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Abstract: The development of deep learning has revolutionized image recognition 

technology. How to design faster and more accurate image classification algorithms has 

become our research interests. In this paper, we propose a new algorithm called 

stochastic depth networks with deep energy model (SADIE), and the model improves 

stochastic depth neural network with deep energy model to provide attributes of images 

and analysis their characteristics. First, the Bernoulli distribution probability is used to 

select the current layer of the neural network to prevent gradient dispersion during 

training. Then in the backpropagation process, the energy function is designed to 

optimize the target loss function of the neural network. We also explored the possibility 

of using Adam and SGD combination optimization in deep neural networks. Finally, we 

use training data to train our network based on deep energy model and testing data to 

verify the performance of the model. The results we finally obtained in this research 

include the Classified labels of images. The impacts of our obtained results show that our 

model has high accuracy and performance. 

 

Keywords: Image classification, deep energy model, deep neural network, stochastic 

depth, deep learning. 

1 Introduction 

With the development of artificial intelligence, especially deep learning, humans have 

made rapid progress in image recognition tasks. In 2006, Geoffrey Hinton designed a 

structure of deep neural networks called deep belief networks (DBNs) [Hinton and 

Osindero (2006)] that marked the era of artificial intelligence in deep learning. In 2010, 

convolutional neural networks became the most commonly used network model in image 

recognition applications. In 2012, Alex Krizhevsky and Hinton et al. published AlexNet 

[Krizhevsky, Sutskever and Hinton (2012)], which has a deeper network hierarchy and 

uses ReLU activation functions instead of the traditional Sigmoid functions. Dropout 

techniques are used to avoid overfitting the model. And the introduction of max-pooling 

technology and GPU-assisted training, these new technologies have become an important 

part of the current convolutional neural networks.  
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Convolutional neural networks have obtained a large number of applications at present, such 

as image recognition, image target detection, image segmentation and other fields. 

Especially in the ImageNet competition after 2012 (this competition is mainly to identify a 

data set with 1000 categories), basically every contingent team uses the convolutional neural 

network extensively. At the beginning of the game, the team that used the convolutional 

structure of the neural network received the absolute leading result of the first place. The 

error rate of this team was half that of other teams such as the SVM algorithm. Therefore, 

most image processing tasks today use convolutional neural networks.  

However, these methods exist problems of insufficient image recognition accuracy and 

scalability. Although Lv et al. [Lv, Yu, Tian et al. (2014)] have studied networks using 

DBN (Deep Belief Network) neural network, the problem of training difficulty still exists 

in spite of the fact that many works show network depth is very influential [Szegedy, Liu, 

Jia et al. (2015)]. Besides, many scholars have carried on continuous research on this 

problem before [Ioffe and Szegedy (2015); Jaderberg, Czarnecki, Osindero et al. (2016)], 

as we stack more layers, such as over a hundred layers, the optimization of deep neural 

networks has been approved to be more difficult, the obstacle problem is vanishing 

gradients [Bengio, Simard and Frasconi (1994); Glorot and Bengio (2010); He, Zhang, 

Ren et al. (2015)], which hamper the increase of neural layers [Saxe, McClelland and 

Ganguli (2013); Ioffe and Szegedy (2015); He and Sun (2015)]. Stochastic depth network 

can successfully address these problems [Huang, Sun, Liu et al. (2016)], it can greatly 

increase the nets depth and bring substantial performance than former networks. In 

addition, the image processing tasks based on deep neural networks have always been a 

difficult problem. Sometimes a complex model is applied to a large data volume task, 

often taking days or even weeks to train. In response to these problems, the researchers 

have also developed a variety of optimization algorithms, designed to improve the 

convergence speed of the model, and reduce the error of the model, common optimization 

algorithms such as SGD, Adam and so on. 

In this paper, we presented a novel architecture that integrating deep energy model into 

stochastic depth network (SADIE) to build image features. The novel contributions in 

this paper are as follows: (1) We improved the stochastic depth network by using deep 

energy model, which can obtain better generative models when training based on the 

energy model. (2) We applied the Dirichlet distribution related to the dimension of input 

data to our network when chose whether to skip the layers, since the distribution can 

improve the performance of the network and make results more accurate.  

Since the connection has a certain probability of being randomly ignored in the block of 

the stochastic depth network, the amount of calculation can be reduced. The authors of 

stochastic depth networks claim that the model after the above adjustments expects a 

depth of 3/4 and a 40% increase. This feature was also confirmed in our experiments. 

This design of introducing random variables effectively overcomes the over-fitting to 

make the model better generalized. Inactivation of a part of the block actually realizes a 

hidden model fusion. Since the depth of the model is random during training, the depth of 

the model is determined at the time of prediction, and the information is filtered as the 

layer is extracted. When the information reaches the upper level of the network, it is not 

very informative, and the high-level network is difficult to get effective training. We set 
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that a part of the block is not activated, so that the higher-level block can receive more 

information from the bottom layer, and more training can be obtained, so the model has 

better expression ability. We believe that the stochastic depth network can not only 

guarantee the training time of the nets but also obtain a deeper network structure. In 

preliminary experiments, our model is surprisingly effective. At the same time, we also 

explored the possibility of using Adam and SGD combination optimization in deep neural 

networks, and designed an improved switching mechanism. The Adam algorithm is used 

to accelerate convergence in the early stage of training, and the SGD algorithm is used to 

search for the optimal solution slowly in the later stage of training. The experimental 

results show that the optimized SADIE model can greatly improve the convergence speed 

without affecting the accuracy. 

The rest of the paper is as follows: we describe the background knowledge in the second 

part. The third part describes our model and methods thoroughly. The fourth part 

describes the experiment procedure and the analysis. We summarize the experimental 

results in the last part. 

2 Related works 

Traditional image classification algorithms mainly include word bag models. Generally, the 

complete establishment of image recognition models generally includes several stages such 

as underlying feature extraction, feature coding, spatial constraints, classifier design, and 

model fusion. With the development of machine learning, classification algorithms such as 

SVM and KNN are also widely used. However, due to the large dimensionality of the 

image data and the large amount of data, the effects of these algorithms are very limited. 

Deep neural networks can learn more features from input data compared to other machine 

learning methods and has a strong ability to express data. However, when the hidden 

layer is very large, the learning and feature extraction of the whole network is very 

challenging. But deep energy model can transform the input in the feedforward neural 

network into a new form [Ngiam, Chen, Koh et al. (2011)], which makes the hidden layer 

improve the performance and greatly enhances the training performance during the 

training process. At the same time, energy-based probability model can also be 

transformed into Boltzmann distribution (also called Gibbs distribution) [Kim and Bengio 

(2016)]. The energy model uses a scalar energy value for each random variable so that the 

training goal of the energy model is translated into such a way that the energy value of the 

whole system is minimized. Meanwhile, deep energy model can also be regarded as a 

probability distribution which is combined feedforward neural network and energy model. 

In general neural networks, each layer of network is trained layer by layer, it’s based on 

the reconstruction as the primary goal of learning [Bengio (2009)]. But deep neural 

network based on energy model can train the nets as a whole and characterize the data 

features through hidden layers. So, we use the energy model to train network, and the 

network is trained by optimizing the likelihood function of the input data.  

Deep neural networks have made a series of breakthrough in image processing and 

recognition, especially the outstanding performance of deep convolutional neural nets 

(CNN) in image classification [Simonyan and Zisserman (2014); Szegedy, Liu, Jia et al. 

(2015)]. The depth of neural networks for the performance of model is a very important 
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factor [He, Zhang, Ren et al. (2015)]. However, when stacking more layers, vanishing 

gradients occurs in the process of back propagation which leads to a sharp decrease in 

accuracy and the training time is greatly increased [Huang, Sun, Liu et al. (2016)]. e.g. a 

110-layer ResNet requires several weeks for ImageNet dataset even with multiple GPUs 

[He, Zhang, Ren et al. (2015)]. 

We also use the stochastic depth nets [Huang, Sun, Liu et al. (2016)], which can shorten 

the training time of the network while enabling the expression ability of network to be 

maintained and can also handle the problem of degradation. We apply the Dirichlet 

distribution related to the dimension of input data to our network. Because the 

distribution can generate a probability value based on the dimension of the input vector to 

choose whether to skip the layers.  

The main innovation of this paper is to improve the deep neural network with random 

depth and introduce the depth energy model. The energy model is different from the loss 

function of the common neural network. When the network forwards, the deep energy 

model is used to train the network, so that the overall entropy of the network is 

minimized, which is beneficial to improve the accuracy of the Deep Neural Network. 

Experiments show that this approach has a good performance.  

3 Deep neural network and deep energy model 

3.1 Deep neural network model with stochastic depth 

Plain neural networks take a long time to train, so they cannot satisfy our requirements. 

We adopt stochastic depth network in this paper which can be a good balance between 

training time and accuracy, we also improve it to better match the input data of our model 

further. Fig. 1 shows the main network structure.  

 

 

Figure 1: Network structure, id(𝐱)  represents the identity transformation of current 

layer’s input vector 

We adopt shortcut connections to every few stacked layers (Fig. 1) to control whether to 

skip an entire layer block of the network during training. So, the whole network is similar 

to residual mapping [He, Zhang, Ren et al. (2015)], and the equation is: 

ℎ𝑙(𝒙) = 𝐹(𝒙, {𝑾𝑖}) + 𝒙                                                                                                  (3.1) 

Where 𝒙 represents the input vector of current layer, ℎ𝑙(𝒙) represents the output vector of 

𝑙  layer. Where 𝐹(𝒙, {𝑾𝑖})  denotes the residual mapping. The residual mapping is 

composed of an identity mapping and a shortcut connection, which makes the training of 

deeper neural networks possible, solves the problem of degraded performance of deep 

convolutional neural networks under extremely deep conditions, and performs excellent 

classification performance. The above equation changes to ℎ𝑙(𝒙) = 𝑾𝑖𝒙 + 𝒙 when the 

residual mapping has only one layer. To control current layer 𝑙 skip to next layer block 



 

 

 

An Image Classification Method Based on Deep Neural Network                          559 

randomly, we set the probability value 𝑃𝑙  in the residual mapping to denote the 

probability that the current layer can propagate directly to the next layer block. The 

probability that the next layer is ignored is 1 − 𝑃𝑙. 

 

Figure 2: Composition of a layer in the network 

In this model, each layer consists of multiple base layers, as shown in Fig. 2, including: 

the convolutional layer, the Batch Normalization (BN) layer, and the ReLU activation 

function. Among them, the main effect of BN is to batch normalize the input data and 

prevent the gradient dispersion problem caused by the uneven distribution of the input 

data, so that the weights of different levels can be adjusted in unison at the time of 

updating. The baseline structure of the stochastic depth network we use is based on 

ResNet. In a block of the network, we use the standard convolution + batch normalization 

+ ReLU structure. Convolutional layer is a simplified form of full connection: incomplete 

connection and parameter sharing. Inspired by local vision, the weak influence outside 

the local is directly wiped to zero, while retaining the spatial position information, greatly 

reducing the parameters and Make training controllable. The BN (batch normalization) 

layer normalizes the distribution of the input values of any neuron in each layer of the 

neural network to a non-standard normal distribution, so that the activation input value 

falls in a region where the nonlinear function is sensitive to the input. It avoids the 

problem of gradient disappearance. Moreover, the gradient becomes larger, which means 

that the learning convergence speed is fast, and the training speed can be greatly 

accelerated. The ReLU layer will make the output of a part of the neurons 0, which 

causes the sparseness of the network and reduces the interdependence of parameters, 

which alleviates the problem of over-fitting. After the block layer of the network, we use 

the fully connected layer to fit the features extracted by the stochastic depth network. 

Finally, we used the depth energy function to evaluate the output. 

In the process of training, the preceding network layer contains a large number of 

fundamental features of data, and consequently the previous layers should be kept as 

much as possible to extract more eigenvalues of the input vector, so the probability of the 

previous network to be ignored should be as small as possible. We can set the probability 

𝑃𝑙  of the 𝑙𝑡ℎ  layer to be a layer-dependent linear function, and then the resulting 

feedforward propagation equation is as follows: 

ℎ𝑙(𝒙) = {

𝑙

𝑛ℎ+𝑣
(1 − 𝐶)𝐹(𝒙, {𝑾𝑖}) + 𝑥     , 𝑧 = 1

[1 −
𝑙

𝑛ℎ+𝑣
(1 − 𝐶)] 𝐹(𝒙, {𝑾𝑖}) + 𝑥, 𝑧 = 0

                                                     (3.2) 

In the above equation, 𝑛ℎ+𝑣 is the total number of layers in the network, ℎ and 𝑣 denote 

hidden layers and explicit layers respectively, while 𝐶 is a constant value. 
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However, the probability 𝑃𝑙 of 𝑙𝑡ℎ layer that can be reserved in the above equation cannot 

accurately represent the relationship between the probability of current layer being 

preserved and the input vector dimension. Since the performance of the network has 

certain relation with the dimension of the input data. Therefore, we can set a Dirichlet 

distribution which is a prior distribution associated with the input vector. Because the 

Dirichlet distribution is the conjugate prior distribution of multinomial distribution, the 

advantage of taking the conjugate prior distribution of prior probabilities is that whenever 

a new observation data is available, we can use the previous calculation of the posteriori 

probability as the priori probability and then multiplied by the likelihood of the new data 

to obtain a new a posteriori probability, so that it can bypass the step of obtaining a 

posteriori probability which is the priori probability multiplied by the likelihood of all 

data. Therefore, using Dirichlet distribution can improve the performance of the network 

and make results more accurate. The probability that the 𝑙𝑡ℎ layer can be preserved as: 

𝑃𝑙 = 1 −
𝑙

𝑛ℎ+𝑣
[1 − 𝐷𝑟𝑖(𝒙 ∥ 𝜶)]                                                                                      (3.3) 

Where 𝐷𝑟𝑖 denotes a priori distribution related to the dimension of the input vector, since 

it is a conjugate prior of the multinomial distribution and can represent a 

multidimensional input vector whose distribution probability density is: 

𝑝(𝒙 | 𝜶) =
Γ(∑ 𝛼𝑖

𝐾
𝑖=1 )

Γ(𝛼1)Γ(𝛼1)…Γ(𝛼𝐾)
∏ 𝑥𝑖

𝛼𝑖−1𝐾
𝑖=1                                                                           (3.4) 

Where 𝑓𝑙  denotes the convolution unit and 𝐹  is the ReLU constraint we used in the 

neuron’s output in the above equation. So, the whole network training process is based on 

the probability of 𝑃𝑙  to control whether to skip the 𝑙𝑡ℎ layer block, while we keep the 

output of all neurons is active in the process of testing so that neurons of entire nets are 

involved in working. 

Based on ResNet, StochasticNet introduces the design of random variables to effectively 

overcome the over-fitting and make the model better generalized. Simultaneously, we set 

a Dirichlet distribution to make results more accurate. 

3.2 Deep energy model 

The idea of the energy function comes from physics. Molecules move vigorously at high 

temperatures and can overcome local constraints. When gradually descending to low 

temperatures, the molecules will eventually align with a regular structure, which is also a 

low-energy state. The low temperature state is a relatively stable state compared to the 

entire system. It is a state in which many states have a high probability of occurrence. If it 

is referenced in the objective function of machine learning. The state with the lowest 

energy is the extreme value of the objective function. One of the main tasks of statistical 

pattern recognition is to capture the correlation between variables. The same energy 

model also captures the correlation between variables. The degree of correlation between 

variables determines the level of energy.  

Stochastic neural networks are rooted in statistical mechanics. Inspired by the energy 

functionals in statistical mechanics, an energy function is introduced. The energy function 

is a measure that describes the state of the entire system. The more ordered the system or 

the more concentrated the probability distribution, the smaller the energy of the system. 
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Conversely, the more disordered the system or the more uniform the probability 

distribution, the greater the energy of the system. The minimum value of the energy 

function corresponds to the most stable state of the system. 

The energy-based model is a model framework with universal meaning, including the 

traditional discriminant model and the generated model under its framework. The energy 

model captures the dependencies between variables by applying a range-limited energy to 

each configuration of the variables. Its main purpose is to find an appropriate energy 

function so that the correct input and output energy in the sample is lower than the energy 

of the wrong input and output. The energy model assigns a scalar energy value to each 

random variable value, and its training target is transformed to minimize the energy of the 

entire system. At the same time, the depth energy model can also be regarded as a 

probability distribution that is defined by the combination of feedforward depth neural 

network and energy model, and the energy-based probability model can also be 

transformed into a Boltzmann distribution. For the input vector of the model, the energy 

function is used to describe the degree of information correlation between the network 

layers and the joint probability density function of the hidden layer and the explicit layer. 

That is, the joint probability density is maximized by training, and the energy function is 

as small as possible. The meaning is similar to thermodynamics, and the smaller the value 

of the energy function finally obtained, the more stable the system is. 

The depth energy model is a way to combine deep neural networks with energy functions. 

The energy model can be viewed as the prediction of data’s distribution, besides, the 

energy value we derive from the energy equation is a scalar energy value, so we can think 

of it as a depth classification model that is calculated by energy values and has the 

capability of feature extraction and discrimination. In the energy model, the energy can 

be expressed as: 

𝐸𝜃(𝒙, 𝒚, 𝒉) = ∑ ∑ 𝒉𝑗𝑊𝑗,𝑖𝒙𝑖

𝑛ℎ

𝑗=1

𝑛𝑣

𝑖=1

− ∑ ∑ 𝒉𝑗𝑈𝑗,𝑖𝒚𝑖

𝑛ℎ

𝑗=1

𝑛𝑣

𝑖=1

− ∑ 𝒃𝑗𝒚𝑗

𝑛ℎ

𝑗=1

− ∑ 𝒂𝑖𝒙𝑖

𝑛𝑣

𝑖=1

                                        (3.5) 

Where 𝒙 is the input vector, which is the output of the previous layer and the input of the 

next layer in the feedforward propagation of the network model. 𝑊 is the weights of the 

connection between explicit layers and hidden layers. And 𝑈  is the weight of the 

connection between classes layers and hidden layers. While 𝒚𝑖  represents the target 

vector of class 𝑖 . 𝒃  and 𝒂  represent the bias of hidden layers and explicit layers 

respectively, 𝒉 denotes neurons of hidden layers. The deep energy model can be regarded 

as a probability distribution which is redefined by the feedforward deep neural network 

model and energy model which training goal is to make the energy value of the whole 

system to attain a minimum value. 

For the input vector of the model, the energy function is used to describe the information 

association degree between network layers and joint probability density function of 

hidden layers and explicit layers. However, we need to compute the free energy 𝐹 finally. 

It can be computed by sum of the expected energy and the negative entropy 𝐻. So it is 

expressed as: 

𝐹(𝒙, 𝒚) = 𝐸𝜃(𝒙, 𝒚, 𝒉) + (−𝐻(𝒙, 𝒚))                                                                              (3.6) 
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While the negative entropy’s expectations are taken with respect to the posterior 

distribution of the hidden values, 𝑃(𝒉 | 𝒙, 𝒚). For example, when the hidden layer is 

equal to one, it can be expressed as: 

𝑃(𝒉 = 1 | 𝒙, 𝒚) = 𝑓(∑𝒙𝒘 + 𝒖)                                                                                     (3.7) 

𝑓 represents the activation function, and we use the ReLU activation function. Because 

the local correlation of the input vector can be obtained and the weights can be well 

shared simultaneously by using the convolution operation, 𝒘  and 𝒖  represent hidden 

layers weights and explicit layers weights respectively. The joint probability density can 

be maximized by training, that is, the energy function is as small as possible. Its meaning 

is similar to thermodynamics, the smaller the energy function value is, the more stable the 

system is. And the energy function vector form of depth energy model is: 

𝐹(𝒙, 𝒚) = 𝐸𝜃(𝒙, 𝒚, 𝒉) + log 𝑃(𝒉 | 𝒙, 𝒚)                                                                         (3.8) 

In our task, we need to minimize the energy function during training and update the 

parameters, where the parameter 𝜃 represents the set of parameters of our network model. 

Assuming that the target tag for the given training data is 𝑡𝑗, then the formula for the 

gradient of the parameters of the network during training can be written as the following 

formula as: 

𝑮𝜃 = ∑ [𝑡𝑗 − 𝑄(𝒙, 𝒚𝑗)]𝛻𝜃𝑄(𝒙, 𝒚𝑗)
𝐽
𝑗=1                                                                             (3.9) 

Where 𝒚𝑗 represents the class of the input data is 𝑗. So, the network in the parameters of 

optimization can be written when the following formula, where 𝛼 represents the learning 

rate. 

𝜃: = 𝜃 − 𝛼𝑮𝜃                                                                                                                 (3.10) 

So, we can get from the above, for a given input data 𝒙, and its real category 𝑗. Then we 

can predict its category according to the following formula. 

𝑗 = arg 𝑚𝑎𝑥(𝒙, 𝒚)                                                                                                         (3.11) 

Where 𝒚 is the output layer in the above formula. So we can use the Markov chain 

[Tieleman (2008)] to complete the optimization steps. The initial state of each step of the 

Markov chain is related to the state of the previous model, so the initialization process 

can be approximated to the distribution of the model. 

In Algorithm 1 and Algorithm 2, we give the pseudo code description of the SADIE 

model in the forward propagation and back propagation respectively. 

In summary, the deep neural network image classification model of this paper is a 

random depth network based on the improved depth energy model, which makes the 

network solve the problem of gradient disappearance well during training, and can 

greatly speed up the training speed of the network. In addition, when the network 

forwards, the deep energy model is used to train the network, so that the overall entropy 

of the network is minimized, which is beneficial to improve the accuracy of the network. 

Algorithm 1: Forward propagation of SADIE (one epoch) 

Parameters: 𝑊𝑙 (Weights of the l th layer), 𝑏𝑙 (Biases of the l th layer), 

                    𝑃𝑙 (The skip probability of the l th layer) 
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Inputs: The image inputs of the whole dataset, X 

            The image labels of the whole dataset, Y 

BEGIN 

Initialize 𝑊𝑙 and 𝑏𝑙 , Divide X and Y into mini-batches 

For x and y in mini-batches do 

    For l in (1 to L) 

        Calculate the skip probability 𝑃𝑙 with (3.3) 

        Perform the forward calculation with (3.2) to get the output ℎ𝑙(𝒙) of the layer 

    end for 

    Calculate the output h of the model 

    Get the Energy Function 𝐸(𝒙, 𝒚, 𝒉) according to (3.5) 

end for 

Return Energy functions 𝐸(𝒙, 𝒚, 𝒉) in each mini-batch 

END 

 

Algorithm 2: Backward propagation of SADIE (one epoch) 

Parameters: 𝑊𝑙 (Weights of the l th layer) 

                    𝑏𝑙 (Biases of the l th layer) 

                    𝛼 (Learning rate) 

Inputs: The energy functions 𝐸(𝒙, 𝒚, 𝒉) in mini-batches 

BEGIN 

Define free energy function 𝐹(𝒙, 𝒚) according to (3.8) 

For x and y in mini-batches do 

    Calculate the gradients G to 𝑊𝑙 and 𝑏𝑙 of 𝐹(𝒙, 𝒚) with (3.9) 

    Choose a right optimization method 

    Update all the parameters of weights and biases 𝜃: = 𝜃 − 𝛼𝑮𝜃 

end for 

Return the optimized SADIE model 

END 

3.3 Exploring the optimization of deep neural networks 

In general, the more complex a deep network, the more accurate its ability to express 

data, but the training complexity of the network increases nonlinearly with the 

complexity of the network. We need to quickly converge the network to the optimal value 

when we are trying to find the optimal solution during network training. Therefore, it is 

very urgent to propose a general optimization algorithm suitable for different network 

structures. The most common optimization method in neural networks is the gradient 
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descent algorithm. In Eq. (3.10) we refer to the stochastic gradient descent (SGD) 

method, however it is prone to fall into the local optimal solution. For the large amount of 

data and the complexity of the model for deep learning, if you use the batch gradient 

descent algorithm, the training will become slower and take up more memory. Therefore, 

we use the mini-batch method to divide the training set and use the optimization 

algorithm on the small batch data set. We used the mini-batch gradient descent method to 

train neural networks in experiments in Sections 4.1 and 4.2. 

However, the traditional gradient descent algorithm is still slow in tasks such as image 

recognition. The Adam [Kingma and Ba (2014)] (Adaptive Moment Estimation) 

algorithm is an algorithm that combines the Momentum algorithm with the RMSProp 

algorithm. The Adam optimization algorithm is an extension of the stochastic gradient 

descent algorithm.  

The Adam algorithm is different from the traditional random gradient drop. The 

stochastic gradient descent method maintains a single learning rate to update all weights, 

and the learning rate does not change during the training process. Adam calculates 

independent adaptive learning rates for different parameters by calculating the first 

moment estimation and second moment estimation of the gradient. Therefore, in the 

process of parameter optimization using the Adam algorithm, the parameter update 

process in Eq. (3.10) is changed to Eq. (3.12)-Eq. (3.14). Where 𝒎𝑡 represents the first-

order momentum, 𝒗𝑡  represents the second-order momentum, t represents the training 

round, and 𝜖 represents the correction term. 𝛽1 and 𝛽2 are the parameters for the moving 

average, which are generally 0.9 and 0.999 respectively. These features make the Adam 

algorithm easy to use, do not need to manually control the change of learning rate, and 

the convergence speed of the neural network is faster. 

𝒎𝑡 ← 𝛽1 ∙ 𝒎𝑡−1 + (1 − 𝛽1) ∙ 𝑮𝜃
(𝑡)

                                                                                (3.12) 

𝒗𝑡 ← 𝛽2 ∙ 𝒗𝑡−1 + (1 − 𝛽2) ∙ (𝑮𝜃
(𝑡)

)
2
                                                                             (3.13) 

𝜃𝑡 ∶= 𝜃𝑡−1 − 𝛼 ∙ 𝒎�̂� (√𝒗�̂� + 𝜖)⁄                                                                                    (3.14) 

However, some of the shortcomings of the Adam algorithm are not negligible. Reddi et 

al. [Reddi, Kale and Kumar (2018)] explored the convergence of the Adam algorithm in 

the article, and through the counter-examples, Adam may not converge in some cases. 

Moreover, since deep neural networks often contain a large number of parameters, in 

such a very high dimensional space, non-convex objective functions tend to fluctuate, 

with countless highlands and depressions. Some are peaks, and it is easy to cross them by 

introducing momentum; but some are plateaus, and they may not be able to find them 

many times, so they stopped training. This will cause the model to miss the global 

optimal solution.  

In order to make the deep neural network model can both converge quickly and avoid the 

local optimal solution. We consider combining the Adam algorithm with the SGD 

algorithm. We use the Adam algorithm in the early stage of training to enjoy the 

advantage of Adam’s fast convergence. In the later stage of training, we switch the 

algorithm to SGD and slowly find the optimal solution. Nitish Shirish Keskar et al. 

[Keskar and Socher (2017)] have a conversion mechanism that attempts to make the 
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model automatically turn to SGD after a certain round of Adam. They monitored the 

projection of the Adam algorithm step on the gradient subspace and used its exponential 

average as an estimate of the SGD learning rate after switching. In addition, when it is 

detected that the monitoring amount has not changed, the switching is triggered.  

𝜆𝑡 = 𝛽2 ∙ 𝜆𝑡−1 + (1 − 𝛽2) ∙ 𝛾𝑡                                                                                      (3.15) 

|
𝜆𝑡

(1−𝛽2
𝑡)

− 𝛾𝑡| < 𝜖                                                                                                           (3.16) 

Eq. (3.15) shows the noise estimate in the switching algorithm. Eq. (3.16) shows the 

conditions for switching from Adam to SGD. 𝛾𝑡 is a noisy estimate of the scaling needed, 

𝜆𝑡 is the exponential average. When the optimization algorithm goes to SGD, the learning 

rate changes to Λ = 𝜆𝑡 (1 − 𝛽2
𝑡)⁄ . In the specific experiment, we found that if the 

optimization algorithm is directly converted from Adam to SGD when the conversion 

conditions are met, the loss of the model will be unstable. Therefore, we have devised a 

technique to add a buffering process to the conversion algorithm. In the training process 

of the model, when the conversion condition of Eq. (3.16) is satisfied, we adopt a buffer 

mechanism to combine the parameter variation calculated by Adam and SGD algorithm. 

At the same time, the proportion of Adam's algorithm is decreasing, and the proportion of 

SGD algorithm is increasing until the SGD algorithm is fully adopted. 

𝜃𝑡 ∶= 𝜃𝑡−1 − 𝛼 ∙ [
𝑖

𝑘
∙ 𝑮𝜃

(𝑡)
+

𝑘−𝑖

𝑘
∙ 𝒎�̂� (√𝒗�̂� + 𝜖)⁄ ]                                                        (3.17) 

As shown in Eq. (3.17), if the transition phase undergoes k training, then in the i-th 

training of the transition phase, the assignment of Adam and SGD is as shown in the 

formula. 

4 Experiments in image classification 

In this section, we conduct a series of experiments. We mainly compare the performance 

of ResNet [He, Zhang, Ren et al. (2015)], Stochastic Depth Network [Huang, Sun, Liu et 

al. (2016)] and the improved stochastic depth network with deep energy model (SADIE) 

in different situations, and compare the performance of the model when the amount of 

data and the layers are different. Then, we explored the optimization algorithm problem 

of deep neural networks. We added an optimization mechanism combining the Adam and 

SGD algorithms to SADIE and compared it to SADIE using only the mini-batch gradient 

descent method. The basic convolutional neural network model used in this algorithm 

uses residual blocks, the number of layers in the network can be deep. The 110 and 152 

layers are already published baseline structures. 

Define the following performance indicators: 

𝑃 =
𝐶𝑅𝐴𝐵

𝐶𝑅𝐴𝐵+𝐹𝐿𝐴𝐵
                                                                                                                (4.1) 

𝑅 =
𝐶𝑅𝐴𝐵

𝐶𝑅𝐴𝐵+𝑁𝑂𝐵𝐸𝐿
                                                                                                             (4.2) 

𝐹1 =
2𝑃𝑅

𝑃+𝑅
                                                                                                                         (4.3) 

We use precision, recall and F1-Measure evaluation indicators, where 𝑃  denotes the 

precision that is the proportion of correctly predicted image tags to actual output tags, 
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𝐶𝑅𝐴𝐵 indicates the correct output labels, and 𝐹𝐿𝐴𝐵 indicates mismatched labels with the 

image which are output to the correct labels. 𝑅  (4.2) represents the recall rate and 

indicates the ratio of the correct output labels to all correct labels, and 𝑁𝑂𝐵𝐸𝐿 indicates 

the image labels that should be output without output. F1-Measure (4.3) is based on the 

harmonic mean of precision and recall. Through the accuracy and recall rate we can 

generally know the performance of the model. 

During the training in deep learning, most engineers use the GPU to accelerate without 

using the CPU. The main reason is that the CPU is the central processing task. The GPU 

is a graphics processing unit, which is most suitable for floating-point operations, which 

is in line with the large number of fractional operations that exist in network training. In 

order to make good use of the GPU, we use small batches for training, which can avoid 

the problem of GPU memory explosion caused by the network optimization process, and 

also make full use of the GPU. The way we use it is to use the GPU to perform a large 

number of convolution operations, but use the CPU to perform a large number of logical 

judgments, which fully exerts the role of the CPU in the logic processing. This separated 

design can be efficiently implemented using the device interface provided by TensorFlow. 

We trained 350 epochs for each model in training. The hardware environment of the 

experiment is the Titan Xp GPU and the software environment is Python and TensorFlow. 

The spatial occupancy of the three models is not much different, and the model 

parameters of the deep convolutional neural network occupy most of the memory space. 

For the 110-layer network, it takes about 500 MB of memory space; for the 152-layer 

network, it takes about 650 MB of memory space.  

 

(a) MNIST 

 

(b) CIFAR-10 

Figure 3: The two data sets used in this article are MNIST and CIFAR-10. Among them, 

MNIST is obtained from http://yann.lecun.com/exdb/mnist/, and CIFAR-10 is obtained 

from https://www.cs.toronto.edu/~kriz/cifar.html 

4.1 Experiments on MNIST 

The hand-written digital picture database MNIST consists of a training data set and a test 

data set. The training sample set includes 60,000 samples and the test sample set includes 

10,000 samples. These training samples have been normalized to a fixed size. The picture 
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size of the MNIST data set is 28×28, and we perform random image enhancement and 

other operations in the image preprocessing work. In the training process, we set the 

mini-batch to 128, the learning rate is 0.01, and the learning rate attenuation mechanism 

is adopted. We choose the mini-batch SGD algorithm as the optimization algorithm to 

optimize the energy function. We added a dropout layer after the convolutional layer of 

the network model to reduce the risk of overfitting. Finally, we use the ten-classified 

SoftMax layer as the output of the model. Examples of MNIST data are shown in Fig. 3. 

In the experiment of MNIST, we compare the three 110-layer and 152-layer models’ 

performance. From the experimental results in Fig. 4 and Tab. 3, we can learn that the 

precision of the model SADIE proposed in this paper is 0.38% higher than that of ResNet 

after MNIST training in the 110-layer network, and the precision rate is 0.14% higher 

compared with Stochastic-Net. In terms of recall rate, the overall recall rate of the model 

presented in this paper can reach 98.30%, its recall rate is 1.65% higher than ResNet, and 

1.02% higher than Stochastic-Net’s. At the same time, it can also be seen that the model 

proposed in this paper is higher than the above two models in F1-Measure, it is 1.02% 

higher than ResNet and 0.58% higher than Stochastic-Net. These experimental results 

show that our model not only have advantages in precision, but also have a good 

coverage of the images’ labels.  

 

(a) Precision rate 

 

(b) Recall rate  

Figure 4: Comparison of the performance of three 110-layer models with MNIST, the 

blue line represents ResNet, green line represents Stochastic Depth Net and the red line 

represents our model(SADIE) 

Besides that, in the comparison of the average time of training, we can see from Tab. 1 that 

although our model incorporates the calculation of energy, the training time of network 

does not increase too much. Our proposed SADIE model is 4.08% faster than ResNet, 

which is slower than the Stochastic-Net by 2.17% of the average training time of MNIST. 
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Table 1: Comparison of average training time of three 110-layer models in MNIST 

Algorithm Training time 

ResNet 1 h 38 min 

StochasticNet 1 h 32 min 

SADIE 1 h 34 min 

On the other hand, we set up 152 layers for each of the three networks, using MNIST for 

training and the training indicators are shown in Fig. 5 and Tab. 3. From the experimental 

results we can see that when we set the three models to 152-layer, and after we use 

MNIST training, the precision rate of the model SADIE proposed in this paper is 0.59% 

higher than that of ResNet, which is 0.39% higher than Stochastic-Net’s precision. In 

terms of recall rate, the overall recall rate of the model presented in this paper can rise to 

98.90%, which is 1.85% and 1.23% higher than ResNet and StochasticNet respectively. 

At the same time, the model proposed in this paper is higher than the above two models 

in F1-Measure. It can be seen from the experimental results that with the increase of the 

number of layers, the proportion of the model in the precision, recall and F1-Measure 

values increase. It can be shown that with the increase of the network layers, the model 

proposed in this paper has the advantages of precision and recall rate. In addition, our 

model in precision, recall and F1-Measure aspects increase ratio than the other two 

models when we changed models from 110 layers to 152 layers. 

 

(a) Precision rate 

 

(b) Recall rate  

Figure 5: Comparison of the performance of three 152-layer models with MNIST 

Furthermore, in contrast to the average time of training, we can see from Tab. 2 that the 

SADIE model proposed in this paper is 5.31% faster than the ResNet network and 1.90% 

slower than the Stochastic-Net. Although the increase in network layers improves the 

accuracy, recall rate and F1-Measure, the models’ training time is relatively increased. 

However, the increase in time can be ignored compared with the average training time for 

large amounts of data. 
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Table 2: Comparison of average training time of three 152-layer models in MNIST 

Algorithm Training time 

ResNet 1 h 53 min 

StochasticNet 1 h 45 min 

SADIE 1 h 47 min 

Table 3: Precision, recall rate and F1-Measure of the three models in MNIST when 

networks are 110 layers, the three models in MNIST when networks are 152 layers and 

the three models in CIFAR-10 when networks are 152 layers 

Algorithm Task Precision (%) Recall(%) F1(%) 

ResNet MNIST/110layers 98.99 96.70 97.83 

StochasticNet MNIST/110layers 99.23 97.30 98.26 

SADIE MNIST/110layers 99.37 98.30 98.83 

ResNet MNIST/152layers 99.20 97.10 98.14 

StochasticNet MNIST/152layers 99.40 97.70 98.54 

SADIE MNIST/152layers 99.79 98.90 99.34 

ResNet 
CIFAR-

10/152layers 
93.59 87.1 90.23 

StochasticNet 
CIFAR-

10/152layers 
94.77 87.9 91.21 

SADIE 
CIFAR-

10/152layers 
95.10 91.3 93.16 

 

4.2 Experiments on CIFAR-10 

Next, we set the three models to 152-layer architecture and use CIFAR-10 to train 

models. The CIFAR-10 dataset contains 60,000 32×32 color images in 10 categories. 

There are 50,000 training images and 10,000 test images. The data set is divided into 5 

training blocks and 1 test block, each block has 10,000 images. The test block contains 

1000 images randomly selected from each class. Training blocks contain these images in 

a random order, but some training blocks may contain more images than other classes. 

Training blocks contain 5000 images per category. In the training process, we set the 
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mini-batch to 128, the learning rate is 0.01, and the learning rate attenuation mechanism 

is adopted. We choose the mini-batch SGD algorithm as the optimization algorithm to 

optimize the energy function. We added a dropout layer after the convolutional layer of the 

network model to reduce the risk of overfitting. Finally, we use the ten-classified SoftMax 

layer as the output of the model. Examples of CIFAR-10 data are shown in Fig. 3. 

 

(a) An image of horse 

 

(b) Image after a layer of the SADIE model 

Figure 6: (a) Shows an image in CIFAR-10, and (b) Shows a multi-channel grayscale 

image of the image processed through a layer of the SADIE model 

Fig. 6 shows the image of a horse in CIFAR-10, and the 64-channel grayscale image of 

the image processed by the SADIE model. We can see that the images of different 

channels retain the different features of the original image, such as contour features and 

position features. Some of these images show a relatively obvious noise property, which 

is due to some operations such as dropout. 

The training results are shown in Fig. 7 and Tab. 3. It can be seen from the experimental 

results that when the models’ architecture are 152 layers, the model of this paper is 1.6% 

higher than that of ResNet and 0.4% higher than StochasticNet in terms of precision. In 

terms of recall, when the data set is CIFAR-10 and the models still remain at 152 layers, 

our model is 4.8% higher than ResNet and 3.9% higher than StochasticNet in terms of 

recall rate. In the comparison of F1-Measure, our model is 3.2% and 2.1% higher than 

ResNet and StochasticNet respectively. 

In addition, from the point of view of average training time, the average training time for 

our model is 5.10% faster than ResNet and 2.40% slower than the Stochastic-Net. 
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(a) Precision rate                                           (b) Recall rate 

Figure 7: Comparison of the performance of three 152-layer models with CIFAR-10, the 

blue line represents ResNet, green line represents Stochastic Depth Net and the red line 

represents our model(SADIE) 

Table 4: Comparison of average training time of three 152-layer models with CIFAR-10 

Algorithm Training time 

ResNet 3 h 35 min 

Stochastic-Net 3 h 20 min 

SADIE 3 h 24 min 

 

Through the above experiments, we can see that our model has a good performance 

compared to the other two models ResNet and StochasticNet. 

Besides that, the hyper-parameter 𝜆 in the previous Dirichlet distribution related to input 

vectors also affects the performance of our model, so take the appropriate value to make 

our model has a good performance is still worthy of our study. We need to choose 

suitable evaluation criteria to determine whether the 𝜆  value makes the overall 

performance of the model to achieve the best. Therefore, we use BEP (Break-Even Point) 

to evaluate the performance of the model when the 𝜆 takes different values, and BEP 

refers to the value of the model when the precision and recall rate are equal. 

𝐵𝐸𝑃 = 𝐹1 = 𝑃 = 𝑅                                                                                                        (4.4) 

From the experimental result we can conclude that when the hyper-parameter 𝜆 is 50, the 

BEP of the whole model reaches the maximum, so our model has always set 𝜆 to the 

fixed value of 50 in the above experiment, which can make our performance best. 
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Figure 8: The change curve of BEP when the hyper-parameter 𝜆 takes different values 

4.3 Further optimization of the performance of deep neural networks 

In Section 3.3 we discussed the optimization algorithm for neural networks in the deep 

learning domain. For tasks such as image classification, the amount of data is large, and 

the neural network has many adjustable parameters. We need both an optimization 

method with fast convergence (Adam) and an optimization method (SGD) that can 

achieve global optimal values. Therefore, this paper designs an improved automatic 

switching mechanism between Adam algorithm and SGD algorithm. We chose the 

SADIE model of 152-layer in Section 4.2 and replaced its optimization algorithm with 

the method of combining Adam with SGD. Similarly, it was used to train the CIFAR-10 

data set and get the model's loss curve and the classification results in the test set. Finally, 

we compare the data metrics of the standard SADIE with the data metrics of SADIE 

using the improved optimization algorithm. 

In Fig. 9, We compared the performance of the standard SADIE and the optimized 

SADIE on CIFAR-10, using training loss and precision rate as evaluation indicators. 

From (a) we can see that in the early stage of training (before 100 epochs), the precision 

rate of the optimized SADIE model using Adam algorithm is significantly faster than the 

standard SADIE. Starting with the 150th epoch, the precision rate of the SADIE using the 

Adam algorithm tends to be stable. We can see that using Adam's model is more difficult 

to achieve convergence and improve accuracy. As the training continues, the optimized 

SADIE model is automatically converted to the SGD algorithm to continue training. At 

the end, the two models achieve a considerable precision rate. 

From (b) we can see that in the training of the first 100 epoch, the model using the Adam 

algorithm converges faster than the SGD. But when the optimized SADIE training error 

reaches 9.5%, it tends to be stable. After the optimization algorithm was converted to 

SGD, the optimized SADIE eventually converges to a 5.5% training error, which is 

essentially the same as standard SADIE, but uses fewer epochs. From the experimental 

results, we can analyze and draw certain conclusions. The model using the transformation 

optimization algorithm can achieve similar effects to the original model, but reduce the 

number of training iterations. This method compensates for the shortcomings of Adam 
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and SGD to a certain extent, and has practical significance in dealing with the task of 

image recognition, such as large amount of data and large amount of calculation. 

 

(a) Precision rate 

 

(b) Training error  

Figure 9: Comparison of SADIE and Optimized SADIE in Training Error and Precision 

Rate with CIFAR-10 

In summary, it is a big direction to correct Adam by limiting the update step and lowering 

the bounds in the later stages of training and trying to make the parameters update steps 

are similar. It is certainly feasible to cut SGD with Adam first, but it is still not elegant 

enough. If you can use a unified iterative algorithm to take into account Adam’s fast 

convergence ability and SGD’s good generalization ability, it will be a big improvement. 

This is also our next research direction. 

5 Conclusions 

In this paper, we proposed stochastic depth network based on deep energy model 

(SADIE) to achieve the image classification process. Then, we apply the Dirichlet 

distribution when we choose whether to skip the layers in stochastic depth network, 

making the model more suitable for the dimension of input images and improving the 

performance of our model. At the same time, we also explored the possibility of using 

Adam and SGD combination optimization in deep neural networks, and designed an 

improved switching mechanism. The Adam algorithm is used to accelerate convergence 

in the early stage of training, and the SGD algorithm is used to search for the optimal 

solution slowly in the later stage of training. 

In experiments, we compared the performance of each model in different network layers 

and different datasets. We can obtain from the above experimental results that when we 

increase the number of layers and the size of image datasets, the accuracy and recall rate 

of our model is higher than that of ResNet and Stochastic-Net. Also, we used the SADIE 

model using the improved optimization method for the CIFAR-10 experiment and 

compared it to the standard SADIE model. The optimized SADIE greatly improved the 

convergence speed while maintaining the accuracy, which confirmed the feasibility of 

optimizing the combination of Adam and SGD algorithms. 
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All of the above experimental results show that our model for image classification have 

great advantages in training time and accuracy. But on the other hand, we only use 

simpler single scene images for experiments and do not consider the recognition of 

complex content images. We are planning to provide a more comprehensive image 

processing model through detailed analyzing and data mining in the future. 
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