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Abstract: OSAHS (Obstructive Sleep Apnea Hypopnea Syndrome) is a respiratory 

disease mainly characterized by limited and repeated pauses of breathing in sleep. 

Currently, the optimal treatment is to apply CPAP (Continuous Positive Airway Pressure) 

ventilation on the upper airway of the patient through a household respiratory machine. 

However, if the ventilator mask is designed improperly, it might cause the residue and 

repeated inhalation of CO2, which will exert an adverse impact on the therapeutic effect. 

Present research numerically analyzed the CO2 transportation inside a commercial 

ventilator mask (Mirage SoftGel, ResMed, Australia) based on the reconstructed 3D 

numerical model of a volunteer's face and performed the improved design of the 

ventilator mask in terms of the CO2 residual concentration below the nostrils. The fluid 

dynamic analyses showed that at the end time of expiratory, the CO2 residual 

concentration below the nostrils is close to 4%. To improve the therapeutic effect, we 

changed the position of the exhaust holes and found that by moving the exhaust holes to 

the bottom of the ventilator mask, the CO2 residual concentration below the nostrils 

would be reduced to no more than 1%. This study established a near physiological 

computational model and provided a new method for the individualized design of the 

commercial ventilator mask. 
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1 Introduction 

Severe snoring is often associated with obstructive sleep apnea hypopnea syndrome 

(OSAHS), which is mainly characterized by limited and repeated pauses of breathing and 

can lead to hypoxemia, hypercapnia, and memory deterioration [Liu, Lowe, Fleetham et 
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al. (2001); Chirapapaisan, Likitgorn, Pleumchitchom et al. (2016)]. Recent clinical 

studies show that OSAHS is correlated with the morbidity of diabetes and hypertension, 

which might lead to cardiovascular and cerebrovascular diseases [Shen, Tan, Song et al. 

(2017); Sun, Li and Shi (2016); Kim, Choi, Bail et al. (2013); Korcarz, Stein, Peppard et 

al. (2014)]. So far, main treatments for OSAHS include surgical treatment, oral appliance 

therapy and continuous positive airway pressure (CPAP) ventilation [Vecchierini, Attali, 

Collet et al. (2016)]. Because surgical treatment may relapse or lead to surgical 

complications, and oral appliance has adverse effects such as mandibular ache, 

mandibular arthritis or periodontal diseases [Rose, Staats, Virchow et al. (2002); Li 

(2005)], the non-invasive mechanical CPAP treatment is the major option for OSAHS 

patients, which can immediately alleviate the symptoms of limited breathing and 

significantly improve the sleep quality [Buchanan and Grunstein (2011); Mcevoy, Antic, 

Heeley et al. (2016)]. During CPAP treatment, ventilator mask plays a critical role in O2 

inhalation and CO2 exhalation. The improper design of the ventilator mask might result in 

the residual and repeated inhalation of CO2, which is detrimental to the therapeutic effect 

[Lofaso, Brochard, Touchard et al. (1995)]. Clinical data show that if the CO2 

concentration constantly inhaled by human exceeds 2%, there will be a headache, 

cardioacceleration or nausea. If it exceeds 4%, breath will become faster. If it exceeds 5%, 

it may lead to severe hypoxia, permanent cerebral injury, coma or even death [George 

and Daniel (2001)]. Therefore, proper design of the ventilator mask is directly related to 

the therapeutic effect of OSAHS and has very important significance. 

Various studies measured the CO2 concentrations in medical ventilator masks or oral-

nasal masks. Among them, the side stream method (SideStream Spirometry) is a major 

one. By this method, Mediano et al. [Mediano, Garciario and Villasante (2006)] 

compared 3 different medical ventilator masks in terms of repeated CO2 inhalation during 

CPAP treatment; Peng et al. [Peng, Wang and Zhang (2005)] compared the impact of 3 

different exhalation valves on the repeated inhalation of CO2; Huang et al. [Huang, Wang 

and Tan (2015)] monitored the partial pressure of CO2 inside the oral-nasal mask in a 

lung drive model (spontaneous breathing movements established). However, the 

limitation of the side stream method lies in that the catheter stretched into the mask 

would disturb the internal flow field and affect the measurement results of the local CO2 

concentration. Therefore, numerical simulations become the most important alternatives. 

Nevertheless, there are few studies on the ventilator masks of household CPAP machines. 

The existing studies are mainly focused on medical nasal masks or oral-nasal masks. 

Even so, these numerical models are over simplified. Scuh as Chen [Chen (2011)] only 

reconstructed a 3D numerical model of the mask without taking the patient's face into 

consideration. Their model was obviously an over-simplified one that could hardly reflect 

the real physiological condition. 

In present study, a 3D numerical model of a volunteer’s face integrated with the 

ventilator mask (Mirage SoftGel, ResMed, Australia) was built based on reverse 

engineering method. Then, the CO2 transportation inside the ventilator mask under 

transient state was numerically analyzed with the boundary condition of nostrils. Finally, 

the improved design of the ventilator mask was performed based on the residual 

concentration of CO2. 
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2 Materials and methods 

2.1 Geometric model and the meshes 

Firstly, the point cloud data of the ventilator mask (Mirage SoftGel, ResMed, Australia) 

and the face of the volunteer (male, 28 years old, OSAHS) were collected with the 3D 

laser scanner (HandySCAN700TM, Creaform, Canada); then, the point cloud data were 

imported into the reverse engineering software (Geomagic Wrap) for post processing. 

The detailed steps were as follows: 1) Redundant point cloud data on the outside  of the 

ventilator mask and the face were removed; 2) The point cloud data scanned from 

different directions were registered and combined into a whole for denoising; 3) The 

point cloud data were smoothed with the Mesh Doctor; 4) The results were imported into 

the Geomagic Design X to reconstruct the 3D numerical models of the ventilator mask 

and the volunteer’s face; 5) The numerical models were imported into the ANSYS ICEM 

CFD 15.0 for meshing with the unstructured tetrahedral-hexahedral hybrid mesh. The 

obtained mesh models included about 375278 elements and 95042 nodes based on the 

mesh independence test; 6) The mesh models were imported into the ANSYS fluent 15.0 

for CFD analysis (Fig. 1). 

 

Figure 1: The reconstructed 3D numerical models of the ventilator mask (Mirage 

SoftGel, ResMed) and the face of the volunteer. A. The collected point cloud data; B. 

The fixed and encapsulated polygon model; C. The 3D numerical model of the ventilator 

mask integrated with the volunteer's face; D. The meshes 

2.2 Governing equations 

The air is assumed to be Newtonian and incompressible viscous fluid. The Navier-Stokes 

and mass transfer equations are as belows: 

∇ ∙ u = 0                                                                                                                                         (1) 

ρ
𝜕u

𝜕𝑡
+ ρ(𝑢 ∙ ∇)𝑢 − 𝜇∇2𝑢 + ∇𝑝 = 0                                                                                           (2) 

 
𝜕𝑐

𝜕𝑡
− 𝜓∆𝑐 + 𝑢 ∙ ∇𝑐 = 0                                                                                                      (3) 
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where ρ, t, u , p, ψ, μ represents the density (𝑘𝑔 𝑚3⁄ ), time (s), flow velocity (m/s), 

pressure (Pa), diffusion coefficient and kinetic viscosity, respectively. ψ = 1.38 ×
10−5 𝑚2 𝑠⁄ , μ = 1.789 × 10−5 𝑁 ∙ 𝑠 𝑚2⁄  [Calay, Kurujareon and Holdo (2002)]. 

2.3 Boundary conditions and solutions 

i. Inlet boundary condition at the entrance of the ventilator mask: The pressure  𝑃𝑖𝑛 =
0.98 × 103𝑃𝑎 [Wakayama, Suzuki and Tanuma (2016)]; the averaged concentration 

of CO2  �̅�𝐶𝑂2
= 0.03% [De Vis, Lu, Ravi et al. (2017)] (Fig. 2A); 

ii. Outlet boundary condition at the exhaust holes:  𝑃𝑜𝑢𝑡 = 0𝑃𝑎 (Fig. 2A); 

iii. Inlet boundary condition at the nostrils: The averaged velocity �̅� = 6 × sin (
𝜋

2
𝑡) , 

t=0~2.0 s is the expiratory phase, t=2.0~4.0 s is the inspiratory phase (Fig. 2B); the 

averaged concentration of CO2 excreted from the nostrils is set as 4% [Zhu and Wang 

(2013)] and the CO2 is inhaled freely in the inspiratory phase (Fig. 2C); 

iv. Rigid and non-slip wall boundary condition. 

 

Figure 2: Boundary conditions: A. A schematic draw of the boundary conditions; B. 

Sinusoidal velocity inlet boundary condition at the volunteer’s nostrils; C. Plot of the 

averaged CO2 concentration excreted from the nostrils in a respiratory cycle 

The airflow inside the ventilator mask is assumed to be turbulent flow for the reason of 

the averaged Reynolds number at the inlet is approximately 4300 (Re>4000) [Levitzky 

(2007)]. The K-ε and Species models are used for computation. The software ANSYS 

fluent 15.0 is utilized for solving. The time step was set as 0.01 s. 
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3 Results and dicussion 

3.1 Analysis of the CO2 distributions inside the ventilator mask 

Fig. 3 is the distribution of the  �̅�𝐶𝑂2
 inside the ventilator mask varying with time during 

a respiratory cycle. The �̅�𝐶𝑂2
 rises dramatically with the increasing exhaled air and 

reaches the peak value of  �̅�𝐶𝑂2
= 3.65% at t=1.1 s. Then, with the decrease of the 

exhaled air, the �̅�𝐶𝑂2
 declines gradually and down to the value of 1.8% at the end time of 

expiratory (t=2.0 s). During the initial 0.5 s of the inspiratory phase, the  �̅�𝐶𝑂2
 declines 

sharply and down to the initial value of 0.03%. It can be seen that the residual CO2 is 

mainly dependent on the value of  �̅�𝐶𝑂2
 at the end time of expiratory, which will be 

inhaled again. 

Hence, the distribution of the residual CO2 at the end expiratory time (t=2.0 s) was 

analyzed in detail. Fig. 4A is the schematic draw of the crosssection Y-Y’ (Y=7.5 mm) 

and Z-Z’ (Z=75 mm). Figs. 4B and 4C are the air velocity vector diagram and the cloud 

map of the CO2 concentration on the crosssection of Y-Y’, respectively. Figs. 5A and 5B 

is the air velocity vector diagram and the cloud map of the CO2 concentration on the 

crosssection of Z-Z’, respectively. It can be seen that due to the existence of the deflector, 

the inlet air firstly flows rapidly towards the inner and then flows towards the exhaust 

holes under the differential pressure (Fig. 4B). Meanwhile, the local vortices arise below 

the nostrils (Fig. 5A). Figs. 4C and 5B show that the �̅�𝐶𝑂2
 decreases to 1% in high 

velocity area and increases to 3% in low velocity vortex area. 

 

Figure 3: Distribution of the averaged residual CO2 concentration inside the ventilator 

mask varying with time during a complete respiratory cycle. (



=
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2 , iM  represents 

the CO2 concentration of the ith centroid， ivol   represents the volume of the ith centroid) 
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Figure 4: A. Schematic draw of the crosssection Y-Y’ and Z-Z’; B. The velocity vector 

plot on the crosssection Y-Y’ at t=2.0 s; C. The cloud map of the residual CO2 

concentration on the crosssection Y-Y’ at t=2.0 s 

 

Figure 5: A. The velocity vector plot on the crosssection Z-Z’ at t=2.0 s; B. The cloud 

map of the residual CO2 concentration on the crosssection Z-Z’ at t=2.0 s 

3.2 Effects of the deflector on the averaged residual CO2 concentration 

Fig. 6A shows the geometric model of the ventilator mask without deflector. Because the 

inlet air flows directly towards the exhaust holes and large low velocity vortices arise 

below the nostrils (Fig. 6B), a great deal of CO2 residues inside the mask with the value 

of �̅�𝐶𝑂2
 up to 4% (Fig. 6C). 

 

Figure 6: A. The geometric model of the ventilator mask without deflector; B. The 

velocity vector plots on the crosssection Y-Y’ and Z-Z’ at t=2.0 s; C. The cloud map of 

the residual CO2 concentration on the crosssection Y-Y’ at t=2.0 s 

Fig. 7 is the distributions of the �̅�𝐶𝑂2
inside the ventilator mask varying with time 

with/without deflector. It can be drawn that the �̅�𝐶𝑂2
without a deflector is higher than 
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that with a deflector. At the end time of expiratory (t=2.0 s), the value of the  �̅�𝐶𝑂2
 

without a deflector is as high as 3.7%, which is double value of that with a deflector. 

Therefore, the ventilator mask without a deflector will lead to more CO2 residue. 

 

Figure 7: Plots of the averaged residual CO2 concentration inside the nasal mask varying 

with time with/without deflector 

3.3 Effects of the exhaust holes’ positions on the averaged residual CO2 concentration 

To investigate the effects of the exhaust holes’ positions on the �̅�𝐶𝑂2
, the exhaust holes 

were redesigned on the top, both sides and the bottom of the ventilator mask, individually, 

with the same ventilating area. (Fig. 8A). 

Figs. 8B and 8C are the plots of the velocity vector at the end time of expiratory (t=2.0 s), 

showing that: 1) When the exhaust holes are located at the top, most of the inlet air flows 

towards the top, leading to the lower velocity around the whole mask; 2) When the 

exhaust holes are located on both sides, the inlet air flows towards both sides, leading to 

the high  velocity in the middle area of the mask and the formation of a low velocity 

vortex area in front of the nostrils; 3) When the exhaust holes are located at the bottom, 

the inlet air firstly flows towards the nose bridge, then flows towards the bottom. The air 

is quickly excreted from the exhaust holes, leading to a high velocity area below the 

nostrils and the formation of a low velocity vortex area in the distal of the exhaust holes. 

Figs. 8D and 8E are the cloud maps of the residual CO2 concentration at the end time of 

expiratory (t=2.0 s), showing that: 1) When the exhaust holes are located at the top, a 

great deal of CO2  is trapped below the nostrils (�̅�𝐶𝑂2
≈ 4%); 2) When the exhaust holes 

are located on both sides, the �̅�𝐶𝑂2
 decreases  to 50% (�̅�𝐶𝑂2

≈ 2%)  except the CO2 

trapped near the wall of the mask; 3) When the exhaust holes are located at the bottom, 

the CO2 is quickly excreted from the exhaust holes and the �̅�𝐶𝑂2
 decreases to 25% 

(�̅�𝐶𝑂2
≤ 1%).  
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Figure 8: A. Different positions of the exhaust holes; B. The velocity vector plots on the 

crosssection Y-Y’ at t=2.0 s; C. The velocity vector plots on the crosssection Z-Z’ at 

t=2.0 s; D. The cloud maps of the residual CO2 concentration on the crosssection Y-Y’ at 

t=2.0 s; E. The cloud maps of the residual CO2 concentration on the crosssection Z-Z’ at 

t=2.0 s 

Fig. 9 is the comparison analysis of the �̅�𝐶𝑂2
varying with time inside the ventilator 

masks with different designs of the exhaust holes: 1) When the exhaust holes are located 

at the top, the peak value of the  �̅�𝐶𝑂2
 is about 3.25%, which is lower than that of the 

Mirage SoftGel ventilator mask (3.65%). Meanwhile, the �̅�𝐶𝑂2
 at the end time of 

expiratory is about 2.1%, which is higher than that of the Mirage SoftGel ventilator mask 



 

 

 

Individualized Design of the Ventilator Mask                                                                 165 

(1.8%); 2) When the exhaust holes are located on both sides, the �̅�𝐶𝑂2
 rises quickly to the 

peak value (about 3.7%) at t=1.3 s, then declines rapidly to the value of 1.4% at the end 

time of expiratory; 3) When the exhaust holes are located at the bottom, the �̅�𝐶𝑂2
 is lower 

than that of the other three designs in the whole expiratory phase and reaches the value of  

0.7% at the end time of expiratory, which is significantly lower than that of the Mirage 

SoftGel ventilator mask (3.65%). 

 

Figure 9: Plots of the averaged residual CO2 concentration varying with time inside the 

nasal masks with different designs of the exhaust holes 

4 Conclusion 

With the air pollution as well as the changes in living and eating habits of people, 

OSAHS is becoming a more and more common respiratory disease, which may cause 

various cardiovascular and cerebrovascular diseases, and even lead to sudden death 

during sleep. Due to the trauma and easy relapse of surgical treatment, nowdays the 

commercially available household CPAP machine is commonly used to correct this sleep 

disorder. Ventilator mask is the most important component of this system and plays a key 

role in O2 inhalation and CO2 excretion. The less CO2 residue, the better for the 

therapeutic effect. Therefore, the optimal design of the ventilator mask under near 

physiological condition is very important.  

In present article, a 3D numerical model of the ventilator mask integrated with a 

volunteer’s face was established and the nostrils boundary condition was considered, 

which were much closer to the reality. The results showed that the local averaged residual 

CO2 concentration near the nostrils could reach to almost 4%, which was detrimental to 

the therapeutic effect. Therefore, the improved design of the ventilator mask was 

performed and found that by changing the position of the exhaust holes to the bottom, the 

local residual CO2 concentration could decrease to 0.7%. Present study established a near 

physiological computational model and provided a new method for the individualized 

design of the commercial ventilator mask. In the future, a more realistic boundary 
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condition of human nostrils should be applied and a more reasonable method for the 

determination of carbon dioxide might be found. 
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