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Abstract: A matrix equation solved in an eddy current analysis, 𝐴-𝜙 method based on a 

domain decomposition method becomes a complex symmetric system. In general, 

iterative method is used as the solver. Convergence of iterative method in an interface 

problem is improved by increasing an accuracy of a solution of an iterative method of a 

subdomain problem. However, it is difficult to improve the convergence by using a small 

convergence criterion in the subdomain problem. Therefore, authors propose a method to 

introduce double-double precision into the interface problem and the subdomain problem. 

This proposed method improves the convergence of the interface problem. In this paper, 

first, we describe proposed method. Second, we confirm validity of the method by using 

Team Workshop Problem 7, standard model for eddy current analysis. Finally, we show 

effectiveness of the method from two numerical results. 

 

Keywords: Double-double precision, domain decomposition method, eddy current analysis, 

parallel finite element method. 

1 Introduction 

Transformers, rotating machines, linear motors and other devices are becoming more 

sophisticated and are widely used in the society in which we live. In order to improve the 

accuracy of these electrical equipment designs, it is important to be clear the 

electromagnetic properties inside the electrical equipment. Electromagnetic field analysis 

based on a numerical analysis method such as finite element method using a computer is 

one of an effective method. 

In order to realize high-accurate electromagnetic field analysis, it is desirable to use a 

high-density numerical model that precisely reproduces the target system. Parallelization 

methods of numerical analysis based on the finite element method is proposed as 

effective methods. A domain decomposition method [Yoshimura, Shioya, Noguchi et al. 

(2002); Shioya and Yagawa (1999)] is one of the methods. In this method, the whole 

domain is divided into small domains without overlap called subdomain. Then, we solve 

finite element analyses in the subdomains (called subdomain problem) for each iteration 

of subdomain boundary problem (called interface problem). The solution of the whole 

domain is obtained when the iterative method of the interface problem is converged. The 

subdomain problem is known as a method that can expect high-parallelism because 
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subdomains can be calculated independently. 

In general, it is known that a convergence of the interface problem deteriorates as the 

degrees of freedom increases. In addition, it is known from Mizuma et al. [Mizuma and 

Takei (2016); Sugimoto, Kanayama, Asakawa et al. (2007)] that the convergence can be 

improved by to improve the accuracy of the solution of the subdomain problem. There 

have been efforts to improve the robustness of iterative solution methods in large-scale 

parallel analyses of electromagnetic environment problems requiring a complicated 

domain [Bielak, Ghatas and Kim (2005); Okamoto, Himeno, Ushida et al. (2007); Takei, 

Yoshimura and Kanayama (2014); Sugimoto, Takei and Ogino (2017)]. However, a 

precision of the iterative method is limited by a significant figure of a double precision 

floating point. Property of a coefficient matrix of simultaneous linear equations to be 

solved in the subdomain problems depends on the problems. For singularly problems 

such as an eddy current problem, iterative methods are generally chosen as a solver to 

solve the subdomain problems. However, it is difficult to increase accuracy of the 

subdomain problems because the solution of the iterative methods has truncation errors. 

On the other hand, it is proposed a method of implementation of a double-double 

precision to realize high-precision floating point. The double-double precision has twice 

significant figures (106 bits) of double precision [Yozo, Xiaoye, Li et al. (2000)]. It is 

shown in Daichi et al. [Daichi and Takahashi (2014)] that the convergence of the iterative 

method is improved by using the double-double precision. 

Therefore, this study purpose is an improvement of convergence of an interface problem 

in an eddy current analysis based on a domain decomposition method by using double-

double precision for two iterative methods, an interface problem and a subdomain 

problem. As a result, we confirmed that to improve the convergence of the interface 

problem, double-double precision must be applied to both the interface problem and the 

subdomain problem. 

2 Numerical analysis 

2.1 Eddy current analysis 

A governing equation of an eddy current analysis is 𝐴-𝜙 method (Eq. (1)). 

(𝜈𝑟𝑜𝑡𝐴ℎ , 𝑟𝑜𝑡𝐴ℎ
∗ ) − (𝑗𝜔𝜎𝐴ℎ , 𝐴ℎ

∗ ) + (𝜎𝑔𝑟𝑎𝑑𝜙ℎ , 𝐴ℎ
∗ ) = (𝐽ℎ , 𝐴ℎ

∗ ) (1a) 

(𝜎𝑔𝑟𝑎𝑑𝜙ℎ , 𝜎𝑔𝑟𝑎𝑑𝜙ℎ
∗) − (𝑗𝜔𝜎𝐴ℎ , 𝜙ℎ

∗) = 0 (1b) 

Ω is whole domain, 𝐴 is magnetic vector potential, 𝜙[V] is electric scalar potential. 

Unknown variables are 𝐴 and 𝜙. Ω is composed of two regions of a conductor region R 

and a nonconductor region S without overlap. 

The finite element formulation of Eq. (1) is obtained by approximating 𝐴 as a Nedelec’s 

linear tetrahedron and 𝜙  as a tetrahedron [Kanayama and Sugimoto (2006); Golias, 

Antonopoulos, Tsiboukis et al. (1998)]. 

(・,・) is L2 inner product in the Ω. 𝐴ℎ , 𝜙ℎ  and 𝐽ℎ  are respectively finite element 

approximations of 𝐴, 𝜙 and 𝐽. 𝐴ℎ
∗ , 𝜙ℎ

∗  are arbitrary test functions corresponding to each. 𝜈 

[m/H] is magnetic reluctivity, 𝜎  [S/m] is angular frequency, 𝑗  is imaginary unit. 𝜈  is 

piecewise positive constant, 𝜎 is positive constant in the R, and zero in the S. 
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𝐽ℎ  is the current density corrected so that 𝐽 satisfies Eq. (2) of continuity [Kanayama, 

Shioya, Tagami et al. (2002)]. 

𝑑𝑖𝑣𝐽 = 0 in Ω  (2) 

The coefficient matrix of simultaneous linear equations to be finally solved is a complex 

symmetric singular matrix. Therefore, an iterative method with a complex number is 

applied the subdomain solver in the eddy current analysis. In this study, the ICCOCG 

(Conjugate Orthogonal Conjugate Gradient with Incomplete Choleskey factorization) 

method is applied according to Mizuma et al. [Mizuma and Takei (2016); Sugimoto, 

Kanayama, Asakawa et al. (2007)]. 

2.2 Domain decomposition method 

In this section, we describe about the domain decomposition method applied to the eddy 

current analysis code which we have developed. Eq. (3) to be finally solved is obtained 

by performing finite element division on the whole domain Ω. The Ω is divided into N 

partial regions without overlap (Eq. (4)). 

𝐾𝑢 = 𝑓    (3) 

Ω = ⋃ Ω
(𝑖)𝑁

𝑖=1     (4) 

𝐾 is a coefficient matrix, 𝑢 is an unknown vector, 𝑓 is a known vector, and subscript (𝑖) 

is data on Ω
(𝑖)

. 𝑢𝐵 is the degrees of freedom on the new boundary. Eq. (3) becomes Eq. 

(5) when domain decomposition is applied with 𝑢𝐼
(𝑖)

 as the degrees of freedom of 

subdomain internal nodes. 

[
 
 
 
 𝐾𝐼𝐼

(1)
    0

0         ⋱

0               𝐾𝐼𝐵
(1)

𝑅𝐵
(1)T

0               ⋮

0   0      

𝑅𝐵
(1)

𝐾𝐼𝐵
(1)T

⋯

𝐾𝐼𝐼
(𝑁)

𝐾𝐼𝐵
(𝑁)

𝑅𝐵
(𝑁)T

𝑅𝐵
(𝑁)

𝐾𝐼𝐵
(𝑁)T ∑ 𝑅𝐵

(𝑖)
𝐾𝐵𝐵

(𝑖)
𝑅𝐵

(𝑖)TN
𝑖=1 ]

 
 
 
 

[
 
 
 
 𝑢𝐼

(1)

⋮

𝑢𝐼
(𝑁)

𝑢𝐵 ]
 
 
 
 

=

[
 
 
 
 𝑓𝐼

(1)

⋮

𝑓𝐼
(𝑁)

𝑓𝐵 ]
 
 
 
 

  (5) 

 

𝑅𝐵
(𝑖)T

 is a 0-1 matrix for limiting 𝑢𝐵 to internal degrees of freedom 𝑢𝐵
(𝑖)

 of subdomain. 

Eqs. (6) and (7) are obtained from Eq. (5). 𝑓𝐵
(𝑖)

 is the right-hand vector of the equation for 

𝑢𝐵. Eq. (7) is an interface problem. This is an expression for satisfying the continuity 

between subdomains. 

𝐾𝐼𝐼
(𝑖)

𝑢𝐼
(𝑖)

= 𝑓𝐼
(𝑖)

− 𝐾𝐼𝐵
(𝑖)

𝑢𝐵
(𝑖)

   (𝑖 = 1,… ,𝑁)    (6) 

{∑ 𝑅𝐵
(𝑖)

{𝐾𝐵𝐵
(𝑖)

− 𝐾𝐼𝐵
(𝑖)T

(𝐾𝐼𝐼
(𝑖)

)
†
𝐾𝐼𝐵

(𝑖)
} 𝑅𝐵

(𝑖)TN
𝑖=1 } 𝑢𝐵 = ∑ 𝑅𝐵

(𝑖)
{𝑓𝐵

(𝑖)
− 𝐾𝐼𝐵

(𝑖)T
(𝐾𝐼𝐼

(𝑖)
)
†
𝑓𝐼

(𝑖)
}N

𝑖=1            (7) 

The eddy current problem has singularity. † of (𝐾𝐼𝐼
(𝑖)

)
†
 represents a generalized inverse 

matrix. Eq. (7) is rewritten as Eq. (8). 

𝑆𝑢𝐵 = 𝑔    (8) 

where, 

𝑆 = ∑ 𝑅𝐵
(𝑖)

𝑆
(𝑖)

𝑅𝐵
(𝑖)𝑇𝑁

𝑖=1     (9) 
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𝑆
(𝑖)

= 𝐾𝐵𝐵
(𝑖)

− 𝐾𝐼𝐵
(𝑖)𝑇

(𝐾𝐼𝐼
(𝑖)

)
†
𝐾𝐼𝐵

(𝑖)
   (10) 

Here, S is the Schur complement matrix, and 𝑆
(𝑖)

 is the local Schur complement matrix in 

the subdomain Ω
(𝑖)

. Eq. (8) can be solved by the ICCOCG method with diagonal scaling 

preconditioning. In implementation, the finite element analysis is performed on internal 

degrees of freedom in each subdomain when the degrees of freedom on the boundary of 

the subdomains are fixed with the Dirichlet boundary condition. The largest computational 

load in this algorithm is the vector product of the Schur complement matrix in the iterative 

method of the interface problem. The finite element analysis performed in each subdomain 

is called the subdomain problem. The domain decomposition method can be divided into 

two problems, an interface problem and subdomain problems. 

For the interface problem in Eq. (8), the algorithm shown in Fig. 1 is applied. First, 

calculate the internal boundary degrees of freedom 𝑢𝐵 . δ is the convergence value, which 

is a positive constant. ‖・‖ represents the 2-norm. It is necessary to perform a vector 

multiplication operation of the Schur complement matrix S in (a) and (b) of Fig. 1 for the 

COCG step when calculating the initial residual. However, the construction of S is very 

computationally expensive compared than coefficient matrix K. Therefore, substituting 

(a) and (b) in the algorithm with the finite element analysis of the subdomain problem 

using Eqs. (9) and (10), S is calculated indirectly. Finally, 𝑢𝐼
(𝑖)

 for each subdomain is 

calculated by Eq. (6) to obtain a solution for the whole domain. 

After assigning subdomain to each compute node, the calculation of the COCG method to 

solve the interface problem (Eq. (7)) is started. Solve the subdomain problems (Eq. (6)) 

in each calculation step of the interface problem. If it does not satisfy δ of the iterative 

method of the interface problem, update the boundary condition and then calculate the 

interface problem again. The above operation is repeated until the convergence value is 

satisfied. 
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Figure 1: COCG method with diagonal scaling preconditioning 

 

Choose 𝑢𝐵
0 ; 

𝑟0 = g − S𝑢𝐵
0 ;                                                   (a) 

𝑝
0

= 𝑧
0

= 𝑀
−1

𝑟
0
; 

For 𝑛 = 0, 1, … ; 𝑑𝑜 

𝑞𝑛 = 𝑆𝑝𝑛 ;                                                (b) 

𝛼𝑛 =
(𝑟𝑛)𝑇𝑧𝑛

(𝑝𝑛 )
𝑇
𝑞𝑛

; 

𝑢𝐵
𝑛+1 = 𝑢𝐵

𝑛 − 𝛼𝑛 𝑝𝑛 ; 

𝑟𝑛+1 = 𝑟𝑛 − 𝛼𝑛 𝑞𝑛 ; 

if (‖𝑟𝑛+1‖ ‖𝑟0‖⁄ < 𝛿) break; 

𝑧𝑛+1 = 𝑀−1𝑟𝑛+1; 

𝛽𝑛 =
(𝑟𝑛+1)

𝑇
𝑧𝑛+1

(𝑟𝑛)
𝑇
𝑧𝑛

; 

𝑝𝑛+1 = 𝑧𝑛+1 − 𝛽𝑛𝑝𝑛 ; 

EndFor; 

 

(a) In each subdomain 

 Compute 𝑢𝐼
(𝑖)0

 by 

𝐾𝐼𝐼
(𝑖)

𝑢𝐼
(𝑖)0

= 𝑓𝐼
(𝑖)

− 𝐾𝐼𝐵
(𝑖)

𝑅𝐵
(𝑖)𝑇

𝑢𝐵
0 ; 

𝑟
(𝑖)0

= 𝑓𝐵
(𝑖)

− 𝐾𝐼𝐵
(𝑖)𝑇

𝑢𝐼
(𝑖)0

+ 𝐾𝐵𝐵
(𝑖)

𝑅𝐵
(𝑖)𝑇

𝑢𝐵
0 ; 

𝑝0 = 𝑟0 − ∑𝑅𝐵
(𝑖)

𝑟
(𝑖)0

𝑁

𝑖=1

; 

 

(b) In each subdomain 

 Compute 𝑝𝐼
(𝑖)𝑛

 by 

𝐾𝐼𝐼
(𝑖)

𝑝𝐼
(𝑖)𝑛

= −𝐾𝐼𝐵
(𝑖)

𝑅𝐵
(𝑖)𝑇

𝑝𝑛 ; 

𝑞
(𝑖)𝑛

= 𝐾𝐼𝐵
(𝑖)𝑇

𝑝𝐼
(𝑖)𝑛

+ 𝐾𝐵𝐵
(𝑖)

𝑅𝐵
(𝑖)𝑇

𝑝𝑛 ; 

𝑞𝑛 = ∑𝑅𝐵
(𝑖)

𝑞
(𝑖)𝑛

𝑁

𝑖=1

; 
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3 Improvement of convergence in interface problem 

3.1 Double-double precision 

A double-double precision is a technique to realize a 106 bit mantissa using two double 

precisions based on IEEE 754 [Hida, Li and Bailey (2000)]. Therefore, it is necessary to 

use twice memory of double precision. Let us consider expressing the real number alpha 

with the double-double precision A. Let A.hi be a value obtained by discarding the lower 

digit of the mantissa part of alpha to double precision, A.lo being a value obtained by 

rounding (alpha–A.hi) to double precision. Using these two variables, alpha is 

represented as A.hi+A.lo. This conversion is performed by Eq. (11). 

𝑡𝑒𝑚𝑝 = (227 + 1) ∗ 𝑎𝑙𝑝ℎ𝑎; (11a) 

𝐴. ℎ𝑖 = 𝑡𝑒𝑚𝑝 − (𝑡𝑒𝑚𝑝 − 𝑎𝑙𝑝ℎ𝑎); (11b) 

𝐴. 𝑙𝑜 = 𝑎𝑙𝑝ℎ𝑎 − 𝐴. ℎ𝑖; (11c) 

Other necessary arithmetic operations and functions are implemented by using this 

variable according to Yozo et al. [Yozo, Xiaoye, Li et al. (2000)]. 

3.2 Apply double-double precision to domain decomposition method 

The domain decomposition method is separated into two problems to be solved: The 

interface problem and the subdomain problem. It has been clarified by previous studies 

that the convergence of the interface problem improves as the calculation accuracy of the 

subdomain problem is higher (5). In addition, it is also desirable that the convergence of 

the iterative method for the subdomain problems be improved. Therefore, in order to 

improve the computational accuracy of the subdomain, it is considered effective to make 

the convergence value of the iterative method strict. However, the computation accuracy 

based on the double precision has limitation. 

Therefore, we expect that the convergence of the interface problem will improve by 

applying the double-double precision to the iterative method of eddy current analysis 

based on the domain decomposition method. 

A data type exchanged between the interface problem and the subdomain problem is a 

double-double precision. The inside of each iterative method of the interface problem 

calculated by the COCG method and the subdomain problem calculated by the ICCOCG 

method are calculated with double-double precision. Fig. 2 shows the concept of data 

transfer. Considering that simultaneous linear equations to be solved as subdomain 

problems are complex symmetric matrices, we extend the type of variables to complex 

type and express it. On the other hand, since the finally obtained solution is output in 

double-double precision, a sum of the variables of the double precision assigned to a high 

and low order digit is passed to a post processing. 
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Figure 2: Data I/O concept when double-double precision is applied to the iterative 

solver of the interface and subdomain problem 

A combination of 4 patterns (Tab. 1) will be examined as a method of applying double-

double precision to the domain decomposition method. When the type of precision in the 

interface problem and the subdomain problem are different when data input/output, it is 

converted from double precision to double-double precision by Eq. (11). Or, it takes the 

sum of the double precision variables assigned to the upper and lower digits and converts 

it from the double-double precision to the double precision. 

Table 1: Combination of 4 patterns of applying double-double precision 

 Interface problem Subdomain problem 

Case 1 Double Double 

Case 2 Double Double-double 

Case 3 Double-double Double 

Case 4 Double-double Double-double 

4 Numerical results 

4.1 Computing environment 

The computing environment used in this research is a PC cluster equipped with Intel Core 

i7-2600K (3.40 GHz/L2 8 MB) multi-core CPU and 32 GB memory, and 25 PCs (100 

core) was used. The compiler and compile options are gcc-4.4.7, -O0. MPI (Message 

Passing Interface) is used as a parallelization library. 
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4.2 Team Workshop Problem 7 

First, confirm the validity of a solution by TEAM Workshop Problem 7 (TEAM 7) 

[Fujiwara and Nakata (1990)] (Fig. 3) which is a standard problem for eddy current 

analyses. A thick aluminum plate with a hole, which is placed eccentrically, is set un-

symmetrically in a non-uniform magnet. A field is produced by the exiting current which 

varies sinusoidally with time. This model is divided by tetrahedral elements (5,025,482 

elements, 886,470 vertices, 6,020,039 edges). The boundary conditions are shown in 

Fujiwara et al. [Fujiwara and Nakata (1990)]. The frequency of supply current is 50 Hz. 

 

(a) top-view 

  

(b) side-view 

Figure 3: TEAM Workshop Problem 7 

In the previous method, the convergence of the interface problem is set 1.0e-03, the 

convergence of the subdomain problem is 1.0e-09, and the number of elements included 

per subdomain is 100 [Sugimoto, Kanayama, Asakawa et al. (2007)]. Fig. 4 shows the 

convergence history of the interface problem. It can be confirmed that the iterative 

method is converged. Fig. 5 shows a Z-component of the magnetic flux density on the 

dash line in Fig. 3. The dash line is the experimented value, and the solid line is the result 

of numerical analysis. The error is around 4%, which shows approximately good results. 

That is, it is only necessary to converge at a minimum under stricter conditions than this 
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analysis, and the more accurate the result is obtained by using a more severe the 

condition. 

 

Figure 4: Iterative history in interface problem (validation) 

 

Figure 5: Validation of solution 

Next, we compare the convergence. The convergence criterion of the interface problem is 

not set. The number of iterative of the interface problem is fixed 1,000. Fig. 6 shows a 

comparison of the four methods shown in Tab. 1. The convergence criterion ε of the 

subdomain problem is implemented in two cases, 1.0e-09 and 1.0e-14. (*/*) is (precision 

in the interface problem/precision in the subdomain problem). “D” is double precision, 

“DD” is double precision, “(ALL)” is (D/D), (D/DD), (DD/D) and (DD/DD). In the eddy 
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current problem, the highest-accurate solution can be obtained by stopping iteration when 

the residual norm becomes the smallest at first. Therefore, in this paper, the convergence 

is evaluated by comparing smallest residual norms in each case. Tab. 2 shows the 

minimum value of the residual norm. 

 

Figure 6: Convergence history (TEAM7) 

Table 2: Minimum value of a residual norm in an interface problem (TEAM7) 

Convergence 

criterion ε 
(D/D) (D/DD) (DD/D) (DD/DD) 

1.0e-09 1.41e-07 1.16e-07 1.17e-07 1.15e-07 

1.0e-14 3.92e-06 * 1.79e-07 * --- * 1.79e-09 

* are not converged (or not true results) because subdomain problems are not converged. 

A simple way to improve the accuracy of the solution to the subdomain problem is to use 

small convergence criterion ε. However, if it is too small, the iterative method does not 

converge, so the true result cannot be obtained [Mizuma, Ueda and Takei (2017)]. In fact, 

(D/D), (D/DD) and (DD/D) are not converged in the case of ε=1.0e-14. On the other hand, 

all of the subdomains are converged and the true solution is obtained, when double-

double precision is applied to both the interface problem and the subdomain problem 

(DD/DD). In addition, the minimum value of the residual norm is approximately 2 orders 

smaller than previous method. That is, convergence of the interface problem can be 

improved by setting the convergence of the subdomain problem to be small and 

computing both the interface problem and the subdomain problem with double-double 

precision. 
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On the other hand, it takes a very long CPU time (Tab. 3). The computational complexity 

of a double-double precision is several ten times of double precision. It is possible to 

shorten the CPU time, because our developed code has many function calls and is not 

optimized. It is a future work to shorten the CPU time by optimizing the algorithm, using 

double-double precision partially, etc. 

Table 3: Relative CPU time (linear motor) 

 Interface problem Subdomain problem Relative CPU time 

Case 1 Double Double 1 

Case 2 Double Double-double 40 

Case 3 Double-double Double 30 

Case 4 Double-double Double-double 90 

4.3 Linear motor 

As another analysis example, we show analysis a linear motor car (owned by National 

Institute of Technology, Tomakomai College, Japan) (Fig. 7). Fig. 8 shows CAD model 

of the linear motor and the main dimensions. This model is divided into 9,337,992 

elements (4,011,213 vertices, 8,505,764 edges) by tetrahedral elements. A magnetic 

resistivity ν is (1/(4π)e+07 [m/H] in the whole domain and conductivity σ of the 

conductor is 7.7e+06 [S/m]. Coil regions are indicated by arrows in Fig. 8 and are given a 

supply current density J. An angular frequency ω is 2π×50 [rad/s]. A size of the real part 

and imaginary part of J is 50.0 [A/m2]. In addition, the convergence of the subdomain 

problem is set to 1.0e-09 and 1.0e-15. 

 

Figure 7: Linear motor 
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(a) CAD model 

 

(b) Side view 

 

(c) Top view 

Figure 8: Linear motor CAD model 
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The number of iterations of the interface problem is 1,500. Fig. 9 shows a comparison of 

the four methods shown in Tab. 1. Tab. 4 shows the minimum value of residual norms. In 

this model too, results similar to those of TEAM7 are obtained, the residual norm is 

reduced by approximately 3 orders than previous method. If double-double precision is 

not applied to both the interface problem and the subdomain problem, convergence 

cannot be improved even if convergence of the subdomain problem is small. 

 

Figure 9: Convergence history (linear motor) 

Table 4: Minimum value of a residual norm in an interface problem (linear motor) 

Convergence 

criterion ε 
(D/D) (D/DD) (DD/D) (DD/DD) 

1.0e-09 2.09e-07 2.02e-07 1.70e-07 1.93e-07 

1.0e-15 6.48e-02 * 1.26e-07 * 6.40e-07 * 3.68e-10 

* are not converged (or not true results) because subdomain problems are not converged. 

5 Conclusion 

In an eddy current analysis based on a domain decomposition method, we proposed a 

method using double-double precision to improve a convergence of an interface problem. 

Specifically, it is a technique of applying double-double precision to both the interface 

problem and a subdomain problem, and setting a small convergence criterion in the 

subdomain problem. Analyses using TEAM7 and Linear motor model succeeded the 

residual norm of the interface problem to be 2-3 digits small than previous method. 

However, the current code requires CPU time several ten times of double precision. It is a 

future work to shorten the CPU time by optimizing the algorithm, using double-double 

precision partially, etc. 
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