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Abstract: With the development of adaptive optics and post restore processing 

techniques, large aperture ground-based telescopes can obtain high-resolution images 

(HRIs) of targets. The pose of the space target can be estimated from HRIs by several 

methods. As the target features obtained from the image are unstable, it is difficult to use 

existing methods for pose estimation. In this paper a method based on real-time target 

model matching to estimate the pose of space targets is proposed. First, the physically-

constrained iterative deconvolution algorithm is used to obtain HRIs of the space target. 

Second, according to the 3D model, the ephemeris data, the observation time of the target, 

and the optical parameters of the telescope, the simulated observation image of the target 

in orbit is rendered by a scene simulation program. Finally, the target model searches 

through yaw, pitch, and roll until the correlation between the simulated observation 

image and the actual observation image shows an optimal match. The simulation results 

show that the proposed pose estimation method can converge to the local optimal value 

with an estimation error of about 1.6349°. 

 

Keywords: Ground-based telescope, pose estimation, correlation matching, space target, 

image restoration. 

1 Introduction 

With the development of adaptive optics and post restore processing techniques large 

aperture ground-based telescopes can obtain high-resolution images of targets near the 

diffraction limit resolution [Matson, Borelli, Jefferies et al. (2009); Guan, Chen, Yi et al. 

(2011); Wang, Wang, Wang et al. (2011); Gallé, Gladysz, Mugnier et al. (2013); Jia, 

Wang, Zhao et al. (2013); Booth (2014); Liu and Atluri (2015); Rivenson, Zhang, 

Günaydın et al. (2017);  Lin, Liu, Wang et al.(2016)]. By analyzing the pose of the space 

target, information on the satellite mission state and reconnaissance area can be obtained, 

which is significant for space target surveillance [Frueh (2016)]. 

Current pose estimation methods can be divided into two types. One is to calculate the 

pose by searching for the corresponding relation of some feature projection from three to 

two dimensions [Bai and Junkins (2016); Conway and Daniele (2016); Zhang, Liu and 
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Jiang (2015); Xia, Xu and Xiong (2012)]. The other is based on a model, which uses 3D 

model retrieval technology to estimate the pose, which avoids establishing complex 

projection relations, but needs to build a large and complex model database [Labibian, 

Alikhani and Pourtakdoust (2017); Picos, Diaz-Ramirez, Kober et al. (2016); Tang, Wen, 

Ma et al. (2011); Shan, Ji and Zhou (2009)]. The accuracy of the match is limited by the 

accuracy of the established model base. For a ground-based telescope the image quality 

will degrade due to atmospheric turbulence. With a change of pose it is impossible to 

observe the parts not exposed by the Sun. So, the target features obtained from the image 

are unstable, and it is difficult to use the first method for pose estimation. After adaptive 

optical correction or image restoration, large aperture ground-based telescopes can obtain 

more accurate images of the target contours. The model matching method can obtain 

more accurate results. Poses of solar panels, loads, and main body of the target may all 

change; if the 3D model retrieval technology is used to estimate the pose, a very large 

model matching database is necessary, so its practicability is limited to a certain extent. 

In this paper a method of estimating the pose of a space target based on model matching 

is proposed, using a real-time scene simulation program [Xiong, Fu, Tang et al. (2012); 

Dai, Li and Yin (2006); Zhai (2016)] to generate the simulated observation image of the 

space target in orbit, searching through the yaw, pitch, and roll of the target model until 

the best match is made between the simulated observation image and the actual 

observation image. This method includes three aspects: high resolution image restoration, 

scene simulation, and real-time model matching. 

The paper is organized as follows. Section 2 describes the principle of a physically-

constrained iterative deconvolution (PCID) algorithm. Section 3 describes the technology 

for simulated observation images of the space target in orbit. Section 4 describes the 

method of estimating the pose e of the space target based on model matching. Section 5 

presents the analysis results of the simulation experiment. Section 6 concludes the paper. 

2 PCID algorithm description 

2.1 Object degradation model 

For a ground-based telescope atmospheric turbulence effects on the target is assumed to 

be time-shift invariant. Under incoherent light illumination the imaging degradation with 

Gaussian noise is modeled as Eq. (1): 

( ) ( ) ( ) ( )d x f x s x n x=  +                                                                                                  (1) 

where ( )d x  is the distorted nosy image, ( )f x  is the original undistorted image, ( )s x  is 

the point-spread function (PSF) of the system, ( )n x  is the Gaussian noise,   is the 

convolution operator, and x is the image coordinate. 

In the near field the PSF is expressed as Eq. (2): 

 
2

1 ( )( ) ( ) i vs x F P v e− =                                                                                                     (2) 

where 1F −   is the inverse Fourier transform, P  is the pupil function of the system, v  is 

pupil coordinate,   is the wave-front phase which can be decomposed into a set of 

Zernike polynomials as given by Eq. (3): 
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where m  is the m-th polynomial coefficient, mZ  is the m-th Zernike polynomial base. 

2.2 PCID theory 

The Object and PSF estimates are generated by minimizing a cost function that is based 

on maximum-likelihood estimation (MLE). Prior physical constraints are used, which 

transform the process of solving the problem into constrained optimization, improves the 

ill-condition of the problem itself, and obtains more accurate results. Prior physical 

constraints are as follows: the values of the PSF are positive; the integral of the PFS is 1; 

and the frequency width of the PSF is limited to the diffraction limit of the current optical 

system. In this paper the cost function for PCID is given by Eq. (4): 
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where ( )kW u is the weight at the frequency u in the kth frame, which is generally 

generated by the modulation transfer function (MTF) of an optical system without 

atmospheric disturbance, ( )kD u is the value of the Fourier transform of the captured 

image at frequency u in the kth frame. S ( )k u  is the optical transfer function (OTF) in the 

kth frame. ( )F u  is the spectrum expectation of the solved image. 1  and 2  are 

regularization coefficients. The final restored image is the Fourier inverse transform of F. 

3 Technology of simulated observations of the space target in orbit 

Scene simulation technology with a 3D model is used to simulate the on-orbit 

observation images of the space target. The simulation program takes the site of the 

observation station as the center. And the space target position is calculated according to 

two-line element (TLE) ephemeris data and the observation time. The field of view is 

determined by the parameters of the optical system of the telescope and the parameters of 

the detector. Simulated observation images of different poses are generated by changing 

the pose of the 3D model. 

3.1 Calculating the position of space target in orbit 

The simulation program takes the topocentric coordinate as the reference coordinate. TLE 

ephemeris data of satellite targets can be downloaded from the Internet. However, the 

position and velocity of the target in topocentric coordinates cannot be obtained directly. 

It is necessary to transform the coordinates from the Earth center inertial (ECI) 

coordinate system, to the Earth center Earth fixed (ECEF) coordinate system, and finally 
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to the topocentric coordinate system. The coordinate diagram is shown in Fig. 1. 

Coordinate conversion steps: 

Step 1: Use the simplified general perturbations (SPGP4) model or simplified deep space 

perturbations (SDP4) model developed by NORAD to calculate the position and velocity 

of the target object in the ECI coordinate (O-XECIYECIZECI) system [Yu, Guo and Li 

(2013)]. SGP4 is applied to near-Earth objects with a short orbital period of 225 minutes 

and SDP4 is applied to objects with an orbital period of more than 225 minutes. 

Step 2: The position and velocity of the target in the ECI coordinate system are converted 

to the position and velocity of the target in the ECEF coordinate (O-XECEFYECEFZECEF) 

[Dou and Yue (2016)]. 

Step 3: The position and velocity of the target in the ECEF are converted to the position 

and velocity of the target in the topocentric coordinate (Oobs-XobsYobsZobs). 

 
Figure 1: The coordinate diagram 

3.2 Target pose definition 

The coordinates of the target (Otrg-XtrgYtrgZtrg) are shown in Fig. 2. The origin of the 

orbital coordinate system is at the centroid of the target; the Zorbit axis points from the 

origin of the coordinate system to the Earth's centroid; the Yorbit axis is the cross product 

of the Zorbit axis and instantaneous velocity of the target; the Xorbit axis is the cross product 

of the Yorbit and Zorbit axes. The orbital coordinate system is a Cartesian coordinate system 

that obeys the right-hand rule. The relative pose of the target refers to the pose change of 

the target coordinate system to the orbital coordinate. The Euler angle is rotated in ZXY 

order to represent the relative pose of the target. The Yaw, Pitch, and roll are: Yaw θ: the 

angle between the projection of the Ytrg axis in the XorbitOorbitYorbit plane and the Yorbit axis; 

roll γ: the angle between the Ytrg axis and XorbitOorbitYorbit plane; pitch φ: the rotation angle 

of the target around Ytrg axis, as shown in Fig. 3. 
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Figure 2: The coordinate of the target          

 

    Figure 3: The rotation sequence diagram of ZXY 

3.3 The rotation angle of solar panels 

The energy provided by the solar panels per unit area depends on the angle between the 

normal direction and the solar vector direction. To improve the usage ratio of the solar 

panels and maximize the area of sunlight acceptance, there are special diurnal orientation 

adjustment strategies. In Fig. 3, for example, the solar panel rotates around the Y axis 

with only a single degree of freedom. In the target coordinate system, the normal vector 

of the solar panel is the Z axis. The angle that the solar panel needs to rotate for the 

diurnal orientation can be obtained by calculating the angle between the projection of the 

inverse direction of the Sun in the XOZ plane and the Z axis. 

3.4 Simulating observing the space target in orbit 

The field of view is calculated for the simulation program according to the detector 

resolution, pixel size, and optical system focal length. The projective imaging is carried 
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out by the rendering program with the 3D model, the observation time, and the position 

of the target.  

 

Figure 4: The flow of simulating the observation image of the space target in orbit 

The simulation process is as follows: 

Step 1: Input the TLE ephemeris data of the target, the address of the observation station, 

the detector resolution, the pixel size, and the focal length of the telescope; 

Step 2: Set the field of view of the simulation program and the observation station 

address; 

Step 3: Start the simulation program; 

Step 4: Calculate the spatial target position according to the observation time and the 

TLE ephemeris data; 

Step 5: Set the pose of the target model according to the given pose (yaw, pitch, roll); 

Step 6: Render the scene simulation according to the position, the model, and the pose of 

the target; 

Step 7: Output the simulated observation image; 

Step 8: Loop to Step 4 and input the next frame observation time and the pose of the 

model until receiving the stop command and go to Step 9; 

Step 9: End the simulation program. 

4 Pose estimation of the space target based on model matching 

The observation image of the space target in orbit is constructed with the simulation 

program described in Section 3. When the pose of the simulated target model is the same 

as the real target pose, the simulated observation image is most similar to the actual 

observation image; and the matching results of the two sets of images reach the optimal 
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value or the local optimal value. According to the change of the correlation of the two 

images, the pose estimation of the spatial target can be realized by changing the pose of 

the target model to search for the optimal value. Because the relationship between the 

pose of the target model and the simulated observation image generated by the projection 

cannot be directly analyzed with the mathematical model, the search direction can only 

be determined by calculating the change of the correlation result. 

4.1 Model pose matching method 

The HRI restored from the actual observation image by the PCID algorithm is expressed 

as Eq. (5): 

0t t

o i iI ={(x ,y )| i N}                                                                                                       (5) 

where N is the pixel number of the HRI and t is the observation UTC time. 

The simulation observation image is expressed as Eq. (6): 

0t t

s i iI ={(x ,y )| i N}                                                                                                       (6) 

The simulation observation image is determined by the pose and position of the 

observation camera and the pose and position of the target model, so sI  can be expressed 

as Eq. (7): 

0( )t t t t t t

sI ={F X Y Z C }                                                                                                  (7) 

where t t t    is the relative pose of the target model and t t tX Y Z  is the position of the 

target model. 0C  is a constant term determined by the pose and position of the 

observation camera.  

Since t t tX Y Z can be calculated by the TLE ephemeris data at the observation time t, only 
t t t    needs to be adjusted for matching. When the pose of the model target is the same 

as the pose of the actual target, sI  is most similar to oI . The model pose matching 

process can be regarded as the process of finding the max similarity value between sI  

and oI , which is expressed as Eq. (8): 

0
, ,

max ( ( , , ), )sR I I
  

                                                                                                         (8) 

The gradient method is used to solve the maximum value problem. Gradients with respect 

to relative pose are expressed as Eqs. (9-11): 

0 0( ( , , ), ) ( ( , , ), )s sR I d I R I IdR

d d

      

 

+ −
=                                                                 (9) 

0 0( ( , , ), ) ( ( , , ), )s sR I d I R I IdR

d d

      

 

+ −
=                                                               (10) 

0 0( ( , , ), ) ( ( , , ), )s sR I d I R I IdR

d d

      

 

+ −
=                                                                (11) 

The similarity measurement is divided into two main categories: Distance measurement 

and correlation measure. For all kinds of distortion the correlation measure is superior to 
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the distance degree, and the correlation measure is insensitive to the change of noise and 

light intensity. In this paper the normalized correlation metric is used as the similarity 

measure, which is calculated using Eq. (12):  

1/2 1

1
( ( , ) )( ( , ) )

( )
s o

N

s i i s o i i oi
I I

R I x y I I x y I
N s s =

= − −                                                        (12) 

where 
sI  is the average of sI , 

sIs is the variance of sI , 
oI  is the average of oI  and 

oIs is 

the variance of oI . 

4.2 Real-time model pose matching process 

The simulation observation images of different relative poses of the target model are 

obtained by the simulation program in real-time. The model pose matching algorithm 

steps are as follows: 

Step 1: Input the actual observation image; 

Step 2: Restore the actual observation image by the PCID algorithm; 

Step 3: Input the observation time t, the initial yaw 0 , the initial roll 0 , the initial pitch 

0 , the search step  , maximum iteration number Q, step size of gradients: d , d , d  

and calculate the initial correlation value 0R  using Eq. (12); 

Step 4: Initialize and start the thread of the simulation program; 

Step 5: Set the relative pose of the target model to 1 1 1( , , )k k kd   − − −+ , obtain the 

simulation observation image 1( )k

sI d− , calculate the correlation value using Eq. (12) 

and calculate the gradient d  using Eq. (9); 

Step 6: Set the relative pose of the target model to 1 1 1( , , )k k kd   − − −+ , obtain the 

simulation observation image 1( )k

sI d− , calculate the correlation value using Eq. (12) 

and calculate the gradient d  using Eq. (10); 

Step 7: Set the relative pose of the target model to 1 1 1( , , )k k k d   − − − + , obtain the 

simulation observation image 1( )k

sI d− , calculate the correlation value using Eq. (12) 

and calculate the gradient d  using Eq. (11); 

Step 8: Update the relative pose of the target model: 1 *k k -= + d   , 1 *k k-= + d   , 

1 *k k-= + d   . 

Step 9: Set the relative pose of the target model to ( , , )k k k   , obtain the simulation 

observation image k

sI  and calculate the correlation value kR  using Eq. (12); 

Step10: k= k+1, go to Step 5 and repeat until the termination condition is satisfied: 

1k kR R tole−−   or k>Q. 

Step 11: Output the estimation result ( , , )k k k   . 

The search process is shown in Fig. 5. 
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Figure 5: The flow of the real-time model pose matching 

5 Simulation experiment 

To illustrate the effectiveness of the method proposed in this paper, the pose analysis 

software was compiled by using the Qt Creator software tool. The satellite Terra is taken 

as the analysis target and the relationship between the pose of the target model and the 

correlation value of the simulated observation image and the actual observation image is 

analyzed. The TLE ephemeris data of the Terra satellite is shown in Tab. 1. 

Table 1: The TLE ephemeris data of the Terra satellite 

Terra 

1 25994U 99068A  16155.14961638 -.00000077  00000-0 -69719-5 0  9990   

2 25994  98.2113 229.6464 0001240 109.7478 250.3915 14.57102973875476 

Suppose, the diameter of the telescope is 2 m, the focal length of the optical system is 75 

m, the pixel size of the detector is 8 µm, and the resolution of the detector is 300×300. 

Changchun is taken as the site of observation station, the latitude is 43.88°, the longitude 

is 125.35° and the attitude is 200 m. When the observation time is selected at 2017-06-10 

13:23:30 UTC time, the initial pose of model target is yaw: 0 = , pitch: 0 = , roll: 

0 =  and the simulated observation image is generated by the pose analysis software, as 

shown in Fig. 6. 
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Figure 6: The simulated observation image 

 

(a) 

 

                               (b)                                                                    (c) 

Figure 7: The correlation value change with yaw, pitch and roll. (a) The correlation value 

change with pitch and roll at the yaw value of 0°, (b) The correlation value change with 

pitch and roll at the yaw value of 10°, (c) The correlation value change with pitch and roll 
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at the yaw value of -10° 

 

Figure 8: The Maximum change in correlation value with the yaw of the target model 

Fig. 6 shows the restoration of the actual observation image used to analyze the 

relationship between the correlation value and the pose (yaw, roll, pitch) of the target 

model. The correlation value can be calculated with the change of roll and pitch at 

different yaws. The range of Yaw is from 0° to 360° and the step size is set to 1°. 360 sets 

of data can be obtained and three sets of data near 0° are shown in Fig. 7. It can be seen 

from the diagram that the correlation value has a local optimal value near the true value. 

The curve of the maximum correlation value with the yaw is shown in Fig. 8. If the initial 

pose is within the valid range of the mark, the program can rapidly reach the optimal 

value. There is a maximum value at the real yaw value of 0°. Because of the symmetry of 

the target model, there is also a local optimal solution at 180°, and this solution can be 

ruled out by the changing trend of the preorder pose. 

Due to atmospheric turbulence, observed images degrade and the error of pose estimation 

is relatively large. Therefore, image restoration is needed to improve the accuracy of pose 

estimation. The actual imaging process is simulated; the PCID method described in 

Section 2 is used for image restoration; and then pose estimation is carried out using the 

method proposed in this paper. The PSF of the telescope is generated according to Eq. (2) 

and Eq. (3). Assume the atmospheric coherent length is 10 cm and the sampling point of 

the phase screen is 256×256. The degradation results of Fig. 6 with Gaussian noise are 

shown in Fig. 9. 
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Figure 9: The turbulence-degraded image sequence with Gaussian noise generated by the 

simulation software 

The restoration result obtained by the PCID algorithm is shown in Fig. 10. The pose 

estimation method presented in this paper is used to analyze the pose of the target in Fig. 

10. As shown in Fig. 8, if the initial yaw of the target model is in the effect area, the 

searching method proposed in this paper can reach the real value. In fact, the changing 

pose of the target is continuous. Therefore, the pose of the first image only needs to be 

artificially estimated for the continuous observation image. The next frame can use the 

result of previous frame as the initial pose. As seem om Fig. 10 setting the initial pose of 

the target model as (5°, 2°, 2°), the estimation results by the method proposed in this 
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paper are the same maximum correlation value Rmax=0.8470, and the pose of the target 

model is (1.476°, 1.417°, 0.5°). A sequence of HRIs of different poses of the target model 

is obtained by the same way. Pose estimation results of HRIs are shown in Tab. 2. The 

average value of pose estimation errors is 1.6349°, and the standard deviation is 0.6708°. 

 

Figure 10: The restored image by PCID 

Table 2: Pose estimation results of sequence HRIs 

Real poses 

(θ,φ,γ)(°) 

Estimation results 

(θ,φ,γ)(°) 

Errors 

(dθ,dφ,dγ)(°) 

(0,0,0) (1.476,1.417,0.5) (1.476,1.417,0.500) 

(2,0,0) (3.649,2.839,1.617) (1.649,2.839,1.617) 

(4,0,0) (5.769,2.439,1.079) (1.769,2.439,1.079) 

(6,0,0) (7.021,1.273,-1.098) (1.021,1.273,1.098) 

(8,0,0) (7.221,1.261,-1.146) (0.779,1.261,1.146) 

(10,0,0) (9.517,1.103,2.38) (0.483,1.103,2.380) 

(10,2,0) (8.555,-1.680,1.787) (1.455,3.680,1.787) 

(10,4,0) (11.055,4.969,1.634) (1.055,0.969,1.634) 

(10,6,0) (8.525,7.192,1.380) (1.475,1.192,1.380) 

(10,8,0) (12.555,9.162,1.360) (2.555,1.162,1.360) 

(10,10,0) (11.552,12.119,1.450) (1.552,2.119,1.450) 

(10,10,2) (12.541,8.514,4.373) (2.541,1.486,2.373) 

(10,10,4) (12.226,11.765,2.635) (2.226,1.765,1.365) 

(10,10,6) (9.844,12.200,8.135) (0.156,2.200,2.135) 

(10,10,8) (7.753,12.593,9.635) (2.247, 2.593,1.635) 

(10,10,10) (7.545,11.514,8.372) (2.455,1.514,1.628) 
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The average value and the standard deviation of pose estimation errors are calculated as 

Eqs. (13,14): 

N

1 3

i i i

i

d d d
E

  

=

+ +
=                                                                                                     (13) 

2 2 21
(( ) ) ) )

N

i i i

i=1

d E (d E (d E
N

   = − + − + −                                                            (14) 

6 Conclusions  

In this paper the actual observation process of a large aperture ground-based optical 

telescope is simulated, and the simulated observation image of the target in-orbit is 

obtained. The optimal search strategy for the pose of the target model is proposed to 

match the actual observation image with the simulated observation image. So, the relative 

pose estimation of the target can be realized. The actual images observed by ground-

based telescopes are seriously degraded by atmospheric turbulence. Using the PCID 

algorithm to restore the actual observation image can effectively improve the image 

resolution, and then the accuracy of pose estimation of the space target can be improved. 

The simulation results show that, under ideal conditions, the maximum correlation is 

obtained when the pose of the simulation target model is the same as the pose of the real 

target. And the curve of the maximum correlation between the simulated observation 

image and the observation image along the yaw reaches the optimal value or the local 

optimal value at the position of the real yaw of the space target. The strategy of searching 

for the maximum correlation value through the yaw, pitch and roll of the target model 

proposed in this paper will ultimately converge to the optimal value. For simulated actual 

observation images, and after processing by the PCID algorithm, the average value of 

pose estimation errors is 1.6349° and the standard deviation is 0.6708°. So, the method 

proposed in this paper can be used as an effective method for pose analysis of space 

targets in orbit observed by large-aperture ground-based telescopes. As simulation 

images of different poses can be easily obtained, future work will try to use the deep 

learning method to auto estimate the initial pose for the first image. 
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