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Abstract: Designing the optimal distribution of Global Navigation Satellite System 

(GNSS) ground stations is crucial for determining the satellite orbit, satellite clock and 

Earth Rotation Parameters (ERP) at a desired precision using a limited number of stations. 

In this work, a new criterion for the optimal GNSS station distribution for orbit and ERP 

determination is proposed, named the minimum Orbit and ERP Dilution of Precision 

Factor (OEDOP) criterion. To quickly identify the specific station locations for the 

optimal station distribution on a map, a method for the rapid determination of the selected 

station locations is developed, which is based on the map grid zooming and heuristic 

technique. Using the minimum OEDOP criterion and the proposed method for the rapid 

determination of optimal station locations, an optimal or near-optimal station distribution 

scheme for 17 newly built BeiDou Navigation Satellite System (BDS) global tracking 

stations is suggested. To verify the proposed criterion and method, real GNSS data are 

processed. The results show that the minimum OEDOP criterion is valid, as the smaller 

the value of OEDOP, the better the precision of the satellite orbit and ERP determination. 

Relative to the exhaustive method, the proposed method significantly improves the 

computational efficiency of the optimal station location determination. In the case of 3 

newly built stations, the computational efficiency of the proposed method is 35 times 

greater than that of the exhaustive method. As the number of stations increases, the 

improvement in the computational efficiency becomes increasingly obvious. 

 

Keywords: Global Navigation Satellite System (GNSS), optimal distribution of station 
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1 Introduction 

The geometric distribution of Global Navigation Satellite System (GNSS) tracking 

network has an important impact on the satellite orbit determination (OD), earth rotation 

parameter determination (ED) and geocentric movement monitoring (GM), among others. 

During the early GNSS system construction, only a few GNSS tracking stations can be 
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available for organizational and financial reasons. Therefore, optimal design of the 

tracking network is a key issue, as it allows the determination of OD, ED and GM at the 

desired precision using a limited number of stations [Dvorkin and Karutin (2013)]. On 

the contrary, in the maturity stage, a number of ground tracking stations, GNSS satellites 

and signal frequencies can be available, which makes the burden on data processing 

increase significantly. In order to minimize the data processing burden without 

significantly sacrificing the precision of OD and ED, the optimal minimum stations need 

to be identified and selected, particularly in the area of real-time and near real-time 

applications [Wang, Zhang, Wu et al. (2017)]. No matter in the initial stage or in the 

maturity stage, the optimal design and optimal utilization of GNSS stations are always 

very important for the parameters estimation precision and the computational efficiency. 

Therefore, many investigations have been performed to tackle this problem [Wang, Dang 

and Xu (2013); Zhang, Zhang, Huang et al. (2015); Hu, Wang, Wang et al. (2017)]. 

During the early development of GPS, the optimization of GPS global tracking network 

design was studied widely for various purposes [Delikaraoglou (1985); Bernd and 

Wolfgang (1988); Stephen and Willy (1989)]. These studies have found that longer 

distances between monitoring stations yield better precisions of satellite OD. Furthermore, 

their results indicate that a minimum of 15 globally distributed stations is required for 

centimeter-level orbit determination, beyond which the improvement provided by 

additional stations goes as the square root of the number of stations [Wang (1997)]. With 

regard to GLONASS, GALILEO, the optimal designs of their respective global telemetry, 

tracking and command (TTC) networks have also been investigated. Dvorkin studied the 

optimization distribution of GLONASS global tracking stations network. The results 

show the precision of satellite orbits and clocks (OC) can be improved significantly by 

adding 11 abroad stations to the 10 existing stations, which provide 4-fold coverage. 

However, increasing the number of stations by almost 30% when establishing a network 

with 5-fold coverage, it increases the accuracy of OC by 0.5% [Dvorkin and Karutin 

(2013)]. Liu discussed the optimal design of GALILEO tracking network and verified 

that the accuracy of satellite OD can be improved by about 80% when adding 9 stations 

to the 12 Cooperative Network for GIOVE Observation (CONGO) stations. The new 

monitoring stations are most effective when located in North America, Asia, the Arctic 

and Antarctica [Liu, Wu, Cai et al. (2003)].  

The BeiDou Navigation Satellite System (BDS) is a global navigation satellite system, 

which has been independently constructed and operating by China. The deployment of 

BDS is divided into two phases: the regional system and the global system. By 2012, the 

regional system has been constructed, and the global system has been developed since 

2015. According to the BDS construction plan, by 2020, 30 BDS satellites will be 

launched as a constellation, and about 30 ground stations (8 domestic and 22 abroad) will 

be built to form a global BDS tracking network [CNSO (2012)]. As of 1st January 2015, 

14 BDS satellites have been launched successfully, and 13 BDS tracking stations have 

been established, which can meet the service requirements for China and its surrounding 

areas [Guo, Li, Zhang et al. (2017)]. However, in order to provide precise position, 

navigation and timing (PNT) service to global users, the optimal design and construction 

of the BDS global ground tracking network is very important. And some investigations of 

this problem have been performed. Wen demonstrated that sub-meter BDS satellite OD 
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can be obtained using the data from 8 stations within China’s territory, but the OD precision 

can be improved markedly if an abroad station is added. The optimal location of such an 

abroad station is in Perth, Australia [Wen, Liu, Zhu et al. (2007)]. He found that BDS 

Geostationary Earth Orbit (GEO) satellite orbits, especially the along-track component, can 

be significantly improved by extending the tracking network in China along longitude 

direction, whereas Inclined Geosynchronous Satellite Orbit (IGSO) gain more improvement 

if the tracking network extends in latitude [He, Ge, Wang et al. (2007)]. Zhang analyzed the 

effects of ground tracking stations distribution on the precision of BDS satellite orbit 

determination, and proposed the optimal stations distribution strategy of BDS satellite orbit 

determination [Zhang, Dang, Cheng et al. (2016)]. 

In this contribution, the optimal design of GNSS ground tracking network is investigated 

and the determination precisions of satellite orbit and Earth Rotation Parameters (ERP) 

are considered simultaneously. And a method of rapidly determining stations optimal 

distribution locations based on map grid zooming and genetic algorithm is proposed. In 

the following, Section 2 presents a new criterion for the optimal stations distribution for 

OD and ED, named the minimum Orbit and ERP Dilution of Precision Factor (OEDOP) 

criterion; Section 3 presents a method for the rapid determination of the selected station 

locations based on the map grid zooming and genetic algorithm; Section 4 proposes an 

optimal or near-optimal distribution locations of 17 newly built BDS stations by using of 

the minimum OEDOP criterion and station optimal distribution location determination 

method; Section 5 summarizes the main conclusions and contributions of this paper. 

2 Criterion for the optimal GNSS station distribution for orbit and ERP observation 

The main goal of designing a GNSS global tracking network is to form a ground-based 

continuous observation network with the minimum number of stations for the precise 

determination of the satellite orbit, satellite clock, ERP, etc. However, in practical 

construction, the choice of sites has to consider a number of limitations, such as the 

observation environment, data communication conditions, electricity infrastructure, 

legality of site coordinates and so on [Hofmann-Wellenhof, Lichtenegger and Collins 

(2013)]. However, in this contribution, only two factors are considered: 1) The 

advantages of constructing a GNSS station on land relative to constructing it in the ocean 

and 2) The geometry structure of GNSS ground tracking stations for satellite orbit and 

ERP determination. The specific method is as follows. 

According to the principle of GNSS observation, the GNSS carrier phase observables are 

formulated as [Xu (2007)]: 

( , ) ( ) ( , )          + − − + − − − − =k k k

i r e r k i ion trop tide rel p i r et t t t c N t t                (1) 

where  is the wavelength of carrier phase; Ф is the observed phase; tr is the signal 

reception time of the receiver i; te is the signal emission time of the satellite k; subscript i 

and superscript k are the number of receiver and satellite; tr and tk are the clock errors 

of the receiver and satellite at the time tr and te; c is the speed of light; N is the integer 

ambiguity; ion, trop, tide and rel are the ionospheric, tropospheric, tidal and relativistic 

effects, respectively; p is the remaining errors; k
i is the theoretical distance from the 

satellite k to the receiver i. 
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From Eq. (1), it is known that the sum of left terms (the observational distance and all 

errors corrections) should be equal to the right term (the theoretical distance). However, 

the all errors cannot be completely corrected in the GNSS practical measurement. Thus, 

the following Eq. (2) is commonly used to represent the functional relationship between 

the GNSS observation distance and the theoretical distance. And a matrix expression is 

widely adopted to estimate the unknown parameters. 

,  − =L AX V P                                                                                                                 (2) 

where L is the observation vector that includes the left terms of Eq. (1); A is the 

coefficient matrix that includes the all partial derivatives of Eq. (1) with respect to the 

unknown parameters and X is the unknown parameter vector; AX is the theoretical 

distance vector that includes the right term of Eq. (1); V is the residual vector that 

includes the differences between the observational distances and the theoretical distances; 

P is the symmetric and definite weight matrix that is used to assess the contribution or 

accuracy of each observational distance, which is commonly determined by the satellite 

elevation angle or signal-to-noise ratio of the each observational distance.  

However, in GNSS data processing, the priori values of unknown parameters are 

commonly used to obtain the partial derivatives of unknown parameters in the matrix A. 

Thus, the X includes the corrections of the priori values of the unknown parameters; the L 

includes the differences between the observational distances and the priori theoretical 

distances. And an iterative algorithm is used to obtain the optimal estimates of unknown 

parameters. It notes that the unknown parameter vector X just includes satellite orbit 

coordinates and ERP in this paper, and the other parameters are taken as the known 

values for the convenience of later discussion. The specific forms of the A, X, L and P are 

described as follows. 

Assuming that there are n GNSS stations and that each station tracks m satellites per 

epoch (the total number of epochs is j), A, X, L and P can be written as 
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Here, Xsat and Xerp are the unknown parameter vectors of orbit and ERP, where Xsat=[x, y, 

z]T, Xerp=[Ɵx, Ɵy, Ɵu]T, and x, y and z denote the coordinates of the satellite orbit on the X, 

Y and Z components. Furthermore, Ɵx, Ɵy and Ɵu denote the pole motion on the X, Y 

components and the value of ut1-utc, respectively. Asat and Aerp are the coefficient 

matrices of Xsat and Xerp, respectively. Moreover, matrices Asat and Aerp at the i-th epoch 

(i={1…j}) can be written as 
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with respect to Ɵx, Ɵy, Ɵu, where k={1…m}, g={1…n}. The formulas used to calculate 

these partial derivatives are as follows: 

0 0 0
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Second, the inner coincidence of the i-th element of the estimated parameter in Eq. (2) 

can be evaluated by 

0=i iip m Q                                                                                                                   (11) 

where m0 is the so-called standard deviation (or sigma); pi is the i-th element of the 

precision vector, Qii is the i-th diagonal element of the matrix Q (the inversion of the 

normal matrix M); and 

= TM AP A                                                                                                                     (12) 

T

0
( ) (3 3)

=
  −  +

V PV
m

j n m m
                                                                                    (13) 

where j, n and m are the consecutive natural numbers starting from 1. 

To directly describe the precision of a group of unknowns without knowledge of m0, a so-

called dilution of precision factor (DOP) is usually used in GNSS measurements. The 

DOP is defined as the square root of the sum of some diagonal elements of the quadratic 

matrix Q, yielding the Position DOP (PDOP), Time DOP (TDOP), Geometric DOP 

(GDOP), etc. [Xu (2007)]. 

In this study, this definition is similarly used to describe the precision of OD and ED, 

where the corresponding DOP is termed the OEDOP. The calculation formula of the 

OEDOP is as follows: 

3 3

1

+

=

= 
m

ii

i

OEDOP Q                                                                                                        (14) 

Generally, smaller the OEDOP values correspond to better the normal-equation condition 

of the estimated parameters. According to the above formulas, it can be readily noted that 

only the coordinates of the satellites and stations govern the OEDOP value. The satellites 

coordinates can be calculated by the precise or broadcast ephemeris and they cannot be 

changed since they have been defined in advance and controlled by the GNSS operation 

& control center. Therefore, the different OEDOP values will be obtained by using the 

different ground stations distribution scheme. Finally, comparing the OEDOP values for 
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all possible station distribution schemes, the scheme with the lowest OEDOP value is 

selected as the optimal design scheme for satellite orbit and ERP determination. 

3 A method for rapidly determining optimal station distribution locations 

Using the above-proposed criterion of the minimum OEDOP value, the OEDOP values 

of all possible station distributions must be calculated and compared, which requires 

impractically high computation times. For example, if using a 20°×20° grid to cover the 

globe, 180 gird points are taken as potential station locations. However, 109 grid points 

are located in the ocean and are thus not suitable for GNSS stations. Therefore, the 

remaining 71 grid points located on land are taken as the final candidate locations. If we 

need to establish 17 new BDS stations, the total number of possible stations distribution 

schemes will be C71
17=1.03×1016, where every scheme has a corresponding OEDOP 

value. It usually takes one hour to calculate 104 OEDOP values using a personal 

computer (e.g. a Dell MT3020). Therefore, it will take 1×1014 hours (approximately 11.4 

billion years) to complete all computations required to establish 17 new BDS stations 

among the 71 candidate locations using a 20°×20° grid. If a 1°×1° grid is used to improve 

the precision, the number of land-based grid points increases to 21616, which would 

require an inconceivably long computation time.  

Therefore, a method to rapidly select the distribution scheme with the minimum OEDOP 

criterion from all possible distribution schemes is urgently needed. To solve this problem, 

a new method is developed in this contribution. This method is inspired by the use of 

scale adjustment to find a certain location on a map. First, the scale of the map is 

decreased to quickly identify the region in which the location lies, and then the scale of 

this area is increased stepwise to find the specific location accurately. The merit of this 

method is that the location of interest is not compared with all the locations on the map. 

Based on this approach, a new method for the rapid determination of the optimal station 

distribution locations is developed. The specific implementation steps are as follows: 

(a) Determination of the general distribution 

First, a relatively sparse grid (e.g. 40°×40°) is used to cover the globe. Next, an initial 

optimal distribution of stations is obtained based on the given criterion (e.g. the minimum 

OEDOP). The goal of this step is to obtain a general configuration of optimal station 

distribution locations as quickly as possible. 

(b) Densification of appointed grid 

Second, a relatively dense grid (e.g. 20°×20°) is used to refine the grids nearest to the 

chosen grid point in Step (a). Next, all the grid points in the refined area are taken as the 

new candidate station locations. Fig. 1 shows the basic flows of Steps (a) and (b). 

(c) Adjustment of chosen station locations 

Third, the chosen optimal station locations are adjusted within the scope assigned in step 

(b) according to the minimum OEDOP criterion. It should be noted that the number of 

possible station distribution schemes is now Πi=1
n C25

1 (n is the number of stations), not 

Cn×25
n, because the general distribution has been determined in step (a). To reduce the 

computational time, a genetic algorithm is adopted, as usually used in the optimal design 

of GNSS networks [Saleh and Dare (2003); Saleh and Chelouah (2004)]. 
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Figure 1: Diagram of Steps (a) and (b) for rapidly determining optimal station 

distribution locations 

 (d) Repetition of steps (b) and (c) 

Step (c) yields new optimal station locations with lower OEDOP values than the 

locations found in Step (a). However, Steps (b) and (c) must be repeated if the grid 

density does not satisfy a predetermined criterion. These new optimal station locations 

are then taken as the new central points. The nearest grids are refined by a denser grid 

(e.g. 10°×10°), and the optimal station locations are adjusted again according to the 

minimum OEDOP criterion, as shown in Fig. 2. This cycle is repeated until the grid 

density reaches the required density (e.g. 1°×1°). 
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Figure 2: Diagram of steps (c) and (d) for rapidly determining optimal station 

distribution locations 

In general, this method can markedly reduce the computation time and be easily 

automated and run using a personal computer. However, three questions must be 

answered to assess the effectiveness of the method: 1) Are the chosen optimal station 

locations obtained using the proposed method the same as those obtained using the 

exhaustive method? 2) How much can the calculation efficiency be improved using the 

proposed method relative to the exhaustive method? 3) Is it true that the smaller OEDOP 

values indicate higher precisions of the measured OD and ED? 
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4 Experiments and analysis 

To verify the above three problems, two sets of experiments were designed, and several 

sets of GNSS real data are processed. In the first set of experiments, the determination 

accuracy and computational efficiency of proposed method are tested. First, a 10°×10° 

grid is used to cover the globe, and the grid points located in the ocean are removed using 

the Matplotlib software and GSHHG high-resolution coastline data, which allow us to 

determine whether the points are on the mainland, an island or water [Janert (2011)]. 

Second, the exhaustive method and proposed method are adopted to determine the 

optimal locations for the construction of 1, 2 or 3 new BDS stations based on 13 existing 

stations using the minimum OEDOP criterion. Finally, the optimal station locations and 

computation time of the two methods are compared. 

In the proposed method, the order of grid scales is 40°×40°, 20°×20°, and 10°×10°, and a 

genetic algorithm is used to reduce the computation time. In this genetic algorithm, the 

initial population is 10, and the probabilities of crossover and mutation are 0.6 and 0.4, 

respectively. These parameters are set based on the following rules: (1) 41 grid points can 

be generated if using a 40°×40° grid to cover the globe. However, there are 18 grid points 

are located in the ocean and 13 grid points are used to stand for 13 existing stations. Thus, 

10 remaining grid points are taken as the alternative grid points, namely the initial 

population. (2) The probability of crossover is calculated by the existing grid points 

divided by the total of the existing grid points and the alternative grid points, namely 

13/(13+10)=0.6. (3) The probability of mutation is obtained by subtracting the probability 

of crossover from 1, namely 1-0.6=0.4. 

The BDS satellite coordinates for the two methods are obtained from the precision 

ephemeris of the GFZ GNSS analysis center, and Dell MT3020 computers are used in all 

experiments. Finally, only MEO and IGSO satellites are considered because the orbit 

determination precision of GEO satellites is far lower than that of MEO and IGSO 

satellites [Zhang, Zhang, Huang et al. (2015)]. Figs. 3(a), 3(b), 3(c) and 3(d) show the 

optimal station locations and computation time of the two methods. 

              

(a) One optimal BDS station location              (b) Two optimal BDS station locations 
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(c) Three optimal BDS station locations                         (d) Computation time 

Figure 3: One, two and three optimal BDS station locations and computation time of 

exhaustive method and the proposed method 

From the above experimental results, several conclusions can be drawn. First, both 

methods yield the same optimal station locations in the cases of 1, 2 and 3 optimal BDS 

stations. However, the computation time of the proposed method is shorter than that of 

the exhaustive method. Furthermore, as the number of newly built stations increases, the 

proposed method offers an increasingly obvious improvement in computational 

efficiency relative to the exhaustive method. When the number of newly built stations 

reaches 3, the computational efficiency is 35 times better using the proposed method than 

using the exhaustive method. 

According to the BDS construction plan, 17 BDS abroad stations will be built in the next 

few years, which combined with the 13 existing stations, will form a global BDS tracking 

station network. However, this construction will be not completed within an acceptable 

time if the exhaustive method is used to determine the optimal locations of the 17 new 

BDS stations. Therefore, the proposed method is used instead. The order of grid scales is 

60°×30°, 30°×15°, 10°×10°, 5°×5°, 2°×2°, and 1°×1°, and the initial population, 

crossover probability and mutation probability of the genetic algorithm are 10, 0.6 and 

0.4, respectively. It takes approximately 18 hours to complete all computations using a 

DELL MT3020 computer. Fig. 4 shows the determination results in the initial 60°×30°, 

the intermediate 30°×15°, 10°×10°, 5°×5°, 2°×2°, and the final 1°×1° grid stages. 

From Fig. 4, it is known that the locations of 17 BDS abroad stations are refined step by 

step from the initial locations in Fig. 4(a) to the final locations in Fig. 4(f), which are 

obtained by using the proposed method that is described in Section 3. And it is noted that 

the adjustment of each station location is decreasing when the mesh size of the grid 

becomes smaller and smaller. This illustrates the optimal location of each station is 

obtained by the successive approximation method. 
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(a) 60°×30°                                                          (b) 30°×15° 

         
(c) 10°×10°                                                             (d) 5°×5° 

       

(e) 2°×2°                                                                (f) 1°×1° 

Figure 4: Evolutional process of determining the optimal locations of 17 BDS stations 

using map grid zooming method and genetic algorithm 

Next, a second set of experiments is designed to verify that smaller OEDOP values 

indicate higher precisions of the OD and ED. These experiments include four 

experimental schemes and utilize real GPS observation data. All 30 stations are 

considered in each of the four experimental schemes, but the station distributions differ 

(see Fig. 5). Therefore, the OEDOP values of the four schemes are different. In Scheme 1, 

the stations are only distributed within Asia. In Scheme 2, the stations are distributed 

within Asia and Europe. In Schemes 3 and 4, the stations are distributed throughout the 

world, but the station locations in scheme 4 are from the results of Fig. 4(f). 
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(a) Stations distributed within Asian          (b) Stations distributed within Asia and Europe 

              

(c) Stations distributed throughout the world     (d) Stations distribution based on Fig. 4 (f) 

Figure 5: Different stations distribution locations for Schemes 1-4 

One week (from 2015.06.01 to 2015.06.07) of GPS data from these stations was gathered 

and processed, and one day of observational data was obtained as a solution session. 

High-precision GNSS data-processing software developed by Dr. Maorong Ge of the 

German Research Centre for Geosciences was used to process the experimental data [Li, 

Ge, Dai et al. (2015)]. The predicted values of IERS Bulletin A were used as the initial 

values of the ERP. The GPS broadcast ephemeris was used to generate the initial orbit. 

The coordinates of the station and their constraint values were obtained from the IGS 

SINEX file. The specific parameter configuration is listed in Tab. 1. 

Table 1: Parameter configuration for GPS data processing 

Strategy Describe 

Observations PC+LC 

Elevation angle cut-off 7° 

Sampling rate 30 s 

Data span Three days 

Weighting elevation-dependent weighting 

Estimator LSQ 

Receiver ISB/IFB constant 

Satellite antenna PCO & PCV igs_08.atx  

Station coordinates & ERPs Fixed using estimates from the GPS daily POD process 

Attitude model  BeiDou-2: Yaw-steering and orbit normal attitude mode 
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Troposphere 
Dry and wet GMF mapping functions; ZTDs estimated for 

each station at intervals of two hours 

Precession and nutation IAU 2010 precession and IAU 2010 nutation model 

Geopotential EGM2008 12×12 

Solid Earth tides, ocean tides and 

solid Earth pole tides 
IERS Conventions 2010 

N body JPL DE405 ephemeris 

Orbital parameters 
Six orbit elements and five ECOM SRP parameters were 

estimated: constants in the D, Y and X directions; periodic 

terms in the X direction 

Pseudo-stochastic orbit 

parameters 

Every 12 h; constrained to 1×10-6 m/s in the radial 

direction, 1×10-5 m/s in the along direction, and 1×10−8 m/s 

in the cross-track direction 

Ambiguity Real constant value for each ambiguity arc 

Notes: The PC+LC indicates the ionosphere-free combination of pseudo-range and 

carrier phase; LSQ is the least square estimation; ISB is the inter-system bias and IFB is 

the inter-frequency bias. PCO and PCV are the absolution antenna phase center offset and 

phase central variation, respectively; SRP means solar radiation pressure. 

The final ERP and GPS orbit productions of the IGS were taken as the reference values to 

evaluate the ERP and orbit solution precisions of each scheme. The differences between 

the IGS productions and the experimental results are shown in Fig. 6. The average values 

of OEDOP in this week and the practical solution precisions of the four schemes are 

provided in Tab. 2. 

                    

(a) Satellite orbit differences in 3D                          (b) Polar motion on the X component 

                     

(c) Polar motion on the Y component                      (d) PM rate on the X component 
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(e) PM rate on the Y component                              (f) Variation of the length of day 

Figure 6: Results of satellite orbit and ERP determination of Schemes 1-4 

Table 2: Statistical results of the ERP and orbit solution precisions for Schemes 1-4 

Xpole(10-3 mas) Ypole(10-3 mas) 

DOY Aisa Asia+Europe Global Best DOY Aisa Asia+Europe Global Best 

152 -0.739 -0.531 -0.392 0.174 152 -0.095 0.070 -0.066 -0.056 

153 -0.448 0.337 -0.353 -0.248 153 0.144 -0.124 -0.109 0.040 

154 -0.280 -0.226 0.238 0.087 154 0.210 0.181 0.116 0.089 

155 -0.589 -0.561 -0.264 -0.189 155 0.174 -0.132 -0.040 0.044 

156 -0.561 -0.539 -0.430 -0.261 156 0.139 -0.083 -0.063 0.025 

157 -0.543 -0.445 -0.415 -0.243 157 0.890 0.203 -0.147 0.110 

158 -0.483 -0.434 -0.373 -0.234 158 0.265 0.176 0.113 0.086 

RMS 0.661 0.663 0.521 0.312 RMS 0.552 0.193 0.131 0.104 

 

dXpole(10-3 mas/day) dYpole(10-3 mas/day) 

DOY Aisa Asia+Europe Global Best DOY Aisa Asia+Europe Global Best 

152 0.130 -0.032 -0.147 0.011 152  -0.524  -0.483  0.244  -0.197 

153  0.420  -0.364  -0.363  -0.270 153  0.484  -0.424  0.358  0.084 

154  0.113  0.093  0.062  0.051 154   -0.656 0.501  0.487  -0.477 

155   -0.448  -0.397  -0.149 -0.048 155  0.234  -0.150  0.096  0.034 

156    0.456  -0.371 -0.152 -0.056 156   0.176  -0.149 0.144  0.076 

157  -0.260  -0.227  -0.169  -0.160 157  0.312  -0.223  0.196  0.009 

158    0.326  -0.274 -0.153 -0.136 158   0.482  0.421 0.362  0.106 

RMS  0.450  0.412  0.276  0.197 RMS  0.541  0.460  0.408  0.265 

 

LOD(10-4μs) Orbit 3D(cm) 

DOY Aisa Asia+Europe Global Best 
DOY Aisa Asia+Europe Global Best 

EDOP 679.012 525.230 330.560 304.110 

152 0.494 0.376 0.328 0.125 152 9.828 5.655 3.414 2.448 

153 0.382 0.326 0.235 0.182 153 2.621 4.035 2.448 2.310 

154 0.368 0.300 0.282 0.206 154 12.035 3.345 2.793 2.448 

155 0.411 0.385 0.330 0.211 155 10.345 2.690 2.690 2.345 

156 0.431 0.480 0.363 0.331 156 10.276 4.862 2.828 2.793 

157 0.361 0.342 0.330 0.161 157 4.414 3.483 2.483 2.483 

158 0.374 0.316 0.279 0.134 158 5.552 3.621 2.517 2.207 

RMS 0.450 0.422 0.350 0.262 RMS 7.867 3.956 2.739 2.433 
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From Fig. 6, some conclusions can be drawn: 1) There are obvious systematic errors in 

scheme 1 when the observations only come from Asian stations, especially for the ORB 

and dXpole determination (e.g. Figs. 6(a) and 6(d)). The primary reason is that these 

unknown parameters are very sensitive to the distribution of stations, i.e. a minor change 

in the distribution of stations will lead to a great impact on the accuracies of ORB and 

dXpole parameters estimation; 2) the ERP and ORB determination precisions of Scheme 

2 are better than those of Scheme 1 because the stations are more widely distributed. In 

particular, the systematic errors of Ypole are substantially removed; 3) the results of 

Schemes 3 and 4 are better than those of Schemes 1 and 2 because the stations have a 

global distribution, and the solution precisions of Scheme 4 are better than those of 

Scheme 3. Thus, it is verified that the station distributions in Fig. 4(f) are the optimal 

locations of 17 BDS abroad stations. 

Tab. 2 lists out the statistical results from the different experimental schemes, and some 

conclusions can be obtained. 1) The accuracy of ORB determination from the scheme 4 is 

the best, which is improved by 69.1%, 38.5% and 12.6%, respectively compared with the 

results from the scheme 1, 2 and 3. 2) The accuracy of ERP determination from the 

scheme 4 is also the best, which is improved by 57.1%, 46.9% and 32.4%, respectively 

compared with the results from the scheme 1, 2 and 3. 3) And the results clear verify that 

smaller OEDOP values correspond to higher precisions of OD and ED. 

5 Conclusions 

During the early stage of GNSS system construction, only a few ground stations can be 

established due to organizational and financial constraints. Even if the number of stations 

is sufficient, only GNSS data from a few stations are used to reduce the computation time 

in some real-time applications. Therefore, optimizing the station distribution is a key 

issue, as it will allow the OD, ED and GM to be measured at a desired precision using a 

limited number of stations. In this contribution, the station optimal distribution problem 

is discussed in detail, using the optimal distribution of the 17 remaining BDS stations as 

an example. To judge the OD and ED precision of the different distribution strategies, an 

index value called OEDOP is proposed and tested. Then, to improve the computational 

efficiency of determining the specific optimal station locations, a fast method is 

developed based on the map grid zooming and genetic algorithm.  

The results show the computational efficiency of the proposed method is 35 times greater 

than that of the exhaustive method in the case of 3 newly built stations. And as the 

number of stations increases, the improvement in the computational efficiency becomes 

increasingly obvious. At present, constructing multi-GNSS stations is a global trend. 

Thus, it is important to consider which station distribution is most beneficial for the 

satellite orbit determination of multi-GNSS systems. Different GNSS systems have 

different satellite orbital inclinations and orbital periods, which have different 

sensitivities for ERP determination [Lutz, Meindl, Beutler et al. (2013); Rothacher and 

Weber (1999); Yang, Li, Xu et al. (2011)]. Therefore, which station distribution is 

optimum in terms of being most suitable for ERP determination using multi-GNSS 

observation data is also an important topic of investigation. It should be investigated in 

our future study. 
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