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Abstract: This paper aims to apply a virtual boundary element method (VBEM) to solve 

the inverse problems of three-dimensional heat conduction in orthotropic media. This 

method avoids the singular integrations in the conventional boundary element method, 

and can be treated as a potential approach for solving the inverse problems of the heat 

conduction owing to the boundary-only discretization and semi-analytical algorithm. 

When the VBEM is applied to the inverse problems, the numerical instability may occur 

if a virtual boundary is not properly chosen. The method encounters a highly ill-

conditioned matrix for the larger distance between the physical boundary and the virtual 

boundary, and otherwise is hard to avoid the singularity of the source point. Thus, it must 

adopt an appropriate regularization method to deal with the ill-posed systems of inverse 

problems. In this study, the VBEM and different regularization techniques are combined 

to model the inverse problem of three-dimensional heat conduction in orthotropic media. 

The proper regularization techniques not only make the virtual boundary to be allocated 

freer, but also solve the ill-conditioned equation of the inverse problem. Numerical 

examples demonstrate that the proposed method is efficient, accurate and numerically 

stable for solving the inverse problems of three-dimensional heat conduction in 

orthotropic media. 

 

Keywords: Virtual boundary element method, Tikhonov regularization, three-

dimensional heat conduction, inverse problem, orthotropic media. 

1 Introduction 

The inverse heat conduction problem has received considerable attention in the past few 

decades [Weber (1981); Raynaud and Bransier (2007); Babaniyi, Oberai and Barbone 

(2018); Wang, Hua and Liu (2018)]. In the fields of engineering, there are many 

orthotropic materials, such as woods, sheet metals, cables and new advanced composites 

[Jin, Zheng and Marin (2010)]. It is necessary to consider the thermal conductivity with 

direction when modelling the heat transfer in these orthotropic media [Mera, Elliott, 
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Ingham et al. (2003); Ohmichi, Noda and Sumi (2017); Somasundharam and Reddy 

(2018)]. Thus, the heat conduction in orthotropic materials has widespread applications in 

many branches of engineering and its understanding is of great significance. 

In some engineering problems, it is impractical to directly survey the heat flux or the 

temperature of the boundary. For instance, it is difficult to directly survey the heat on the 

surface of a hypersonic vehicle’s thermal protection system when the vehicle reenter 

from the atmosphere [Yang, Yue and Yang (2017)]; the heat flux at the surface of a wall 

cannot be obtained directly when the surface is subjected to fire [Jarny, Ozisik and 

Bardon (1991)]; it could be extremely hard to survey the heat flux or the temperature at 

the tool-work interface of machine cutting [Mohammadiun (2016)]. These examples can 

be treated as the inverse problems of the heat conduction in which the Neumann or 

Dirichlet data on certain boundaries are unknown [Amirfakhrian, Arghand and Kansa 

(2016); Cui, Zhao, Xu et al. (2017)]. The primary objectives of the inverse heat 

conduction problems are estimating unknown boundary conditions or the initial 

conditions with the help of the additional information of measurement [Gu, Chen and Fu 

(2014)]. However, the inverse problems of heat conduction are mathematically ill-

conditioned, the arbitrarily large changes may occur in the numerical solution if there are 

small deviations in the measured data [Ding and Sun (2015)]. 

The boundary element methods (BEM) have been frequently used to solve these inverse 

heat conduction problems, it is efficient when the boundary integrals can be obtained 

accurately [Wang, Jiang and Yang (2016); Mohasseb, Moradi, Sokhansefat et al. (2017)]. 

But the BEM will encounter the issue of the calculation of singular integral if the source 

point lies close to the integral element or in the integral element, especially for the three-

dimensional high-order geometry element [Gao (2010)]. Like the method of fundamental 

solution [Sun and He (2017); Wang, Liu and Qu (2018)], the virtual boundary element 

method (VBEM) is developed to overcome this obstacle [Xu and Yang (2014)]. The 

VBEM introduces the virtual boundary, which can avoid the calculation of singular 

integral. Additionally, the VBEM is more accurate and efficient than other methods, and 

the program is also relatively concise [Ling and Yang (2015)]. 

When the VBEM is applied to the inverse problems of three-dimensional heat conduction 

in orthotropic media, the position of the virtual boundary will influence the precision of 

the numerical results. Meanwhile, the VBEM discretization of inverse problems will 

yield the severely ill-conditioned matrix, so it is necessary to solve these problems 

effectively [Chen, Karageorghis and Li (2016)]. The main purpose of this study is to 

extend the VBEM to solve the inverse problems of three-dimensional heat conduction in 

orthotropic media. The Gauss elimination method, the conjugate gradient method (CGM) 

[Chen, Yu, Zhou et al. (2017)], and the Tikhonov regularization technique with the L-

curve and GCV criterion are applied to the solution of the ill-conditioned equations 

[Berntsson, Kozlov, Mpinganzima et al. (2017)]. The results indicate that the CGM and 

the Tikhonov regularization technique are insensitive to the virtual boundary. Among 

these methods, the Tikhonov regularization technique combined with the L-curve 

criterion can effectively improve the accuracy of the results even though the relatively 

high level of noise is added into the boundary data. 

The rest of this paper is organized as follows. The second section demonstrates the 
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governing equation and the boundary conditions of the inverse problems of three-

dimensional heat conduction in orthotropic media. The VBEM for the inverse problems 

of three-dimensional heat conduction is reviewed in the third section. In the fourth 

section, the formulations of the VBEM are in conjunction with the regularization 

techniques to solve the ill-conditioned problems. Three numerical test problems are 

investigated in the fifth section. Finally, the conclusions are drawn in the sixth section. 

2 Mathematical formulation of the problem 

Consider a three-dimensional orthotropic media in a domain 
3RWÍ  bounded by a 

surface G, two parts are assumed to be contained in the surface, which can be defined as 

1 2=G G ÇG, where 
1 2,G G ¸Å and 

1 2G ÆG =Å. In this study, the orthotropic steady 

heat conduction applications are involved in the absence of heat generation and other heat 

transfer modes. The governing equation of the problem can be described by the partial 

differential equation 

() () ()2 2 2

1 2 32 2 2

1 2 3

0, ɋ
u u u

k k k
x x x

µ µ µ
+ + = Í

µ µ µ

x x x
x , (1) 

comply with the following boundary conditions 

1( ) ( ) onũu u=x x , (2) 

1

( )
( ) ( ) onũ

u
q q

µ
= =
µ

x
x x

n
, (3) 

where ()
1,2,3i i

k
=

 is the thermal conductivity tensor, ( )u x  denotes the temperature at the 

point 1 2 3( , , )x x xx =  in the considered domain W , 1 2 3( , , )n n nn =  represents the 

outward normal vector, in which , 1,2,3in i=  are the directional cosines of the unit 

outward normal vector at the boundary point x. 
1G indicates the known boundary on 

which the temperature and normal heat flux are available, the overline quantities ( )u x  

and ( )q x  are the presetting values on the accessible boundary 1G.  

The normal heat flux through the boundary G is given by 

1 1 2 2 3 3

1 2 3

( )
u u u

q n k n k n k
x x x

µ µ µ
= + +

µ µ µ
x , 

The fundamental solution of governing Eq. (1) is 

( ) ( ) ( )

*

2 2 2

1 2 3 1 1 1 2 2 2 3 3 3

1
( , )

4 / / /
u

k k k x y k x y k x y kp
=

- + - + -
x y , (4) 

where ÍWÇGx  represents the collocation point, and 1 2 3( , , )y y y=y  is the source 

point. 
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In the boundary conditions Eq. (2) and Eq. (3), it can be noted that the boundary 
1G is 

over-specified on which both the temperature and normal heat flux are known, while both 

the temperature and normal heat flux are unknown on the remaining boundary 
2G , and 

have to be determined. 

3 Virtual boundary element method 

The VBEM can be treated as an extension of the BEM, it introduces the infinite domain 

¡W  to substitute the original area W, and the virtual boundary ũ¡ can be established in 

the infinite domain ¡W . There is a certain distance between the virtual boundary ũ¡ and 

the physical boundary G. The virtual boundary ũ¡ makes the distribution density 

function ( )xc  as middle variable through continuous way. Then, the method can 

determine the density function on the virtual boundary ũ¡ through the given physical 

quantity on the boundary G, so as to eliminate the calculation of singular integral and 

nearly singular integral in the conventional BEM. A virtual boundary integral equation of 

the potential problem can be described as follows [Yang, Yue and Yang (2017)]: 

*

1
ũ

( ) ( , ) ( ) ũ, ũu u d xx x
¡

¡= Íñx x c x , (5) 

*

1
ũ

( ) ( , )
( ) ũ, ũ

u u
d x

x
x

¡

µ µ
¡= Í

µ µñ
x x

c x
n n

. (6) 

The integral equation of the interior point of original area W is expressed as 

*

ũ
( ) ( , ) ( ) ũ, ɋu u d

¡
¡= Íñ ɝ

x x ɝc ɝ x . (7) 

If the virtual boundary is discretized by N  elements and the constant element is adopted. 

The unknown values 1 2( , , ... , )Nc c c=c  on the virtual boundary can be obtained by 

choosing M  collocation points on the boundary 
1G. Suppose that Eq. (5) and Eq. (6) are 

contented with the given boundary conditions, then we can get 2M N³  algebra 

equations, which can be described in the form of matrix as 

=Ac b , (8) 

where ( )ijA=A  denotes the 2M N³  dimensional coefficient matrix of VBEM; b  

represents a vector of 2M  dimension, it is formed at the collocation points on the 

physical boundary and based on the given boundary condition. This algebra system is 

generally ill-conditioned, the traditional Gaussian elimination method and the methods 

suitable for direct problems cannot efficiently solve the linear system Eq. (8). However, 

some proper regularization techniques can be used to their calculation. Two of them, 

namely the conjugate gradient method (CGM) and the Tikhonov regularization technique, 

are briefly presented and employed to solve Eq. (8) in the following section. 
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4 Regularization methods 

4.1 Conjugate gradient method 

The CGM is an efficient method of solving the inverse problem of the heat conduction by 

setting a regularizing stopping criterion; it is a stable scheme to solve the linear algebraic 

equations [Yang, Chen, Ling et al. (2017)]. In this method, Eq. (8) can be transformed to 

a normal linear system: 

1=Dc b , (9) 

where 

,   T T

1= > 0 =D A A b A b . (10) 

Therefore, the problem has been converted to solve Eq. (9), the algorithm is demonstrated 

as follows: 

1. Set an initial guess 
0c , determine the residual 

0 0 1= -r Dc b  and then set 
0 0=t r . 

2. For the k th ( 0,1,2,...k= ) step, the procedure of iterations is formulated as 

2
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t Dt

c c t

r Dc b

r

r

t t r

 (11) 

Increase k  by one and go to Step 2 until a given stopping criterion 1k e+ <r  is satisfied, 

where 0e>  is a constant. In this paper, e is taken as 1e-6. In Eq. (11), r denotes the 

gradient, t is the direction of descent, a is the search step size, and b is the conjugate 

coefficient. 

4.2 Tikhonov regularization technique 

The Tikhonov regularization technique is an effective and powerful tool to approximate a 

solution of the ill-posed Eq. (8) by minimizing the following function [Gu, Chen and Fu 

(2014)]: 

2 22

2 2
min{ }a- +Ac b c , (12) 

where 
2
Ö denotes the Euclidean norm, 0a>  is the regularization parameter, it usually 

controls the relative weight of the penalty term in the function. If the parameter a is 

equal to zero, Eq. (12) will degenerate to the least squares problem. More details can be 
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referred to Ref. [Mera, Elliott, Ingham et al. (2003)]. The determination of regularization 

parameter a will be introduced in the next section. 

The singular value decomposition (SVD) works well for direct problems but usually 

difficult to achieve a stable and accurate numerical solution to Eq. (8). Therefore, the 

Tikhonov regularization technique has been developed for solving the ill-conditioning 

problem with the help of the SVD. The SVD of the matrix A  is given by 

1

N
T T

i i i

i

s
=

=äA = U V u vä , (13) 

where 
1 2 2( , ,..., )MU = u u u  and 

1 2( , ,..., )NV = v v v  are orthogonal matrices, i.e., 

2

T

M=U U I , 
T

N=V V I , 
iu  and 

iv  represent the corresponding column vectors, 

1 2( , ,..., )Ndiags s s=ä  is a diagonal matrix with non-negative elements, 
is  are 

called the singular values of matrix A .  

Based on the SVD, the Tikhonov regularized solution can be obtained by  

1

( )TN
i

i i

i i

fa
s=

=ä
u b

c v , (14) 

where the filter factors 
if  can be expressed as 

2

2 2

i
i

i

f
s

s a
=

+
. (15) 

the details of the above regularization technique can be found in Wei et al. [Wei, Hon and 

Ling (2007)]. All the computational codes are written in MATLAB and the code 

developed by Hansen based on the SVD for solving the ill-posed Eq. (8) has been 

adopted in our computations [Hansen (1994)]. 

4.3 Determination of regularization parameters 

An appropriate selection of the regularization parameter a is very important for the 

efficiency of regularization methods used in the ill-conditioned interpolation matrix 

equation. But the choice of an optimal regularization parameter is still an open question 

under the intensive research. To deal with this issue, there are two widely used techniques, 

which are the L-curve criterion and the generalized cross-validation criterion. 

4.3.1 L-curve criterion 

The L-curve criterion is often suggested to determine a suitable value of the 

regularization parameters when solving ill-conditioned problems, which is defined as a 

continuous curve consisting of all points 2 2(|| || , || || )a a-Ac b c  for 0a> , i.e. 

2 2{(log || || , log || || ) : 0}L a a a= - >Ac b c . (16) 

This curve is usually called the L-curve since it looks like the letter “L” in shape for a 

large class of problems. According to the basic idea of this criterion, the best 
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regularization parameter should lie on the “corner” of the L-curve where the perturbation 

and the regularization errors are minimized. This “corner” can be perceived as a point at 

which the curvature of the L-curve is maximized [Gu, Chen and Fu (2014)]. 

4.3.2 Generalized cross-validation criterion 

As another alternative method, the generalized cross-validation (GCV) criterion can also 

be adopted to choose the regularization parameters. This method is to minimize the 

generalized cross-validation function [Wahba (1977)]: 

2

2

|| ||
( )

( ( ))Ntrace
G aa

I

-
=

-

Ac b

I AA
, (17) 

for real 0a> , here IA  denotes a matrix which produces the regularized solution aw , 

NI  represents the identity matrix of order N. 

5 Numerical examples and discussions 

To evaluate the performance of the VBEM combined with the CGM and the Tikhonov 

regularization techniques (VBEM-CGM, VBEM-Tikhonov-GCV and VBEM-Tikhonov-

LC), three numerical examples are tested. It is necessary to carefully investigate the 

effect of the three regularization methods and the scheme stability in relation to the level 

of noise. In the following test cases, the simulated data with noise are yielded by the 

following formula: 

( )1 , 1,..., 2 .i ib b T i Md= + =  (18) 

where 
ib  represents the exact boundary data, T is a standard normally distributed random 

variable, and d denotes the noise level [Abe, Fujii and Yoshimura (2017)]. The random 

variable T is implemented by using the MATLAB function ‘randn ()’ in the tests. 

5.1 Example 1 

A central hollow sphere is considered in this example, which is shown in Fig. 1. The 

inner radius of the spherical shell is 1 1r = , and the outer radius is 2 2r = . The accessible 

boundary 1G is set as the outer surface. 

2 2 2

1 2 3 1 2 3( , , ) 3 2 3 2u x x x x x x= + - +, (19) 

where 1 2 31, 1.5, 2k k k= = =. 
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Figure 1: Steady state heat conduction in a central hollow sphere: (a) Physical boundary; 

(b) Virtual boundary. 

Physical boundary 

(a) 

(b) 

 Virtual boundary 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2: Numerical results obtained by using (a) the Gauss elimination method, (b) the 

CGM, (c) Tiknonov-LC, and (d) Tiknonov-GCV, with 1% noise added into the data 
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Table 1: The numerical solutions and relative errors of the temperatures at several inner 

points on the circle 
1 2 3 1 2 3{( , , ) | 1.5cos , 1.5sin , 0,0 2 }x x x x x xq q q p= = = ¢ ¢ 

obtained by using the VBEM together with the traditional Gauss elimination method, 

Tikhonov-LC and Tikhonov-GCV, under different distance between the virtual and the 

physical boundary with 1% noisy Cauchy data. 

d θ Exact 

Gauss elimination CGM Tikhonov-LC Tikhonov-GCV 

VBEM Error VBEM Error VBEM Error VBEM Error 

1 

0 8.750 8.449 3.437e-02 8.809 6.761e-03 8.801 5.799e-03 8.792 4.791e-03 

π/3 7.063 5.127 2.741e-01 7.119 8.042e-03 7.099 5.201e-03 7.113 7.105e-03 

2π/3 7.063 4.367 3.816e-01 7.130 9.598e-03 7.088 3.545e-03 7.109 6.648e-03 

π 8.750 9.078 3.750e-02 8.803 6.010e-03 8.803 6.029e-03 8.802 5.972e-03 

4π/3 7.063 16.40 1.322e+00 7.129 9.426e-03 7.101 5.499e-03 7.102 5.600e-03 

5π/3 7.063 6.004 1.499e-01 7.109 6.578e-03 7.098 4.958e-03 7.120 8.198e-03 

10 

0 8.750 59.00 5.743e+00 8.780 3.411e-03 8.808 6.665e-03 8.775 2.822e-03 

π/3 7.063 99.00 1.302e+01 7.099 5.216e-03 7.100 5.292e-03 7.095 4.587e-03 

2π/3 7.063 -47.00 7.655e+00 7.100 5.377e-03 7.054 1.137e-03 7.088 3.625e-03 

π 8.750 62.00 6.086e+00 8.765 1.678e-03 8.804 6.179e-03 8.817 7.626e-03 

4π/3 7.063 81.00 1.047e+01 7.110 6.747e-03 7.082 2.704e-03 7.086 3.304e-03 

5π/3 7.063 -74.00 1.148e+01 7.121 8.242e-03 7.079 2.329e-03 7.073 1.471e-03 

100 

0 8.750 -3.000 1.343e+00 8.833 9.463e-03 8.762 1.363e-03 8.760 1.173e-03 

π/3 7.063 -3.500 1.496e+00 7.095 4.580e-03 7.069 8.903e-04 7.050 1.813e-03 

2π/3 7.063 8.000 1.327e-01 7.108 6.476e-03 7.046 2.405e-03 7.072 1.307e-03 

π 8.750 6.500 2.571e-01 8.840 1.033e-02 8.756 7.283e-04 8.777 3.032e-03 

4π/3 7.063 -1.000 1.142e+00 7.122 8.454e-03 7.113 7.176e-03 7.039 3.303e-03 

5π/3 7.063 18.00 1.549e+00 7.080 2.442e-03 7.100 5.341e-03 7.091 3.971e-03 

 

First, the necessity for introducing the regularization methods should be investigated 

when an ill-posed Cauchy problem is solved. To do this, the virtual boundary is located at 

a spherical shell with inner radius of 0.5 and outer radius of 2+d, where d denotes the 

distance between the physical boundary and the virtual boundary. 200 nodes are selected 

on the outer and inner virtual boundaries. Fig. 2(a) displays the numerical solutions of the 

temperatures on the circle 1 2 3 1 2 3{( , , ) | 1.5cos , 1.5sin , 0,0 2 }x x x x x xq q q p= = = ¢ ¢ 

obtained by using the VBEM combined with the conventional Gauss elimination method 

under different distance between the virtual and the physical boundary with 1% noisy 

Cauchy data. A fair comparison is made among the numerical solutions obtained by using 

the CGM ( 1 4ee= -, iter=41), the Tikhonov-LC, and the Tikhonov-GCV regularization 

method, as illustrated in Fig. 2(b), Fig. 2(c), and Fig. 2(d). The corresponding results are 

summarized in Tab. 1. It can be observed from Fig. 2(a) and Tab. 1 that the result using 

the Gauss elimination is highly oscillatory and inaccurate; the result could not be adopted 

as an approximate solution at all. Additionally, it is reported that the least-squares method 

and LU factorization could not obtain the accurate and stable solution either. Standard 
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methods could not produce the accurate results for the noisy data and, therefore, the 

regularization technique should be introduced to solve this problem. However, as can be 

seen from Fig. 2(b), Fig. 2(c) and Fig. 2(d), the CGM, the Tikhonov-LC, and the 

Tikhonov-GCV regularization method could yield very accurate results for a wide 

variation of the distance (d=1, d=10, d=100) between the virtual boundary and the 

physical boundary. Even though the distance reached 100, these three regularization 

methods still can reach a high accuracy level. This demonstrates that the VBEM 

combined with the three regularization methods are the stable and effective tools to solve 

the inverse problem of the three-dimensional heat conduction. 

To compare the CGM, Tikhonov-LC, and Tikhonov-GCV regularization techniques, Fig. 

3 presents the root mean square relative errors (RMSREs) of the temperatures at 200 test 

points uniformly distributed on the inner surface obtained by using the three 

regularization techniques with various noise levels added into the data. The accuracy of 

the CGM decreases dramatically as the noise level increases, but the Tikhonov-LC and 

Tikhonov-GCV are accurate and stable for various noise levels, as shown in Fig. 3. 

Furthermore, it can also be observed that the Tikhonov-LC is slightly more stable than 

the Tikhonov-GCV. Therefore, the Tikhonov-LC regularization technique will be 

employed to deal with the ill-posed problem in the following examples. 

 

Figure 3: The RMSREs of the temperatures on the inner surface obtained by using the 

CGM, Tikhonov-LC, Tikhonov-GCV regularization techniques with various noise levels 

added into the data 

5.2 Example 2 

In this example, the VBEM-Tikhonov-LC is applied to the solution of the inverse heat 

conduction problem in a complicated domain with the boundary G as shown in Fig. 4, 

prescribed by the following spherical parametric equation: 

( ){ }1 2 3 1 2 3= , , cos sin , sin sin , cos ,0 2 ,0 ,x x x x x xr q f r q f r f q p f pG = = = ¢ ¢ ¢ ¢
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 (20) 

in which 

1
( ) 1 sin(4 )sin(3 )

10
r q q f= + . (21) 

The accessible boundary 
1G is specified as the upper half of the surface, namely, 

( )1 1 2 3 1 2 3= , , cos sin , sin sin , cos , 0 2 ,0 ,
2

x x x x x x
p

r q f r q f r f q p f
ë û

G = = = ¢ ¢ ¢ ¢ì ü
í ý

 (22) 

The distribution of the analytical temperature is given by 

322

1 2 3 1 2( , , ) sin sin
xx

u x x x e x e x= + . (23) 

The orthotropic parameters are 
1 2 30.4, 0.1, 0.1k k k= = = . 

To solve the problem numerically, 400 boundary nodes are uniformly placed on a sphere 

with a radius of 5. Fig. 5 shows the numerical results for the temperatures at 100 test 

points on the circle 
1 2 3 1 2 3{( , , ) | 0.5cos , 0.5sin , 0, 0 2 }x x x x x xq q q p= = = ¢ ¢ 

obtained by using the VBEM-Tikhonov-LC with 3% noise level. The corresponding 

results are summarized in Tab. 2. It can be observed from Fig. 5 and Tab. 2 that the 

numerical solutions agree well with the according analytical solutions, and the maximum 

absolute error is 
24.22 10-³  in Fig. 5. 

To further investigate the accuracy of the proposed scheme for the reconstruction of the 

temperature distribution on the under-specified boundary, Fig. 6 and Fig. 7 give the 

distributions of the analytical and numerical results for the temperatures on the lower half 

of the surface with 5% noisy Cauchy data. It can be seen from these figures that the 

numerical solutions agree quite well with the exact solutions, indicating that the VBEM, 

together with the Tikhonov-LC, is accurate and stable for the inverse Cauchy heat 

conduction problems on the irregular three-dimensional domain even for a relatively high 

amount of noise (5%) added into the data. In the calculation, the regularization parameter 

is selected as 0.011723 via the L-curve method, Fig. 8 shows the L-curve for the 

Tikhonov regularization technique with 3% noisy data. 
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Figure 4: Steady state heat conduction in an irregular domain: (a) Physical boundary; (b) 

Virtual boundary. 

 

Physical boundary 

(a) 

Virtual boundary 

(b) 

 



 

 

 

202    Copyright © 2018 Tech Science Press         CMES, vol.117, no.2, pp.189-211, 2018 

 

Figure 5: The numerical solution and absolute error of the temperature on the circle 

1 2 3 1 2 3{( , , ) | 0.5cos , 0.5sin , 0, 0 2 }x x x x x xq q q p= = = ¢ ¢ obtained by using the 

VBEM in conjunction with the Tikhonov-LC with 3% noise level 

 

 

Figure 6: Profile of analytical solution for the temperature on the lower half of the 

surface 
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Figure 7: Profile of numerical solution for the temperature on the lower half of the 

surface obtained by using the VBEM+Tikhonov-LC with 3% noise level 

 

 

Figure 8: The L-curve for the Tikhonov regularization technique with 3% noisy data 
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Table 2: Comparison between the numerical and analytical solutions of the temperatures 

on the circle 
1 2 3 1 2 3{( , , ) | 0.5cos , 0.5sin , 0, 0 2 }x x x x x xq q q p= = = ¢ ¢ obtained by 

using the VBEM in conjunction with the Tikhonov-LC with 3% noise level 

θ Analytical solution Numerical solution Absolute error 

0 4.79426e-01 5.05344e-01 2.59187e-02 

0.1π 7.77468e-01 8.18178e-01 4.07097e-02 

0.2π 9.98100e-01 1.03492e+00 3.68173e-02 

0.3π 1.04410e+00 1.05697e+00 1.28680e-02 

0.4π 8.56155e-01 8.53774e-01 2.38160e-03 

0.5π 4.79426e-01 4.87113e-01 7.68730e-03 

0.6π 5.94610e-02 7.60407e-02 1.65797e-02 

0.7π -2.56968e-01 -2.59125e-01 2.15780e-03 

0.8π -4.18739e-01 -4.50572e-01 3.18324e-02 

0.9π -4.69679e-01 -5.11293e-01 4.16137e-02 

π -4.79426e-01 -5.09717e-01 3.02914e-02 

1.1π -4.90003e-01 -5.07127e-01 1.71241e-02 

1.2π -5.08329e-01 -5.19535e-01 1.12064e-02 

1.3π -5.22560e-01 -5.32424e-01 9.86420e-03 

1.4π -5.17263e-01 -5.26712e-01 9.44890e-03 

1.5π -4.79426e-01 -4.87785e-01 8.35920e-03 

1.6π -3.98354e-01 -4.04664e-01 6.31080e-03 

1.7π -2.64574e-01 -2.68068e-01 3.49440e-03 

1.8π -7.10314e-02 -7.01750e-02 8.56440e-04 

1.9π 1.82214e-01 1.92153e-01 9.93870e-03 

5.3 Example 3 

As the last example, a cylinder with non-uniform thickness is considered, as shown in Fig. 

9, the inner boundary is a cylindrical surface with the radius 1 1r = , the outer boundary is 

hyperboloid of one sheet which is defined parametrically as 

( )2 2( , ) 2 1 0.4 cos ,2 1 0.4 sin ,z z z zq q qY = + + , (24) 
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where [0,2 ]q pÍ  and [ 1, 2]zÍ - , respectively. In this example, the boundary 

conditions are specified on the inner and outer surfaces of the cylinder, and both the 

temperature and the heat flux of the lower and upper surfaces are unknown. The exact 

solution is given by 

2 2 2

1 2 3 1 2 3 1 2 3 1 2 3( , , ) 3 -2 + +2 +3 +10u x x x x x x x x x x x x= - + , (25) 

where 
1 2 30.4, 0.5, 0.2k k k= = = . 

To tackle this problem numerically, the virtual boundary is taken as a similar geometry 

with that in Fig. 9. The inner virtual boundary is a cylindrical surface with the radius 

1 0.5r = , the outer virtual boundary is hyperboloid of one sheet which is defined 

parametrically as 

( )2 2( , ) 2.5 1 0.4 cos ,2.5 1 0.4 sin ,z z z zq q q¡Y = + + , (26) 

where [0,2 ]q pÍ  and [ 1.5,2.5]zÍ - , respectively. 200, 200, 100, and 100 nodes are 

placed on the outside face, inside face, upper face and lower face, respectively. 

Fig. 10 shows the numerical results of the temperatures on the circle 

1 2 3 1 2 3{( , , ) | 1.5cos , 1.5sin , 1,0 2 }x x x x x xq q q p= = = ¢ ¢ by using the VBEM 

combined with the Tikhonov-LC regularization method with varying noise levels. The 

numerical solutions converge to the exact solution as the noise level decreases. 

Furthermore, the numerical solutions still agree very well with the analytical solutions 

even if a relatively high noise level (5%) is added into the data. In addition, the RMSREs 

of the noise levels 1%, 3%, and 5% are 
21.73 10-³ , 

22.63 10-³  and 
23.62 10-³ , 

respectively. This clearly illustrates the accuracy and stability of the proposed numerical 

scheme. 

Finally, the temperatures of the upper and lower surfaces are reconstructed via the VBEM 

combined with the Tikhonov-LC regularization method under 3% noise level. Fig. 11 

gives the L-curve plot in the determination of the regularization parameter of the 

Tikhonov regularization technique. Fig. 12 and Fig. 13 displays the exact solution profile 

and the numerical solution surfaces of the temperatures on the lower and upper surfaces 

with 3% noisy Cauchy data, respectively. It can be seen from Fig. 12 and Fig. 13 that the 

agreement between the numerical and analytical solutions is quite close, indicating the 

present method is effective, stable and accurate for solving the inverse problems of the 

heat conduction in the complicated three-dimensional orthotropic media. 
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Figure 9: Steady state heat conduction in a cylinder with non-uniform thickness: (a) 

physical boundary; (b) virtual boundary. 

Virtual boundary 

(b) 

Physical boundary  

(a) 
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Figure 10: Numerical results for temperatures on the circle 

1 2 3 1 2 3{( , , ) | 1.5cos , 1.5sin , 1,0 2 }x x x x x xq q q p= = = ¢ ¢ using the VBEM in 

conjunction with the Tikhonov-LC regularization method with varying levels of data noise 

 

Figure 11: The LC-curve for the Tikhonov regularization technique with 3% noisy data 
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(a) Analytical                                                 (b) Numerical 

Figure 12: The analytical and VBEM solutions of the temperatures on the upper surface 

with 3% noisy Cauchy data 

 

(a) Analytical                                                 (b) Numerical 

Figure 13: The analytical and VBEM solutions of the temperatures on the lower surface 

with 3% noisy Cauchy data 

6 Conclusions 

In this paper, it is the first attempt to apply a regularized virtual boundary element 

method for the inverse problems of three-dimensional heat conduction in orthotropic 

media. The resulting ill-posed system of algebra equations is regularized by employing 

the regularization techniques, which are the CGM, the Tikhonov-GCV and the Tikhonov-

LC. Numerical solutions for three test examples involving both smooth and segmented 
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smooth geometries have been investigated. It will be more arbitrary to set the location of 

the virtual boundary when using the three the regularization techniques. Furthermore, 

compared with the VBEM-CGM and the VBEM-Tikhonov-GCV, the VBEM-Tikhonov-

LC is more accurate and stable with respect to the noise level in the input data. 

Overall, it can be concluded that the VBEM-Tikhonov-LC is more efficient when 

involving the same noise level of Cauchy data. The proposed scheme is computationally 

robust, accurate, stable and efficient, it can be considered as a competitive candidate to 

the existing methods for solving three-dimensional inverse heat conduction problem in 

orthotropic media. 
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