and a greater definition in the results. The simulation results of the spike 

model are presented in MatlabTM environment. 

3.1 Fuzzy XOR configuration 

As illustrative example, a configuration of a fuzzy XOR is proposed with base on the fuzzy 

logic, the equation that defines a non-fuzzy XOR is Eq. (17),  
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𝑥⨁𝑦 = (𝑥 + 𝑦) ⋅ (𝑥′ + 𝑦′)  (17) 

Expressing the Eq. (17), with fuzzy operations, Eq. (18), 

𝜇𝑋⊕𝑌(𝑥 ⊕ 𝑦) = min(max(𝜇𝑋(𝑥), 𝜇𝑌(𝑦)) , max(−𝜇𝑋(𝑥), −𝜇𝑌(𝑦)))  ∀ 𝑥, 𝑦 ∈ 𝑈  (18) 

where X, Y are fuzzy sets of the universe of discourse U. 

The proposed configuration of a fuzzy XOR is based on the AFSNs, the block diagram is 

shown in Fig. 2.  

 

Figure 2: Block diagram of the fuzzy XOR configuration  

According to the proposed model of the AFSN [Ramírez-Mendoza, Pérez-Silva and Lara-

Rosano (2011); Ramírez-Mendoza (2014); Ramírez-Mendoza (unpublished); Ramírez-

Mendoza (unpublished)], the equations that determine the fuzzy XOR are: 

�̃�max 𝐴𝐹𝑆𝑁 1(k)  =

 𝑚𝑎𝑥 (min (𝑉𝑟𝑒𝑓(𝑘), 𝑤𝑟𝑒𝑓 1(𝑘)) , min(𝑉𝑥(𝑘), 𝑤𝑖𝑛 𝑥(𝑘)), min (𝑉𝑦(𝑘), 𝑤𝑖𝑛 𝑦(𝑘))) (19) 

�̃�𝑜𝑢𝑡 𝐴𝐹𝑆𝑁 1(k) = max (�̃�max 𝐴𝐹𝑆𝑁 1(k), 𝜆1(𝑘))  (20) 

�̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 1(𝑘) =
2

1+ 𝑒
(−𝑚𝑖𝑛(𝛾1,�̃�𝑜𝑢𝑡 𝐴𝐹𝑆𝑁 1(𝑘))⋅𝑎1)

− 1 (21) 

�̃�max 𝐴𝐹𝑆𝑁 2(k)  =

𝑚𝑎𝑥 (min (𝑉𝑟𝑒𝑓(𝑘), 𝑤𝑟𝑒𝑓 2(𝑘)) , min(−𝑉𝑥(𝑘), 𝑤𝑖𝑛 𝑥′(𝑘)), min (−𝑉𝑦(𝑘), 𝑤𝑖𝑛 𝑦′(𝑘))) (22) 

�̃�𝑜𝑢𝑡 𝐴𝐹𝑆𝑁 2(k) = max (�̃�max 𝐴𝐹𝑆𝑁 2(k), 𝜆2(𝑘)) (23) 

�̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 2(𝑘) =
2

1+ 𝑒
(−𝑚𝑖𝑛(𝛾2,�̃�𝑜𝑢𝑡 𝐴𝐹𝑆𝑁 2(𝑘))⋅𝑎2)

− 1 (24) 

𝑉𝐴(𝑘) =  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 1(𝑘)  (25) 

�̃�max 𝐴𝐹𝑆𝑁 3(k)  =  𝑚𝑎𝑥 (min (𝑉𝑟𝑒𝑓(𝑘), 𝑤𝑟𝑒𝑓 3(𝑘)) , min(𝑉𝐴(𝑘), 𝑤𝑖𝑛 𝐴(𝑘)))  (26) 

�̃�𝑜𝑢𝑡 𝐴𝐹𝑆𝑁 3(k) = max (�̃�max 𝐴𝐹𝑆𝑁 3(k), 𝜆3 1(𝑘))  (27) 

𝛾3(𝑘) =  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 2(𝑘)  (28) 

�̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 3(𝑘) =
2

1+ 𝑒
(−𝑚𝑖𝑛(𝛾3,�̃�𝑜𝑢𝑡 𝐴𝐹𝑆𝑁 3(𝑘))⋅𝑎3)

− 1  (29) 
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�̃�𝑋𝑂𝑅(𝑘) = �̃�𝑥⊕𝑦(𝑘) = �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 3(𝑘)  (30) 

�̃�𝑠𝑡𝑒𝑝 𝐴𝐹𝑆𝑁 3(k) =  {
1      𝑖𝑓  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 3(𝑘)  ≥  𝜆3 2(𝑘)

−1     𝑖𝑓  �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 3(𝑘)  <  𝜆3 2(𝑘)
     (31) 

where 𝜆3 2(𝑘) is a triangular wave. 

�̃�𝑡𝑟𝑎𝑖𝑛𝑝(k) =  min (�̃�𝑠𝑡𝑒𝑝 𝐴𝐹𝑆𝑁 3(k), 𝑉𝑐𝑙𝑜𝑐𝑘(𝑘))   (32) 

�̃�𝑡𝑟𝑎𝑖𝑛(k) = {
1      𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛𝑝(𝑘)  >  0

−1     𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛𝑝(𝑘)  ≤  0
       (33) 

 �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) = {
+𝑉      𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛(k)  >  𝑉𝑟𝑒𝑓(𝑘)

−𝑉     𝑖𝑓  �̃�𝑡𝑟𝑎𝑖𝑛(k)  ≤  𝑉𝑟𝑒𝑓(𝑘)
      (34) 

For the positive part of the spike model, 

�̃�𝑠𝑝𝑖𝑘𝑒(k) =
(𝑅2∙𝐼𝐷(𝑘) + �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k))∙𝑅3

𝑅2 + 𝑅3
∙ (1 −  𝑒

−(
𝑅2+ 𝑅3
𝑅2∙𝑅3∙𝐶

)∙𝑘
)   (35) 

For the negative part of the spike model,  

�̃�𝑠𝑝𝑖𝑘𝑒(k)  =  �̃�𝑡𝑟𝑎𝑖𝑛𝑏𝑖(k) ∙ 𝑒

−(
1

(𝑅1+𝑅2)∙𝑅3∙𝐶
𝑅1+𝑅2+𝑅3

∙𝑘)

       (36) 

Table 2: Configuration of the Fuzzy XOR operator 

Number of AFSNs 3 

AFSNs for Input layer of the Fuzzy XOR operator 2 

AFSNs for Output layer of the Fuzzy XOR operator 1 

Sigmoidal Activation Function 3 

Step Activation Function 1 

Spike Generator 1 

3.2 Simulation results 

The results of the simulations for the fuzzy XOR configuration is presented, first with 

dynamic parameters, second with static parameters and in third place with the static 

parameters and a dynamic gain at the output of each neuron before generating the trains of 

spikes. The dynamic parameters of the fuzzy XOR, are determined by the learning 

algorithm of AFSNs in line. The static parameters of the fuzzy XOR, are previously 

determined by training the learning algorithm of AFSNs. The result of the fuzzy XOR with 

the configuration here proposed, then is applied a step activation function, for obtaining 

the spike trains for illustrating the SRM. 

The input signals 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) for the example are non-fuzzy and are shown in Fig. 3. 

For the simulations, the sampling period is 𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 0.1 𝜇𝑠. 
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Figure 3: Input signals 𝑽𝒙(𝒌) and 𝑽𝒚(𝒌) 

3.2.1 Fuzzy XOR configuration with dynamic parameters 

The fuzzy XOR �̃�𝑥⊕𝑦(𝑘) of the input signals 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) is obtained with the fuzzy 

XOR configuration proposed here, with the parameters adapting dynamically, three 

additional neurons are required, for determine the weights 𝑤𝑖𝑛𝐴𝐹𝑆𝑁𝑖
(𝑘) of the input signals 

of the three neurons of Fig. 2.  

The initial conditions for 𝑘 = 0 are,  

• 𝑎 = 2   

• 𝐺𝐴𝐹𝑆𝑁3
= 4;     �̃�𝑋𝑂𝑅(𝑘) = �̃�𝑥⊕𝑦(𝑘) = �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 3(𝑘) ∗ 𝐺𝐴𝐹𝑆𝑁3

 

• 𝑤𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘)  =  0, 𝑤𝑖𝑛𝐴𝐹𝑆𝑁𝑖

(𝑘)  =   0 

•  𝑉𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘) = 1, 𝑘 = 0 … 𝑛   

• 𝜆1 𝐴𝐹𝑆𝑁𝑖
(𝑘) =  −1, 𝑘 = 0 … 𝑛 

• 𝛾𝐴𝐹𝑆𝑁1
(𝑘)  = 𝛾𝐴𝐹𝑆𝑁2

(𝑘) =  1. 

• 𝛾𝐴𝐹𝑆𝑁3
(𝑘) =  𝛾

3
(𝑘) =  �̃�

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 2
(𝑘) 

The result of the simulation �̃�𝑥⊕𝑦(𝑘) after 7 iterations, is shown in Fig. 4. 

 

Figure 4: Simulation results of the fuzzy XOR configuration �̃�𝒙⊕𝒚(𝒌) with dynamic 

parameters 
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3.2.2 Fuzzy XOR configuration with static parameters 

The result of the simulation of �̃�𝑥⊕𝑦(𝑘) for the input signals 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) of the fuzzy 

XOR configuration with static parameters, obtained by training with three additional and 

independent neurons AFSN4, AFSN5, AFSN6, to determine the input weights 𝑤𝑖𝑛 𝐴𝐹𝑆𝑁𝑖
(𝑘), 

after 3 iterations, is shown in Fig. 5. 

The initial conditions for 𝑘 = 0 are,  

• 𝑎 = 1   

• 𝐺𝐴𝐹𝑆𝑁3
= 4.4047; �̃�𝑋𝑂𝑅(𝑘) = �̃�𝑥⊕𝑦(𝑘) = �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 3(𝑘) ∗ 𝐺𝐴𝐹𝑆𝑁3

 

• 𝑤𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘)  =  −1, 𝑘 = 0 … 𝑛, 𝑓𝑢𝑧𝑧𝑦 𝑋𝑂𝑅 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

• 𝑤𝑖𝑛𝐴𝐹𝑆𝑁𝑖
(𝑘)  =  0, 𝑓𝑢𝑧𝑧𝑦 𝑋𝑂𝑅 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

• 𝑤𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘)  = 1, 𝑘 = 0 … 𝑛, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

•  𝑤𝑖𝑛𝐴𝐹𝑆𝑁𝑖
(𝑘)  =  0, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

•  𝑉𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘) = 1, 𝑘 = 0 … 𝑛  

• 𝜆1 𝐴𝐹𝑆𝑁𝑖
(𝑘) =  −1, 𝑘 = 0 … 𝑛 

• 𝛾𝐴𝐹𝑆𝑁1
(𝑘)  = 𝛾𝐴𝐹𝑆𝑁2

(𝑘) =  1, 𝑘 = 0 … 𝑛, 𝑓𝑢𝑧𝑧𝑦 𝑋𝑂𝑅 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠  

• 𝛾𝐴𝐹𝑆𝑁3
(𝑘) =  𝛾

3
(𝑘) =  �̃�

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 2
(𝑘), 𝑓𝑢𝑧𝑧𝑦 𝑋𝑂𝑅 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 

• 𝛾𝐴𝐹𝑆𝑁4
(𝑘)  = 𝛾𝐴𝐹𝑆𝑁5

(𝑘) = 𝛾𝐴𝐹𝑆𝑁6
(𝑘) = 1,  

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑖𝑛𝑔𝑙𝑒 𝑛𝑒𝑢𝑟𝑜𝑛𝑠  

 

Figure 5: Simulation results of the fuzzy XOR configuration �̃�𝒙⊕𝒚(𝒌)  with static 

parameters 

The weights obtained for the fuzzy XOR configuration, after training are: 

• 𝑤𝑖𝑛 𝑥 𝐴𝐹𝑆𝑁1
(𝑘)  = 𝑤𝑖𝑛 𝑦 𝐴𝐹𝑆𝑁1

(𝑘) = 1 

• 𝑤𝑖𝑛 𝑥′ 𝐴𝐹𝑆𝑁2
(𝑘)  = 𝑤𝑖𝑛 𝑦′ 𝐴𝐹𝑆𝑁2

(𝑘) = 1 

• 𝑤𝑖𝑛 𝐴 𝐴𝐹𝑆𝑁3
(𝑘)  = 1 

3.2.3 Fuzzy XOR configuration with static parameters and a dynamic gain in each AFSN 

The result of the simulation of �̃�𝑥⊕𝑦(𝑘) for the input signals 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) of the fuzzy 

XOR configuration with static parameters previously obtained in Section 3.2.2, and a 
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dynamic gain in each AFSN determined with an additional and independent neuron AFSN4, 

after 1 iteration, is shown in Fig. 6. 

The initial conditions for 𝑘 = 0 are,  

• 𝑎 = 1   

• 𝑇𝑠𝑝𝑖𝑘𝑒 = 𝑇𝑐𝑙𝑜𝑐𝑘 = 2 𝜇𝑠 

• 𝐺𝐴𝐹𝑆𝑁𝑖
(𝑘) = |𝑤𝑖𝑛𝐴𝐹𝑆𝑁4

(𝑘) ∗ 2.3| = 0; �̃�𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 𝑖(𝑘) ∗ 𝐺𝐴𝐹𝑆𝑁𝑖
, 𝑖 = 1 … 3 

• 𝑤𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘)  =  −1, 𝑘 = 0 … 𝑛, 𝑓𝑢𝑧𝑧𝑦 𝑋𝑂𝑅 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

• 𝑤𝑖𝑛𝐴𝐹𝑆𝑁𝑖
(𝑘)  =  1, 𝑘 = 0 … 𝑛, 𝑖 = 1 … 3, 𝑓𝑢𝑧𝑧𝑦 𝑋𝑂𝑅 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

• 𝑤𝑟𝑒𝑓𝐴𝐹𝑆𝑁4
(𝑘)  =  1, 𝑘 = 0 … 𝑛, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

•  𝑤𝑖𝑛𝐴𝐹𝑆𝑁4
(𝑘)  =  0, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

•  𝑉𝑟𝑒𝑓𝐴𝐹𝑆𝑁𝑖
(𝑘) = 1, 𝑘 = 0 … 𝑛, 𝑖 = 1 … 4   

• 𝜆1 𝐴𝐹𝑆𝑁𝑖
(𝑘) =  −1, 𝑘 = 0 … 𝑛, 𝑖 = 1 … 4    

• 𝜆2 𝐴𝐹𝑆𝑁3
(𝑘) = 𝜆3 2(𝑘) is a triangular wave of 100 KHz of frequency, amplitude of 1. 

• 𝛾𝐴𝐹𝑆𝑁1
(𝑘)  = 𝛾𝐴𝐹𝑆𝑁2

(𝑘) =  1, 𝑘 = 1 … 𝑛 

• 𝛾𝐴𝐹𝑆𝑁3
(𝑘) =  𝛾

3
(𝑘) =  �̃�

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝐹𝑆𝑁 2
(𝑘) 

• 𝛾𝐴𝐹𝑆𝑁4
(𝑘) =  1, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛  

 

Figure 6: Simulation results of the fuzzy XOR configuration �̃�𝒙⊕𝒚(𝒌)  with static 

parameters and a dynamic gain in each AFSN 

3.2.4 Results of the simulation of the Spike trains with the Spike model 

Based on the results obtained from the fuzzy XOR configuration �̃�𝑥⊕𝑦(𝑘) with weights 

or static parameters and a dynamic gain in each AFSN, the spike trains will be generated 

agree with the spike model proposed in equations Eqs. 35 and 36. 

Spike model with constant 𝐼𝐷 diode current,  

• The values of the capacitors and the resistors are: 

𝑅1 =  100 𝐾Ω 

𝑅2 =  100 𝐾Ω 

𝑅3 =  110 Ω 

𝐶1 = 2.64 𝑛𝐹 

• The values of the parameters of the diode are: 
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𝑉𝐷 = 0.7 𝑉 

𝐾 = 11600 

𝑇𝐾 = 298 𝐾 

𝐼𝐷 = 10 𝑚𝐴 

• It is considered an ultra-fast high conductance diode with a reverse recovery time of 

4 𝑛𝑠, also a high-speed precision operational amplifier with a slew rate of 50 𝑉/𝜇𝑠. 

The simulation results are shown in Figs. 7 and 8 for the input 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) of Fig. 3. 

Fig. 9 shows the results for the fuzzy XOR of the input 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) of Fig. 3, but 𝑉𝑦(𝑘) 

= 𝑉𝑥(𝑘).  

 

Figure 7: Simulation results of the spike model for the fuzzy XOR configuration �̃�𝑥⊕𝑦(𝑘) 

with static parameters and a dynamic gain in each AFSN 

 

Figure 8: Simulation results of the of the spike model 
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Figure 9: Simulation results of the spike model for the fuzzy XOR configuration �̃�𝒙⊕𝒚(𝒌) 

with static parameters and a dynamic gain in each AFSN, for the input signals 

𝑽𝒙(𝒌) = 𝑽𝒚(𝒌) 

Spike model with dynamic 𝐼𝐷 diode current,  

• The values of the capacitors and the resistors are: 

𝑅1 =  1 𝐾Ω 

𝑅2 =  1 𝐾Ω 

𝑅3 =  100 Ω 

𝐶1 = 2.2 𝑛𝐹 

• The values of the parameters of the diode are: 

𝑉𝐷 = 0.7 𝑉 

𝐾 = 11600 

𝑇𝐾 = 298 𝐾 

𝐼𝑠 = 0.015 𝑝𝐴 

• It is considered an ultra-fast high conductance diode with a reverse recovery time of 

4 𝑛𝑠, also a high-speed precision operational amplifier with a slew rate of 50 𝑉/𝜇𝑠. 

The simulation results are shown in Figs. 10 and 11 for the inputs 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) of Fig. 

3. Fig. 12 shows the results for the fuzzy XOR of the inputs 𝑉𝑥(𝑘) and 𝑉𝑦(𝑘) of Fig. 3, but 

𝑉𝑦(𝑘) = 𝑉𝑥(𝑘). 

 

Figure 10: Simulation results of the spike model for the fuzzy XOR configuration 

�̃�𝑥⊕𝑦(𝑘) with static parameters and a dynamic gain in each AFSN 
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Figure 11: Simulation results of the of the spike model 

 

Figure 12: Simulation results of the spike model for the fuzzy XOR configuration 

�̃�𝒙⊕𝒚(𝒌) with static parameters and a dynamic gain in each AFSN, for the input signals 

𝑽𝒙(𝒌) = 𝑽𝒚(𝒌) 

4 Conclusions and comments 

A SRM was obtained based on the spike generator circuit [Ramírez-Mendoza, Pérez-Silva 

and Lara-Rosano (2011)], this model describes the response behavior of the spikes inspired 

by biological spiking neurons.  

One of the great advantages of the spike response model is that the process of information 

of the time firing pattern or pattern of spike firing with respect to time, is performed based 

on the trains of pulses obtained from the square pulses of the step activation function, 

proportional in pulse width to the MAX Operator response of the inputs to the neuron, 

weighted with the MIN operator. That is to say, the neuronal characteristics such as the 

refractory time, the axonic delay and the generation of spikes, are performed based on 

bipolar pulses, so that the information of the pattern of time spike firing is preserved despite 

the aforementioned neuronal characteristics, also the shape of the response spike model for 

each pulse. It should also be noted that the frequency of the spike trains are directly 

proportional to the width of the pulses obtained from the step-type activation function and 

therefore to the Gupta-type fuzzy integral (MAX operator generalized), of the neuron 

inputs weighted by means of the synaptic MIN operator. 
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However, a disadvantage of the AFSNs method could be that many systems or industrial 

processes have inputs or parameters that do not fit the fuzzy values within the interval [0, 1] 

for unipolar AFSNs, or [-1, 1] for bipolar AFSNs. The solution to these challenges has been 

to scale the values of the inputs to carry out the information process in a fuzzy way and then, 

the output response is rescaled to the interval of values of the system or industrial process 

[Ramírez-Mendoza, Covarrubias-Fabela, Amezquita-Brooks et al. (2018)]. 

A potential issue for fuzzy XOR connectives is in quantum computing [Ávila, Schmalfuss, 

Reiser et al. (2015)], however, systems modeled exclusively with AFSNs should be able 

to be performed based on basic fuzzy logic operators such as MIN, MAX, INV and the 

XOR fuzzy operator, similarly as the systems based on classic or non-fuzzy logical 

operators, INV, AND, OR, XOR; which represents a challenge because many linear and 

non-linear systems models require other types of mathematical operations such as 

trigonometric, exponential, derivative and integral. 

The SRM and the AFSNs method will allow more precise simulations with applications in 

several areas such as process control, instrumentation, experimental aerodynamics, 

navigation and trajectory tracking of UAVs, among others. The proposed example, the 

fuzzy XOR, demonstrates that the basic fuzzy logic operators can be implemented with the 

AFSNs, and the results of the simulation show that the dynamic gain or self-tuning gain, 

of the curve fitting can be used for systems modeling optimization applications and 

computational modeling [Dutta, Murthy, Kim et al. (2017)]. 
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