
 

 

 

Copyright © 2018 Tech Science Press                     CMES, vol.116, no.1, pp.69-88, 2018 

CMES. doi:10.31614/cmes.2018.02415                                                                   www.techscience.com/cmes 

 

 

Distance Control Algorithm for Automobile Automatic Obstacle 

Avoidance and Cruise System 
 

Jinguo Zhao
1, * 

 

 

Abstract: With the improvement of automobile ownership in recent years, the incidence 

of traffic accidents constantly increases and requirements on the security of automobiles 

become increasingly higher. As science and technology develops constantly, the 

development of automobile automatic obstacle avoidance and cruise system accelerates 

gradually, and the requirement on distance control becomes stricter. Automobile 

automatic obstacle avoidance and cruise system can determine the conditions of 

automobiles and roads using sensing technology, automatically adopt measures to control 

automobile after discovering road safety hazards, thus to reduce the incidence of traffic 

accidents. To prevent accidental collision of automobile which are installed with 

automatic obstacle avoidance and cruise system, active brake should be controlled during 

driving. This study put forward a neural network based proportional-integral-derivative 

(PID) control algorithm. The active brake of automobiles was effectively controlled using 

the system to keep the distance between automobiles. Moreover the algorithm was tested 

using professional automobile simulation platform. The results demonstrated that neural 

network based PID control algorithm can precisely and efficiently control the distance 

between two cars. This work provides a reference for the development of automobile 

automatic obstacle avoidance and cruise system. 
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1 Introduction 

With the development of society and the improvement of life quality, requirements on 

trips have become increasingly higher. Automobiles have gradually been a common 

means of transportation. The comfortability, security and environmental protection 

property of automobiles can affect the development of the automobile industry. The 

frequent traffic accidents in recent years make people pay more attentions to the security 

of automobile; as a result automobile automatic obstacle avoidance and cruise system 

emerges. Proportional-integral-derivative (PID) controller is a classic control method 

[Receanu (2013)], and its controlling performance was better than PI controller [Giwa 

(2016)]. Viknesh and Manikandan [Viknesh and Manikandan (2017)] studied the 

working principle of CSC converter using PID controller and obtained good results. 

Based on the analysis of adaptive cruise control (ACC) system, Gong et al. [Gong, Luo, 

Wang et al. (2010] put forward a parameter self-tuning fuzzy proportion integration 
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differentiation (PID) algorithm to design the control strategy of ACC; the parameters of 

PID controller could be adjusted online according to traffic conditions. The simulation 

results suggested that parameter self-tuning fuzzy PID controller which integrated the 

advantages of PID controller and fuzzy controller enhanced the driving safety and system 

response speed and provided drivers with a more comfortable driving experience. 

Liang et al. [Liang, Zhao, Xiong et al. (2017)] proposed a parallel neural network PID 

(PNNPID) based acceleration control algorithm which overcame the defects of the 

traditional acceleration control algorithm in ACC such as slow system changes, poor 

dynamic performance and slow adjustment speed and developed a parallel control theory 

based automobile acceleration controller through analyzing the self-learning function of 

traditional serial neural network which could directly feedback errors. The experimental 

results suggested that serial neural network proportion integration differentiation 

(SNNPID) could operate within a maximum deviation of ±0.25 m/s, which was more 

accurate than PNNPID and featured by small average error, short regulation time and 

favorable transient performance. Kim et al. [Kim, Tomizuka and Cheng (2012)] proposed 

virtual automobile guidance model for automatic cruise system and combined it with 

linear secondary controller with variable weight to control and guide automobiles to keep 

a proper distance with the preceding automobile. Ploeg et al. [Ploeg, Scheepers, Nunen et 

al. (2011)] designed an automatic cruise system which integrated adaptive sensor and 

automobile communication and verified the feasibility of the system in short-distance 

automobile following. Lin et al. [Lin, Nguyen and Wang (2017)] applied a self-adaptive 

neural fuzzy predictive control in ACC system and tested its security and comfortability 

through simulation experiment. In this study, back-propagation (BP) neural network 

improved PID control algorithm was proposed to improve the preciseness of control on 

the speed and distance of automobile, and moreover the safe brake distance was deduced 

using a series of formulas. This work aims to improve the applicability of automobile 

automatic obstacle avoidance and cruise system in car following and distance control on 

expressway. 

2 Automobile adaptive cruise control 

2.1 System demand analysis 

Automobile ACC system [Li (2013)] which can assist safe driving of automobiles has 

functions of automatic cruise and anticollision and can collect the surrounding conditions 

and the driving information of automobiles via radar sensor and automatically control 

driving according to different traffic conditions, which can improve the security and comfort 

of driving. Automobile ACC system is the direction of automobile manufacturing and will 

be extensively applied in automobiles in the future. 

3 Control algorithm 

3.1 PID algorithm 

PID algorithm control [Liu, Bai and Ni (2011)] is an important component of ACC 

system, and calculus and proportion are the cores of PID algorithm. Fig. 1 shows the 

control principle of PID. 
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Figure 1: The principle of PID control 

The formula was: 
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where 
p

K  stands for proportionality coefficient, 
I

K  stands for integral time constant, 

and 
D

K  stands for derivative time constant.  

Generally signals transmitted in the internal system will meet a certain proportion. New 

signal e(t) will generate when there is a deviation in the proportion, and PID controller 

will correct it. With the increase of proportionality coefficient, the operation of system 

will accelerate, and the error generated can be reduced after rapid reflection of error. 

Integral control is used for improve preciseness of system control. The larger the integral 

time constant I
K

 is, the poorer the deviation cleaning ability is; the smaller the I
K

 is, 

the stronger the deviation cleaning ability is. Effective correction signal will be 

introduced in the early stage of the emergence of deviation signal if integral control is 

used. The larger the integral time constant d
K

 is, the smaller than adjustment time is. It 

is beneficial to the rapid correction of system in the early stage and improvement of 

system stability. 

k refers to the sequence of sampling, and the increment of control object is: 

          1 kekeKkeKkeKku
DIp

,                                                                (2) 

where 
     1 kekeke . 

Fig. 2 shows the output features of different functions of controller. 
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Figure 2: The output features of different functions of controller 

It could be noted from Fig. 2 that controller can adjust in a short period of time and then 

keep stable when different parameters of controller have changes. 

To further improve the performance, the traditional PID controller needs improvement. 

3.2 Improved PID control based on BP neural network 

3.2.1 BP based neural network algorithm 

The input of network input layer is    RjjxQ
j

,...,2,1,  . R meant that R signals need 

control. The value of R is set according to demands. x stands for neuron input. The input 

of the hidden layer of neural network is  
j

R

j

iji
Qwknet 





1

, where ij
w

stands for the 

weighed proportional value of the hidden layer, and k stands for sampling sequence. The 

output of hidden layer is       MjknetfkQ
ij

,...,2,1,  . Sigmoid function is used in 

hidden layer as excitation function to represent the relationship between input nodes and 

output nodes. 
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The input of the output layer of neural network is    kQwknet
i
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The relational expression for the transmission and association of signals in transition 

layer and hidden layer is: 

       1,  kuKkxKfkx
Icr

,                                                                          (5) 

r
K

 stands for the weighed proportional value of transition layer. 

3.2.2 Learning algorithm 

A relatively mature BP neural network needs a matched learning algorithm which can 

correct the weighed proportional value of neuron. Ideal learning is to compare the output 

results of neural network with supervised learning output results; a large deviation means 

that weighed [Chen and Pi (2014)] proportional value cannot satisfy control requirements 

and neural network needs to be adjusted according to deviation. Non-ideal learning 

means comparing the output results in different routes which are input with the same 

signal, adjust weighed proportion value to make the output values in different routes 

same. Fig. 3 shows the application of learning algorithm in control system. 

 

Figure 3: The learning procedure of control algorithm 
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(1) Supervised learning algorithm 

Firstly the minimum weighed proportional value of neuron [Budak, Senger, Guo et al. 

(2017)]   njw
j

,...,1,00   was taken and it should not be equal to 0. Then it was supposed 

that there were p groups of samples, the input signal was    Lpuuuu
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 , 

and the output signal was  Lpd
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The output signal of the perceptron of supervised learning algorithm was: 
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The weighed proportional value was: 

       10,1  
jpppii

utydtwtw
.                                                  (8) 

The output of BP neural network was: 
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where 
jp

I  stands for the i-th neuron of the j-th input of the p-th group. 

(2) Ideal learning algorithm 

Learning algorithm was obtained by combining the non-ideal results with the ideal results. 

              kqkqkqkdkwkwkw
ijjjijijij

 1 ,                                     (10) 

where 
i

q  stands for the effect value of neuron i, 
j

q  stands for the effect value of neuron j, 

and 
ij

w  stands for the interaction between neuron i and j. 

3.2.3 The procedures of PID control optimization with BP neural network 

Firstly the number of layers and neurons of BP neural network [Ma, Yao and Wang 2017] 

was confirmed. Then the weighed proportion of neurons,  0
ij

w  and  0
li

w , were 

confirmed. Then learning rate   [Kaminski and Orlowska-Kowalska (2015)] and smooth 

factor α [Wu and Moody (2014)] were set; k was set as 1. Some initial values were 

substituted to calculate the initial deviation of the output value and ideal 

value,      kykrke  . The deviation of the ideal output value was 

  pkkkiie  ,...1, , and it was taken as the input signal of learning algorithm.  
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Next the output values of neural network  kK
p

,  kK
I

 and  kK
D

 were regarded as the 

parameters of PID controller. u(k) which was obtained after calculation was taken as the 

control signal of learning algorithm. 

Weighed proportional values  kw
li

 and  kw
ij

 were calculated out using learning 

algorithm. The weighed proportional values were adjusted constantly till satisfying the 

control requirements. 

3.2.4 Comparison between the performance of the improved algorithm and PID 

algorithm 

It could be noted from Tabs. 1 and 2 that the output of PID algorithm was unstable and 

keep going up and down from 0 s to 30 s though the fluctuation became smaller gradually, 

indicating the low control preciseness of PID algorithm; but the improved PID algorithm 

controlled the output in less than one second, and the output showed no changes 

afterwards. Compared to PID algorithm, the improved PID algorithm performed better in 

eliminating interference and stabilized output in a shorter time, indicating that it could 

more effectively enhance control preciseness. 

Table 1: Control of the improved PID algorithm on variable output 

Time (s) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Output 1 1.03 1 1 1 1 1 1 1 1 

Table 2: Control of PID algorithm on variable control 

Time (s) 0 5 10 15 20 25 30 

Output 1 0.8 0.97 0.94 0.99 1 1 

After the improved algorithm enhanced the control preciseness of the system, automobile 

distance and speed needed to be deduced and calculated. 
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A. The control variable output of the improved algorithm 

 

B. The control variable output of PID algorithm 

Figure 3: The curves of control variable output of the two algorithms 
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3.3 Adaptive distance control 

3.3.1 Control of automobile speed 

Dynamically stable equation could be obtained according to the force equilibrium 

relationship during steady driving [Cranmer, Shahbakhti and Hedrick (2012)]. 

Automobile driving force was: 
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where t
F  stands for automobile driving force, f

F
 stands for rolling resistance, w

F  stands 

for air resistance, i
F  stands for slope resistance, eq

T
 stands for engine torque (unit: N·m), 

0
i  stands for final driver ratio, t

  stands for the mechanical efficiency of driver, r stands 

for the radius of wheels (unit: m), f0, f1 and f4 stand for rolling resistance coefficients, v 

stands for the driving speed of automobile, G stands for the gravity of automobile, 
D

C  

stands for air resistance coefficient, and A stands for the windward area of automobile 

body. 

The followings were obtained according to Eq. (11). 
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Air resistance was not considered in this study, and moreover rolling resistance was 

replaced by sliding resistance. Then engine torque could be expressed as: 
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The automobile cruise control system controlled automobile speed by comparing the 

actual engine torque 
C

T  with the theoretical engine torque. When 
eqC

TT  , the actual 

engine torque of automobile was excessively large; the speed of the cruising automobile 

exceeded the preceding automobile and they gradually approached. When the preceding 

automobile slowed down and braked, the cruising automobile might face with collision 

and emergency brake, which could not satisfy the requirements of automatic cruising. 

eqC
TT   indicated that the cruising automobile could follow the preceding automobile in 

a preset speed. When 
eqC

TT  , the actual engine torque was smaller than the theoretical 

torque, which could not satisfy the requirements of constant speed cruise. 

3.3.2 Automobile braking distance 

Analysis on the braking distance of automobile is the basis for control on the distance 

between the cruising and preceding automobiles. Automobile braking can be divided into 
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four stages. t1 refers to the nerve reaction time of the driver [Hwakyung and Hocheol 

(2012)], when the system alarms, usually 0.3~1.2. t2 refers to the time that the driver 

moved his foot from accelerator pedal to brake pedal to overcome the resistance 

produced by braking pedal. In the period, the automobile will produce a resistance and 

acceleration, but they can be ignored as they are too small; the automobile runs in the 

original speed. t3 refers to the time from linear increase of braking force to the maximum 

braking acceleration. t4 refers to the time from braking at the maximum acceleration to 

stop of automobile. The whole process is shown in Fig. 4. 

 

Figure 4: The curves for the time-varying speed v, driving distance s and braking 

acceleration a of the cruising automobile 

(1) Driving distance of automobile in t1 and t2 

The cruising speed of the cruising automobile was set as 
1

v , and then the computational 

formula for the driving distance in t1 and t2 was: 

 
2111

ttvs 
.                                                                                                  (15) 

(2) Driving distance of automobile in t3 

In t3, the braking force of the cruising automobile increased linearly, from 0 to the 

maximum value. The maximum acceleration of automobile braking max
a  was obtained. 

The real-time automobile speed when reaching the maximum braking acceleration was 

set as 2
v , and the driving distance was set as 2

s . Then the computational formulas were: 
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 (3) Driving distance of automobile in t4 

In t1, automobile slowed down at the maximum braking acceleration max
a

 till stopped. 

The driving distance was set as 
3

s , then 
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Therefore the braking distance was: 
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 could be ignored as the value was too small, then the formula was simplified as: 
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3.3.3 Braking warning distance 

Braking warning distance referred to the driving distance from the brake device took 

effect to automobile stopped. Generally there were extreme situation and normal situation. 

In extreme situation, i.e. the preceding automobile suddenly stopped, the braking warning 

distance of the cruising automobile was: 
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where 0
d  stands for the minimum safe distance between the cruising and preceding 

automobiles after braking, usually 2~5 m. 

In normal situation, i.e., the preceding automobile slowed down gradually till stopped. 

The speed of the preceding automobile was preceding
v

, and the computational formula for 

braking warning distance when the braking acceleration was 2
a  was: 



 

 

 

80   Copyright © 2018 Tech Science Press               CMES, vol.116, no.1, pp.69-88, 2018 

011

2

2

preceding

max

2

1

2

1
' dtv

a

v

a

v
d

b


















.                                                                                  (22) 

3.3.4 Reminding and warning distance 

Reminding and warning distance was the sum of braking warning distance and driving 

distance during the reaction time of driver. There were extreme situation and normal 

situation. 

In extreme situation, reminding and warning distance was  
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In normal situation, the computational formula of reminding and warning distance was: 
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3.4 Procedures of automatic constant-speed cruising and distance control 

In this study, automobile control was realized using BP neural network improved PID 

control algorithm. Firstly the deviation between input speed signal and actual driving 

speed was calculated; then the operation result was input into the cruising automobile to 

control speed, and moreover real-time control was performed using sensor feedback. 

Finally the difference with the actual speed was controlled to approach to 0. The system 

control flow is shown in Fig. 5. 
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Figure 5: The flow of constant-speed cursing and distance control of the automobile 

cruising system 

4 Simulation experiment 

The automobile obstacle avoidance and cruise system was tested using simulation 

experiment. Simulink and Car Sim software were used [Laarabi and Bruno (2016)]. 

Simulink software with strong functions can support system-level design and realize 

dynamic modeling and simulation analysis. Car Sim software which is for vehicle 

dynamics can analyze the performance of automobiles such as stability and braking. The 

system was mainly applicable to expressway. 

Tab. 3 shows the specific setting of some parameters. 
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Table 3: The determination on the values of relevant parameters in simulation 

experiment 

Model parameters Symbol Numerical Unit 

Total weight m 1370 kg 

Transmission efficiency of 

transmission system   0.9 - 

Rolling radius of wheels r 0.335 m 

Tread d 1.55 m 

Air resistance coefficient 
D

C
 

0.342 - 

Maximum acceleration of 

braking max
a

 
6 m/s 

Response time of driver 
1

t
 

1.2 s 

Coordination time of brake 
2

t
 0.2 s 

Minimum safe distance 

between two automobiles 0
d

 
5 m 

Proportional coefficient 
p

K
 

100~450 - 

Integral time constant 
I

K
 

10~45 - 

Derivative time constant 
I

K
 

1~10 - 

4.1 Simulation results of automobile speed control 

The initial speed of automobile was set as 60 km/h, and the expectant cruising speed was 

70 km/h. The system control result is shown in Fig. 6. 

It could be noted from Fig. 6 that the response of the system was fast and moreover it had 

a high stability. To further study the performance of the system, the traditional PI control 

method was compared with the method developed in this study. The experimental results 

are shown in Tabs. 4, 5 and 6. 
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Figure 6: The control result of automobile speed 

Table 4: The experimental results of PI system 

Setting 

speed 

km/h 

30.03 40.46 50.27 60.31 70.40 80.46 90.13 100.11 110.02 120 

Actual 

speed 

km/h 

31.26 41.08 51.36 61.32 70.98 82.12 91.64 98.79 108.28 118.97 

 

Table 5: The experimental results of the system developed in this study 

Setting 

speed 

(km/h) 

30.03 40.46 50.27 60.31 70.40 80.46 90.13 100.11 110.02 120 

Actual 

speed 

(km/h) 

30.34 40.78 50.47 60.11 70.19 80.15 90.13 99.89 109.84 119.75 

 

Table 6: The comparison of the error rate between the two systems 

Control error 

of the system 

developed in 

this study% 

1.02 0.78 0.40 -0.33 -0.30 -0.39 0 -0.22 -0.16 -0.21 

Control error 

of PI system% 

4.10 1.53 2.17 1.67 0.82 2.06 1.68 -1.32 -1.58 -0.86 
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Tab. 3 suggests that the control error at the constant speed mode was between -0.40% and 

1.02%. Hence it was concluded that the controller could accurately control automobile 

speed and control the error within a small scope, which could satisfy the requirement of 

precise control for automobile speed. The comparison of the experimental results showed 

that the controller proposed in this study had smaller error, suggesting a better performance. 

4.2 Simulation results of automobile distance control 

The driving speed of automobile was set as 70 km/h, and the current driving speed of 

automobile was 60 km/h. It had a distance of 45 m with the automobile in front. When 

the speed slowed down, the control result of automobile distance is shown in Fig. 7. 

 

Figure 7: The control result of automobile distance 

It could be noted from Fig. 7 that the system designed in this study could rapidly control 

the automobile distance and respond in a short period of time. To further study the 

performances of the systems in controlling automobile distance control, the following 

experiments were made. 

Tab. 7 demonstrated that, when the speed of the cruising automobile was set as 120 km/h 

and the safe automobile distance was set as 108 m, the error between the speed was 

between -0.82% and 0.52% and the error of automobile distance was between -0.47% and 

0.63%; when the speed of the cruising automobile was set as 110 km/h and the safe 

automobile distance was set as 108 m, the error between the speed was between -0.74% 

and 0.56% and the error of automobile distance was between -0.13% and 0.18%; when 

the speed of the cruising automobile was set as 100 km/h and the safe automobile 

distance was set as 108 m, the error between the speed was between -0.43% and 0.30% 

and the error of automobile distance was between -0.06% and 0.10%; when the speed of 

the cruising automobile was set as 80 km/h and the safe automobile distance was set as 

108 m, the error between the speed was between -1.21% and 2.11% and the error of 

automobile distance was between -0.41% and 0.22%. In general, the error between the 

speed was between -1.21% and 2.11% and the error between the automobile distance was 

between -0.47% and 0.63%. The improved automatic cruising system had high control 
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preciseness and small error and was applicable to following and distance control on 

expressway. 

Table 7: The results of the simulation experiment for automobile cruising and following 

distance control 

The cruising speed was set as 120 km/s; it follows the preceding automobile; the safe 

following distance was set as 108 m 

Speed of the 

preceding 

automobile 

(km/h) 

110.89 100.14 90.41 80.57 

Speed of the 

cruising 

automobile 

(km/h) 

110..77 100.25 89.67 80.99 

Actual 

automobile 

distance (m) 

107.96 107.49 108.68 107.69 

Error of 

automobile 

speed% 

-0.17 0.11 -0.82 0.52 

Error of 

automobile 

distance % 

0.04 -0.47 0.63 -0.29 

The cruising speed was set as 110 km/s; it follows the preceding automobile; the safe 

following distance was set as 108 m 

Speed of the 

preceding 

automobile 

(km/h) 

100.48 90.32 80.14 70.76 

Speed of the 

cruising 

automobile 

(km/h) 

99.74 90.07 80.59 70.61 

Actual 

automobile 

distance (m) 

108.19 108.14 107.86 108.12 

Error of 

automobile 

speed% 

-0.74 -0.28 0.56 -0.21 
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Error of 

automobile 

distance % 

0.18 0.13 -0.13 0.11 

The cruising speed was set as 100 km/s; it follows the preceding automobile; the safe 

following distance was set as 108 m 

Speed of the 

preceding 

automobile 

(km/h) 

90.49 80.78 70.13 60.52 

Speed of the 

cruising 

automobile 

(km/h) 

90.11 80.54 69.83 60.34 

Actual 

automobile 

distance (m) 

108.10 108.09 108.11 108.06 

Error of 

automobile 

speed% 

-0.42 -0.30 -0.43 0.30 

Error of 

automobile 

distance % 

0.09 0.08 0.10 0.06 

The cruising speed was set as 80 km/s; it follows the preceding automobile; the safe 

following distance was set as 108 m 

Speed of the 

preceding 

automobile 

(km/h) 

70.53 60.16 50.79 40.82 

Speed of the 

cruising 

automobile 

(km/h) 

70.64 59.43 50.47 41.68 

Actual 

automobile 

distance (m) 

107.89 108.24 108.11 107.56 

Error of 

automobile 

speed% 

0.16 -1.21 -0.64 2.11 

Error of 

automobile 

distance % 

-0.10 0.22 0.10 -0.41 
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5 Conclusion 

Study on automobile automatic cruising system is a hot spot in recent years, which is of 

great significance to road transportation safety. This study put forward BP neural network 

improved PID control algorithm to control automobile cruising system, which made up 

the defects of PID algorithm and moreover enhance the control preciseness of control 

system. The actual motor engine speed was calculated based on driving equilibrium to 

determine whether the actual speed of automobile could satisfy cruising requirement. The 

automobile braking process was also analyzed to deduce the calculation method for 

braking distance. Moreover braking warning distance and reminding and warning 

distance were proposed, which could help the control of braking and distance control. 

Finally simulation experiment was used to test the automobile automatic obstacle 

avoidance and cruise system. The results demonstrated that the automatic obstacle 

avoidance and cruise system could be applicable to cruising on expressway and keep a 

safe distance with the preceding automobile and had small errors in controlling following 

and constant-speed cruising. The system provides an approach for the further 

implementation of road transportation safety. The system needs to be further improved in 

practical application. 

Acknowledgement: This study was supported by the Scientific Research Project of 

Education Department of Shaanxi (15JK2186). 

References 

Budak, U.; Senger, A.; Guo, Y.; Akbulut, Y. (2017): A novel microaneurysms 

detection approach based on convolutional neura l networks with reinforcement sample 

learning algorithm. Health Information Science & Systems, vol. 5, pp. 14. 

Chen, X.; Pi, H. (2014): The study on neural network feedback based on learning 

algorithm. Proceedings of the 2012 International Conference on Cybernetics and 

Informatics. 

Cranmer, A.; Shahbakhti, M.; Hedrick, J. K. (2012): Grey-box modeling architectures 

for rotational dynamic control in automotive engines. American Control Conference, vol. 

50, no. 6, pp. 1278-1283. 

Giwa, A. (2016): PI and PID control of a fuel additive reactive distillation process. 

Journal of Engineering & Applied Sciences, vol. 11, no. 11, pp. 6779-6793. 

Gong, L.; Luo, L.; Wang, H.; Liu, H. (2010): Adaptive cruise control design based on 

fuzzy-PID. International Conference on E-Product E-Service and E-Entertainment, pp. 1-4. 

Hwakyung, S.; Hocheol, L. (2012): Characteristics of driving reaction time of elderly 

drivers in the brake pedal task. Journal of Physical Therapy Science, vol. 24, no. 7, pp. 

567-570. 

Kaminski, M.; Orlowska-Kowalska, T. (2015): An on-line trained neural controller 

with a fuzzy learning rate of the Levenberg-Marquardt algorithm for speed control of an 

electrical drive with an elastic joint. Applied Soft Computing, vol. 32, pp. 509-517. 

Kim, S. G.; Tomizuka, M., K.; Cheng, H. (2012): Smooth motion control of the 

adaptive cruise control system by a virtual lead vehicle. International Journal of 



 

 

 

88   Copyright © 2018 Tech Science Press               CMES, vol.116, no.1, pp.69-88, 2018 

Automotive Technology, vol. 13, no.1, pp. 77-85. 

Laarabi, M. H.; Bruno, R. (2016): A generic software framework for carsharing 

modelling based on a large-scale multi-agent traffic simulation platform. International 

Workshop Agent Based Modelling Urban Systems, pp. 88-111. 

Li, S. E. (2013): Economy-oriented vehicle adaptive cruise control with coordinating 

multiple objectives function. Vehicle System Dynamics, vol. 51, pp. 1-17. 

Liang, J.; Zhao, T.; Xiong, X.; Zhu, N. (2017): Design of vehicle acceleration 

controller based on parallel neural network PID. Journal of Southwest Jiaotong 

University, vol. 52, pp. 626-632. 

Lin, Y. C.; Nguyen, H. L. T.; Wang, C. H. (2017): Adaptive neuro-fuzzy predictive 

control for design of adaptive cruise control system. International Conference on 

Networking, Sensing and Control, pp. 767-772. 

Liu, K.; Bai, M.; Ni, Y. (2011): Two-wheel self-balanced car based on Kalman filtering 

and PID algorithm. International Conference on Industrial Engineering and Engineering 

Management, pp. 281-285. 

Ma, L.; Yao Y.; Wang, M. (2016): The optimizing design of wheeled robot tracking 

system by PID control algorithm based on BP neural network. International Conference 

on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial 

Information Integration, pp. 34-39. 

Ploeg, J.; Scheepers, B. T. M.; Nunen, E. V.; Wouw, N. V. D.; Nijmeijer, H. (2011): 

Design and experimental evaluation of cooperative adaptive cruise control. International 

IEEE Conference on Intelligent Transportation Systems, vol. 32, no. 14, pp. 260-265. 

Receanu, D. (2013): Modeling and simulation of the nonlinear computed torque control in 

simulink/MATLAB for an industrial robot. SL, vol. 10, no. 2, pp. 95-106. 

Viknesh, T. V.; Manikandan V. (2017): Modeling of canonical switching cell converter 

using genetic algorithm. Computer Modeling in Engineering & Sciences, vol. 113, no. 1, 

pp. 109-116. 

Wu, L.; Moody, J. (2014): A smoothing regularizer for recurrent neural networks. 

Neural Computation, vol. 8, no. 3, pp. 461-489. 


