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Abstract: Isogeometric analysis (IGA), an approach that integrates CAE into conventional 
CAD design tools, has been used in structural optimization for 10 years, with plenty of ex-
cellent research results. This paper provides a comprehensive review on isogeometric shape 
and topology optimization, with a brief coverage of size optimization. For isogeometric 
shape optimization, attention is focused on the parametrization methods, mesh updating 
schemes and shape sensitivity analyses. Some interesting observations, e.g. the popularity 
of using direct (differential) method for shape sensitivity analysis and the possibility of de-
veloping a large scale, seamlessly integrated analysis-design platform, are discussed in the 
framework of isogeometric shape optimization. For isogeometric topology optimization 
(ITO), we discuss different types of ITOs, e.g. ITO using SIMP (Solid Isotropic Material 
with Penalization) method, ITO using level set method, ITO using moving morphable 
com-ponents (MMC), ITO with phase field model, etc., their technical details and 
applications such as the spline filter, multi-resolution approach, multi-material problems 
and stress con-strained problems. In addition to the review in the last 10 years, the current 
developmental trend of isogeometric structural optimization is discussed.

Keywords: Isogeometric analysis, structural optimization, shape optimization, topology 
optimization, sensitivity analysis.

1 Introduction
Structural optimization, as an important tool in the product design process, deals with the 
optimal design of load-carrying structures. In general, structural optimization methods can 
be divided into three categories: Size, shape and topology optimization methods [Bendsoe 
and Sigmund (2003); Huang and Xie (2010); Mortazavi and Toğan (2016); Tejani, Savsani, 
Patel et al. (2018)]. An illustration of these three types of structural optimization is shown
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in Fig. 1. Size optimization deals with the optimum size parameters such as cross-section 
dimensions and thickness, while fixing the shape and topology of the structure. Shape op-
timization works by modifying the outer boundary of the structure to obtain the optimal 
shape. Topology optimization optimizes the material layout within a given design domain, 
which is capable to find the optimal topology from different topologies rather than a par-
ticular topology. Of the three categories, size optimization is a relatively simple parameter 
optimization. We will thus focus on the other two types of structural optimization in this 
review.
In shape optimization, the geometric parameterization, an adequate boundary description 
and the design variables are essential for a successful optimization. To be consistent with 
the analysis model, the coordinates of the boundary nodes were used as design variables in 
the early days of shape optimization [Francavilla, Ramakrishnan and Zienkiewicz (1975)]. 
However, utilizing the nodal coordinates as design variables may result in unrealistic de-
signs with irregular boundaries [Haftka and Grandhi (1986); Hsu (1994)]. To avoid such 
irregular optimized results, researchers tried to use geometric boundary representations in 
shape optimization, such as polynomials, B-spline and NURBS [Ding (1986); Samareh 
(2001a)]. Although the usage of spline representations improves the smoothness of bound-
aries, the design model based on splines is separated from the analysis model based on finite 
element, resulting in a disconnection between the design and analysis models. To update 
the shape geometry during the iterative process of shape optimization, a relation between 
the design variables and the analysis model is required, e.g. the design element [Imam 
(1982)] and the natural design variables [Belegundu and Rajan (1988)]. Besides, some 
strategies such as adaptive meshing [Bennett and Botkin (1985)] and remeshing [Wilke, 
Kok and Groenwold (2006)] are required to maintain the accuracy of shape optimization, 
especially for the shape optimization with large deformations.
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Figure 1: An illustration of structural optimization
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Shape optimization cannot change the topology of the structure so it is usually used to 
optimize the detailed features of the product after the basis geometrical shape has been 
obtained. In contrast, topology optimization aims to find the optimal material distribution 
in a design domain, such that the structural topologies can change during the optimiza-
tion process. The first attempt was made by Cheng et al. [Cheng and Olhoff (1981)] on 
optimal thickness distribution of solid elastic plates, and the pioneering work of Bendsøe 
and Kikuchi [Bendsøe and Kikuchi (1988)] that used a homogenization method to generate 
the optimal topologies was a milestone in the topology optimization research. Since then, 
other important methods have been proposed to solve topology optimization problems, e.g. 
solid isotropic material with penalization (SIMP) [Bendsøe (1989); Sigmund (2001); An-
dreassen, Clausen, Schevenels et al. (2011)], evolutionary structural optimization [Xie and 
Steven (1993); Querin, Steven and Xie (1998); Huang and Xie (2009)] and level-set based 
topology optimization [Wang, Wang and Guo (2003); Allaire, Jouve and Toader (2004); 
Luo, Tong, Wang et al. (2007); Xia, Shi and Xia (2019)]. Topology optimization is becom-
ing an efficient tool in product designs, and has been applied to a wide range of engineering 
domains such as aerospace [Zhu, Zhang and Xia (2016)], automobile [Yang and Chahande 
(1995)], additive manufacturing [Mass and Amir (2017)] and photonics [Borel, Harpøth, 
Frandsen et al. (2004)].
The abovementioned shape and topology optimization methods are based on the finite el-
ement method (FEM), some limitations of the FE approach include the disconnection be-
tween analysis and geometric models, low continuity between the elements and low ef-
ficiency of high-order elements. These limitations are successfully addressed by a new 
method called isogeometric analysis (IGA) [Hughes, Cottrell and Bazilevs (2005)], which 
directly uses the basis functions of a computer aided design (CAD) model as the shape 
functions of analysis model, IGA has since been used in a variety of domains [Benson, 
Bazilevs, Hsu et al. (2011); Hsu and Bazilevs (2012); Wang and Benson (2015); Wang, 
Benson and Nagy (2015); Yan, Deng, Korobenko et al. (2017); Deng, Wu, Yang et al.
(2018)]. In the last decade, IGA has been adopted for both shape and topology optimiza-
tions, which provides several advantages over the established methods. For example, the 
exact geometric representation of IGA merges analysis and design model in shape and 
topology optimizations [Wall, Frenzel and Cyron (2008); Seo, Kim and Youn (2010b,a)], 
and the spline functions of IGA can avoid the checkerboards in the topology optimiza-
tion without additional filters [Hassani, Khanzadi and Tavakkoli (2012); Dedè, Borden and 
Hughes (2012); Lieu and Lee (2017a)]. Although the research in isogeometric structural 
optimization has been growing for the past decade (See Fig. 2), to the best of our knowl-
edge, no comprehensive review has been published yet to help the researchers working in 
this domain to systematically understand isogeometric structural optimization.
In this paper, we intend to provide a comprehensive review on the isogeomtric structural 
optimization from the first work of Wall et al. [Wall, Frenzel and Cyron (2008)] proposed 
in 2008. An outline of the remainder of this paper is as follows: Section 2 introduces the 
fundamentals of isogeometric structural optimization. Section 3 gives a comprehensive re-
view for isogeometric shape optimization including shape sensitivity analysis, regulation 
method, special application etc. Section 4 discusses different types of isogeometric 
topology optimization (ITO) including but not limited to density-based and level-set-
based ITOs. The conclusions and research trends are provided in Section 5.
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Figure 2: Numbers of publications on IGA and isogeometric design optimization per year 
(data from Scopus search engine)

2 Fundamntals of isogeometric structural optimization
Isogeometric analysis (IGA), proposed by Hughes et al. [Hughes, Cottrell and Bazilevs 
(2005)], is an efficient alternative to conventional FEM, which represents the analysis mod-
el with CAD mathematical primitives such as B-spline and NURBS. Over ten years of de-
velopment, IGA is now the most active research topic in both computational mechanics and 
computer aided geometric design, and has been applied to solve many problems in-cluding 
structural optimizations. In this section, we will summarize the fundamentals of isogeometric 
structural optimization consisting of IGA and structural optimization.

2.1 Summary of isogeometric analysis

2.1.1 Numerical geometry description tools

A number of new spline technologies have been used in IGA, including T-splines [Bazilevs, 
Calo, Cottrell et al. (2010); Scott, Li, Sederberg et al. (2012)], PHT-splines [Nguyen-Thanh, 
Kiendl, Nguyen-Xuan et al. (2011)] hierarchical B-splines or NURBS [Vuong, Giannelli, Jüttler 
et al. (2011); Wu, Huang, Liu et al. (2015)] and Powell-Sabin splines [Speleer-s, Manni, Pelosi et 
al. (2012)]. Presently B-splines and nonuniform rational B-splines (NURBS) [Piegl and Tiller 
(1997)] are commonly used in CAD systems, and are still the most prevalent spline technology 
in IGA. In B-splines, the a knot vector  Ξ = {ξ1, ξ2, ..., ξn+p+1} is a sequence of non-decreasing
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real numbers in the parametric space, where n is the num-ber of control points and p is the 
order of the spline curve. The interval [ξ1, ξn+p+1) is called a patch and the knot interval 
[ξi, ξi+1) is called a span. The B-spline basis functions can be recursively defined by the 
Cox-de Boor formula [Boor (1972)]:

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ), (p 6= 0).

(1)

The continuity of the B-spline basis functions between knot spans is Cp−k with k as the
multiplicity of the knots. NURBS basis functions can be defined based on B-spline basis
function by assigning a positive weight wi to each basis function or control variables:

Ni,p(ξ) =
Bi,p(ξ)wi∑n
j=1Bj,p(ξ)wj

. (2)

Note that B-splines are a special case of NURBS where the weights are uniform.
A point location vector x(χ) in a geometry patch described using NURBS can be generally
expressed as

x(χ) =
∑

RI(χ)xI , (3)

where χ is the location vector in the parametric space:

χ =


(ξ) for 1D parametric space
(ξ, η) for 2D parametric space
(ξ, η, ζ) for 3D parametric space

I is a index function with a form of I(i) for 1D problems, I(i, j) for 2D problems and
I(i, j, k) for 3D problems; the weighted basis function RI is obtained from the tensor
products of the 1D case shown in Eq. (2) along different directions and correspond to the
Ith control point xI .
Taking two dimensional B-spline for example, the basis functions are constructed as tensor
products,

Bj,q
i,p (ξ, η) = Bi,p(ξ)Bj,q(η). (4)

Bi,p(ξ) and Bj,q(η) are univariate B-spline basis functions of order p and q, corresponding
to knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1}. According to
the tensor product formulation, two-dimensional NURBS basis functions with order p in ξ
direction and order q in η direction are constructed as

N j,q
i,p (ξ, η) = Ni,p(ξ)Nj,q(η). (5)

The four important properties of NURBS basis functions (likewise for B-spines) are briefly
listed as: (1) Nonnegativity: Ni,j(ξ, η) ≥ 0; (2) Partition of unity:

∑n
i=1

∑m
j=1Ni,j(ξ, η) =



1; (3) Local support: Ni,j(ξ, η) = 0 if (ξ, η) is outside the span domain of [ξi, ξi+p+1) ×
[ηj , ηj+q+1); and (4) Continuity: the interior of knot span domain is continuous up to C∞,
and the continuity between knot spans are Cp−k and Cq−l where k and l are the multiplic-
ity, respectively.

2.1.2 NURBS-based IGA for solving boundary value problems

A typical boundary value problem formulation defined over domain Ω with boundary Γ
can be interpreted as
c(u) := divC∇u+ f = 0 in Ω

(C∇u)n− t̂ = 0 on Γt

u− û = 0 on Γu

(6)

where c(u) represents the equilibrium equation, f is body force, C is a forth-order tensor
related to material properties,n is the outward normal vector, div is the divergence operator,
∇ is the gradient operator, t̂ and û are the prescribed Neumann and Dirichlet boundary
conditions defined on Γt and Γu, respectively.
Introducing a test function field ū, the weak formulation of the strong form defined in Eq.
(6) can be written as:

〈c(u), ū〉Ω =−
∫

Ω
C∇u · ∇ū dΩ +

∫
Ω
f · ū dΩ

+

∫
Γt

t̂ · ū dΓ +

∫
Γu

t · ū dΓ = 0.

(7)

This BVP can be solved using finite element method. Using the Bubnov-Galerkin method,
the state variable u and the force field are discretized and subsequently substituted into Eq.
(7) to obtain a system of linear equations such that the problem can be solved:

KU = F (8)

where K is the stiffness matrix, U is the unknown discrete variables and F is a force
vector. Note that the terminology used here originated in mechanical problems for the
development of FEM and can be used to non-mechanical problems that may have different
terminologies.
The NURBS-based IGA follows a similar approach to obtain Eq. (8), but the shape func-
tions used for discretization are the same as the basis functions used for geometry descrip-
tion, i.e. the the state variables and the force field are discretized using the basis functions
in Eq. (3). In the framework of IGA, the state variable u is interpolated as

u =
∑

RIuI , (9)

where uI is the state variable vector of the Ith control point xI . Using this interpolation
scheme, the element stiffness matrixKe that can be written as
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Table 1: Comparison Between IGA and FEM

IGA FEM

Analysis model spline element finite element
Basis function spline basis function lagrange basis function
Degree of freedom control point node
Element refinement h, p, k-refinement h-refinement
Element continuity up to Cp−1 C0

Ke =

∫
Ωe

BTDBdΩ

=

∫
Ω̂e

BTDB|J1|dΩ̂

=

∫
Ωe

BTDB|J1||J2|dΩ

, (10)

whereB represents the strain-displacement matrix,D denotes the stress-strain matrix, Ωe
represents the element domain, Ω̂e is the mapping domain in the NURBS parametric space,
and Ωe is integration domain in the integration parametric space {ξ, η}. Jacobian J1 and
J2 indicate the transformation relation from the NURBS parametric space to the physical
space and the integration parametric space to the NURBS parametric space, respectively.
More details can be found in Wang et al. [Wang, Xu and Pasini (2017)].
Compared with conventional FEM, IGA has a series of advantages such as nonnegativity
and high continuity for high-order basis functions. A comparison between IGA and FEM
is shown in Tab. 1. It is noted that the geometry remains constant when elements are
refined in IGA, since IGA uses the accurate geometric model. This is not true with FEM,
which uses finite elements to approximately discretize the geometric models. Besides, the
accuracy per degree of freedom (DOF) can be improved by the smoothness of splines in
IGA.

2.2 Basis statement of structural optimization

A typical structural optimization problem involves a set of design variables d = (d1, d2, · · · ),
an objective function Ψ

(
u(x);d

)
, a system of equality constraints charactered by the

boundary value problem (BVP) defined in Eq. (6), and some other constraints, which
can be expressed as:

Min : Ψ
(
u;d

)
Subject to : 〈c(u, ū〉Ω = 0

hi(u;d
)

= 0, i = 1, 2, ..., L

gi(u;d
)
≤ 0, i = 1, 2, ...,M

(11)



where the constraint defined by the BVP is nested in a weak form 〈c(u), ū〉Ω = 0; x is
location vector; hi are equality constraints; and gi are the inequality constraints.
The above formulation of a structural optimization problem is based on continuum vari-
ables. An alternative interpretation is to define the problem based on discrete formulations:

Min : Ψ
(
U ;d

)
Subject to :KU = F

hi(U ;d
)

= 0, i = 1, 2, ..., L

gi(U ;d
)
≤ 0, i = 1, 2, ...,M

(12)

where the variables have been discretized.
In general, the gradient of the objective and constraint with respect to the design variables 
needs to be calculated so that a gradient-based method such as steepest descent method 
[Boyd and Vandenberghe (2009)], sequential quadratic programming (SQP) [Boggs and 
Tolle (1995)], the optimality criteria (OC) method [Hassani and Hinton (1998)], convex 
linearization method (CONLIN) [Fleury (1989)], the method of moving asymptotes (M-
MA) [Svanberg (1987)] and Globally convergent version of MMA (GCMMA) [Svanberg 
(2002)] can be used to solve the optimization problem. There are also non-gradient-based 
methods such as genetic algorithm (GA) [Adeli and Kumar (1995)] and Particle swarm 
optimization (PSO) [Eberhart and Kennedy (1995)] to solve the optimization problem with 
absence of the gradient, but the efficiency of such non-gradient-based methods is much 
lower compared to the gradient method.

3 Isogeometric shape optimization
Structural shape optimization is a type of design methodology that optimizes structures by 
changing the geometry shape such that a cost function is minimized. It has been a research 
interest since 1970s [Haftka and Grandhi (1986)]. As the computational mechanics was 
restricted by the computational resources at that time, the effectiveness of the size and 
topology optimization was limited. Meanwhile, shape optimization was able to provide 
optimal designs suitable for practical applications. Hence it was considered as a more 
effective design method. However, compared to size and topology optimization where the 
finite element mesh remains same and the perturbations of the design variables only affect 
the material property tensor, shape optimization is relatively more challenging because (i) it 
often requires the finite element mesh to be updated during an iterative optimization process 
and (ii) the perturbation of the design variables directly affects the geometry boundary and 
the integration domain. This poses three critical problems: the parameterization method, 
shape updating scheme and the sensitivity analysis.
With IGA, a seamless integration between analysis and design is achieved, and hence au-
tomatically averts typical parameterization problems in traditional FEM-based shape op-
timizations. Compared to FEM-based shape optimizations, there are three additional ad-
vantages of isogeometric shape optimization [Wall, Frenzel and Cyron (2008); Cho and 
Ha (2009)]: (i) its ability of preserving the curved geometry features for analysis, which
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makes it ideal to design structures or domains with curved boundary features; (ii) its higher 
accuracy of evaluating structural responses, especially for boundary variables and dynamic 
responses, which is desirable for sensitivity analysis involving boundaries and interfaces; 
and (iii) the integrated design-analysis-optimization model, which can significantly reduce 
the transition effort between CAD and analysis models. With these two advantages, iso-
geometric shape optimization method has demonstrated its capability in designing curved 
domains, e.g. Nagy et al. [Nagy, Abdalla and Gürdal (2010a); Hosseini, Moetakef-Imani, 
Hadidi-Moud et al. (2018); Choi and Cho (2018a); Weeger, Narayanan and Dunn (2018); 
Liu, Yang, Wang et al. (2018)] about curved beams; Nagy et al. [Nagy, IJsselmuiden and 
Abdalla (2013); Kiendl, Schmidt, WWüchner et al. (2014); Kang and Youn (2016); Ban-
dara and Cirak (2018); Hirschler, Bouclier, Duval et al. (2018)] about shells; Gillebaart 
et al. [Gillebaart and De Breuker (2016); Herath, Natarajan, Prusty et al. (2015); Kostas, 
Ginnis, Politis et al. (2015, 2017)] about fluid-interacted structural geometries; Nagy et al.
[Nagy, Abdalla and Gürdal (2011); Manh, Evgrafov, Gersborg et al. (2011); Taheri and 
Hassani (2014)] about dynamic problems; Wang et al. [Wang, Poh, Dirrenberger et al.
(2017); Wang and Poh (2018); Choi and Cho (2018a)] about smoothed curved auxetic-
s; Hao et al. [Hao, Wang, Ma et al. (2018)] with reliability-based design optimization; 
and Nguyen et al. [Nguyen, Evgrafov and Gravesen (2012); Pels, Bontinck, Corno et al.
(2015)] about magnetic-related design domains. The integrated analysis-design framework 
enables to build a platform where the structural responses of designs with different param-
eters can be observed easily, and hence a sequence of the results can be used as samples 
for a surrogate model to quickly explore the design space [Benzaken, Herrema, Hsu et al.
(2017)].
In this section, the issues of parameterization methods, shape updating schemes and sensitivity 
analysis in the context of isogeometric shape optimization is comprehensively reviewed with 
comparisons to traditional-FEM based shape optimizations in Sections 3.1 and 3.2. Studies 
based on gradient-free optimization methods are discussed in Section 3.3. Some remarks and 
discussions about isogeometric shape optimization are briefly summarized in Section 3.4.

3.1 Design parameterization, analysis techniques and updating schemes

3.1.1 Parameterization methods in traditional FEM-based shape optimization

A major limitation with the traditional FEM-based shape optimization lies with the tran-
sition between a geometry model described in a CAD system and the analysis model dis-
cretized with finite element mesh. Depending on the design parametrizations, different 
approaches have been developed.
An intuitive way is to use the finite element mesh directly, with the nodal locations as 
design variables (e.g. [Zienkiewicz (1973)]). This is also termed as a "parameter-free" 
approach (e.g. [Le, Bruns and Tortorelli (2011); Riehl, Friederich, Scherer et al. (2014)] ). 
This approach naturally avoids a CAD description and hence the corresponding transition 
difficulties. However, in addition to introduce a large number of design variables, it 
also leads to non-optimal jagged boundaries and irregular meshes, as illustrated in Fig. 3, 
and the geometry features such as curvature can only be approximated [Schmitt and 
Steinmann (2017)].



Figure 3: Schematic of jagged boundaries occurring during a shape optimization for a 
FEM-based shape optimization

An alternative approach is to use parametric curves or surfaces to describe the design ob-
jects. These parametric schemes include polynomials (e.g. [Imam (1982)]), Bezier and B-
Splines (e.g. [Braibant and Fleury (1984, 1985)]), NURBS (e.g. [Schramm and Pilkey 
(1993)]), mesh mapping/morphing (e.g. [Wang, Zhang, Wang et al. (2010); Wang, Wang, 
Zhu et al. (2011)]) and bi-space parametrization (e.g. [Wang and Zhang (2012); Wang, 
Zhang and Zhu (2016)]). More details of the parameterization can be found in the sur-
veys of Haftka et al. [Haftka and Grandhi (1986); Samareh (2001b); Daxini and Prajapati 
(2017)]. The two major advantages of using a parametric method for shape optimization 
lie in two major aspects: (i) to reduce the number of design variables; (ii) to improve the 
accuracy of shape sensitivity analysis. However, the disadvantage of using a separate de-
scription for the geometry is that the mesh updating process requires the transition between 
parametric and analysis models. One tricky way of avoiding the mesh updating problem 
is to embed the structural domain on a background mesh where only the domain covered 
regions are assumed to have solid material, with the remaining domain composing of voids 
(e.g. [Bendsøe (1989); Norato, Haber, Tortorelli et al. (2004); Wang and Zhang (2013)]). 
Generally, the level-set-based topology optimization is a variant of this method, which will 
be addressed later in section Section 4.2.

3.1.2 Isogeometric shape optimization with different parameterization methods and analy-
sis techniques

In the framework of isogeometric analysis, the transition between geometry description and 
analysis model is seamless. Hence, using IGA for shape optimization automatically avoids 
the problems induced by the parameterization approaches, and naturally leads to a simple 
integrated design framework. This was first addressed in the pioneering works [Wall, Fren-
zel and Cyron (2008); Cho and Ha (2009)]. Since the NURBS refinement can be easily 
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x x

(a) Design discretization space (b) Analysis discretization space

Figure 4: Double levels of discretization scheme: (a) A coarse discretization for design 
parameterization to reduce design variables and (b) A refined discretization for analysis 
to guarantee accurate structural responses [Wang, Turteltaub and Abdalla (2017); Wang, 
Abdalla and Turteltaub (2017)]. Note that an interesting observation is found in Lieu et al.
[Lieu and Lee (2017a,b)] for isogeometric topology optimization, an contrary strategy is 
used such that a coarse mesh is used for analysis to improve the computational efficiency, 
yet a refined mesh is used for design to achieve topology designs with a high resolution

achieved using standard algorithms to insert knots into the knot vectors, the 
isogeometric shape optimization framework also provides a platform to use multi-
levels discretization for design and analysis [Nagy, Abdalla and Gürdal (2010a)], 
e.g. a coarse discretization for design variables to reduce the number of design
variables and a refined discretization for analysis to ensure the accuracy, as illustrated
in Fig. 4. It should be noted that in [Lieu and Lee (2017a,b)] for isogeometric topology
optimization, an contrary strategy is used such that a coarse mesh is used for analysis to
improve the computational efficiency, yet a refined mesh is used for design to achieve
topology designs with a high resolution. Although NURBS is a powerful tool to describe
complicated geometries, the CAD models are not always analysis-suitable [Schmidt,
Kiendl, Bletzinger et al. (2010); Scott, Li, Seder-berg et al. (2012); da Veiga, Buffa,
Cho et al. (2012)], especially for complex geometries such as structures with cut-out
openings using Boolean operations. This strongly restricts the development of
isogeometric shape optimization. This problem can be solved using two approaches: one
is to propose new parameterization methods that are analysis-suitable; the other one is
to develop new analysis techniques to conform to existing CAD modeling methods.
For such purposes, various parameterization methods and analysis techniques have been
developed to further promote the design optimization. Representative parameterization
methods include analysis suitable T-splines in Scott et al. [Scott, Li, Sederberg et al.
(2012); da Veiga, Buffa, Cho et al. (2012)], an analysis-suitable parameterization
framework using harmonic method in Xu et al. [Xu, Mourrain, Duvigneau et al.
(2013)], a method of using mapped B-spline basis functions in [Yuan and Ma (2014)]
and an optimized trivariate B-spline solids parameterization approach in Wang et al.
[Wang and Qian (2014)]. Representative analysis techniques for shape design
optimization problems in-clude the T-Spline based IGA in Ha et al. [Ha, Choi and
Cho (2010)], boundary element method (BEM) based IGA in Li et al. [Li and Qian
(2011); Lian, Kerfriden and Bordas (2016); Yoon and Cho (2016)], a combination of T-
Spline and BEM solver in Schillinger et al. [Schillinger, Dede, Scott et al. (2012);
Kostas, Ginnis, Politis et al. (2015); Yoon, Choi and Cho (2015); Lian, Kerfriden and



Bordas (2017); Kostas, Fyrillas, Politis et al. (2018)], Powell-Sabin splines based IGA in 
Speleers et al. [Speleers and Manni (2015)], isogeometric B-Rep analysis for trimmed 
surfaces in Philipp et al. [Philipp, Breitenberger, D’Auria et al. (2016)], an immersed 
method termed immersogeometric methods in Wu et al. [Wu, Kamensky, Wang et al. 
(2017)], an combination of immersed method and bound-ary method in Marco et al. 
[Marco, Ródenas, Fuenmayor et al. (2018)], and triangulations based IGA in Wang et al. 
[Wang, Xia, Wang et al. (2018)]. It should be noted that among these methods, the 
boundary element method is popular for its certain advantages over the domain-based 
methods, e.g. the unnecessary of generate domain mesh such that the interior mesh 
irregularity can be avoided during an optimization process. With the development of IGA, 
analysis-suitable parameterization techniques can provide a truly seamless analysis-
design environment that is capable of dealing with complex geometries for multi-physics 
problems, e.g. the works in Herrema et al. [Herrema, Wiese, Darling et al. (2017)].

3.1.3 Shape and mesh updating schemes

For the traditional FEM-based shape optimization, it is important to use proper mesh updat-
ing techniques to deal with the jagged boundary and irregular mesh. These techniques in-
clude the traction method that takes the shape derivatives on the boundary as a type of Neu-
mann boundary condition in Inzarulfaisham et al. [Inzarulfaisham and Azegami (2004); 
Azegami and Takeuchi (2006); Shimoda, Tsuji and Azegami (2007); Riehl, Friederich, 
Scherer et al. (2014)], an automatic regridding method that takes the shape derivatives 
on the boundary as a type of Dirichlet boundary condition in Choi et al. [Choi and Kim 
(2005a)] and filtering method in Bletzinger et al. [Bletzinger, Firl, Linhard et al. (2010); 
Le, Bruns and Tortorelli (2011); Firl, Wüchner and Bletzinger (2013)].
In the framework of isogeometric shape optimization, although it is mentioned in Braibant 
et al. [Braibant and Fleury (1984, 1985)] that a B-Spline parameterization automatically 
accounts for boundary irregularities, proper boundary and domain mesh regularizations are 
still required. This mainly because that (i) the boundary shape change may cause irregular 
mesh if the interior control points are not moved properly [Yuan and Ma (2015); Choi and 
Cho (2015)] and (ii) the non-uniform local supports of the control points can lead to un-
balanced step-sizes for different design control points to give an irregular geometry [Nagy 
(2011); Wang, Abdalla and Turteltaub (2017)], as illustrated in Fig. 5. To address these 
problems, several methods have been developed. For simple problems, it is possible to 
use a linear interpolation scheme for relocating the interior control points, e.g. the works 
in Wang et al. [Wang, Abdalla and Turteltaub (2017)]. In Nagy et al. [Nagy, Abdalla and 
Gürdal (2010a)], a Sobolev semi-norm, referred to as "shape change norm", is proposed. In 
Azegami et al. [Azegami, Fukumoto and Aoyama (2013)], the H1 gradient method, which 
is essentially similar to the traction method, is utilized. Both the shape change norm and 
the H1 gradient methods require to solve a system of equations. In Yuan et al. [Yuan and 
Ma (2015)], a parametric mesh regularization based on a method of mapped basis functions 
is demonstrated with a iterative procedure. In Choi et al. [Choi and Cho (2015)], a mesh 
regularization scheme is proposed by minimizing the Dirichlet energy functional and a di-
mensionless functional such that the uniform parametrization and the mesh orthogonality
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can be obtained. In Kiendl et al. [Kiendl, Schmidt, WWüchner et al. (2014)], a sensitivity 
weighting method is presented to normalize the step-sizes of the movements of the con-
trol points. This approach is further studied systemically in Wang et al. [Wang, Abdalla 
and Turteltaub (2017)], where additional normalization approaches are proposed and the 
underlying reasons of using the normalization approaches analysed.

3.2 Shape sensitivity analysis methods

Shape sensitivity analysis plays a critical rule in a gradient-based optimization process. In 
this work, we distinguish between the various sensitivity analysis methods based on how the 
derivatives of the state variable field are treated, to give  the: (i) Direct method (DM);(ii) 
Overall finite d ifferences ( OFD); ( iii) S emi-analytical ( SA) m ethod; a nd ( iv) adjoint 
method. An alternative classification method used in the surveys of [Van Keulen, Haftka and 
Kim (2005); Newman III, Taylor III, Barnwell et al. (1999)] is based on whether the 
derivation is derived from a continuum or discrete forms. This classification is also used here 
to have a comprehensive discussion for each type of sensitivity analysis method, e.g. for the 
adjoint method, it is further distinguished into two types: (i) Discrete adjoint method and (ii) 
Continuum adjoint method, also known as continuous or variational adjoint method (see e.g. 
[Newman III, Taylor III, Barnwell et al. (1999); Choi and Kim (2005a,b)]). The fundamental 
aspects of these sensitivity methods were developed in the 1980s, and become increasingly 
applicable for shape optimization problems with the development of software and hardware 
platforms for numerical analysis. Since surveys and reviews have been avail-able for these 
informations in the works of Adelman et al. [Adelman and Haftka (1986); Haftka and 
Adelman (1989); Tortorelli and Michaleris (1994); Hsu (1994); Newman III, Taylor III, 
Barnwell et al. (1999); Van Keulen, Haftka and Kim (2005)], we will focus on shape 
sensitivity analyses in the context of isogeometric shape optimization.

3.2.1 Preliminaries: Material derivatives and transport relations

For simplicity, the problem here assumes that the load is design-independent. Henceforth, 
to elaborate on the shape sensitivity analysis methods for the continuum-based formulations 
shown in Eq. (11), we define the objective function in a generic manner as

Ψ(u; s) :=

∫
Ω
ψω
(
u(x; s)

)
dΩ +

∫
Γ
ψγ
(
u(x; s)

)
dΓ, (13)

where s is a time-like parameter, analogous to the time parameter in continuum mechanics.
In analogy to the configuration change with time in continuum mechanics, the material
derivative, also termed material design derivative in Wang et al. [Wang and Turteltaub
(2015)] to distinguish with the material time derivatives (e.g. in Jao et al. [Jao and Aro-
ra (1992); Wang and Kumar (2017)]) of time-dependent problems, of a generic function
f(x; s) is defined as

ḟ(x, t; s) :=
Df
Ds

=
∂f

∂s
+∇fν = f ′ +∇fν, (14)
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Figure 5: The design parameterization dependency of NURBS-based shape updat-
ing scheme [Wang, Abdalla and Turteltaub (2017)]: Case 1 corresponds to a param-
eterization with uniformly distributed control points, uniform weights w|y=0,5,10 =
{1, 1, 1, 1, 1, 1} and uniform knot spans ξ = {0 0 0 0.25 0.5 0.75 1 1 1 }; Case 2 cor-
responds to a parameterization with uniformly distributed control points, uniform weights
w|y=0,5,10 = {1, 1, 1, 1, 1, 1} and non-uniform knot spans ξ = {0 0 0 0.1 0.2 0.3 1 1 1 };
Case 3 corresponds to a parameterization with uniformly distributed control points,
non-uniform weights w|y=0 = {1, 1, 0.6, 0.6, 1, 1} and uniform knot spans ξ =
{0 0 0 0.25 0.5 0.75 1 1 1 }; Case 4 corresponds to a parameterization with non-uniformly
distributed control points, uniform weights w|y=0,5,10 = {1, 1, 1, 1, 1, 1} and uniform knot
spans ξ = {0 0 0 0.25 0.5 0.75 1 1 1 }; Case 5 corresponds to a parameterization with
linear basis functions and non-uniformly distributed control points
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where D
D(·) = ˙(·) denotes the material or total derivatives of a quantity, ∂f

∂s = f ′ is the
spatial (design) or partial derivatives and ν is the design velocity field:

ν := ẋ =
∑

RI
DxI
Ddi

Ddi
Ds

= V
Ddi
Ds

. (15)

The symbol V in Eq. (15) denotes the perturbation of point x with respect to design
variable di. Note that in many references, e.g. [Cho and Ha (2009)], for simplicity, the
definition of the time-like parameter is absence, and the quantity V defined here is used as
‘design velocity’. Essentially, there is no difference between these two terminologies.
The transport relations for domain and boundary integrals are expressed, respectively, as

d
ds

∫
Ω
fdΩ =

∫
Ω
f ′dΩ +

∫
Γ
fν · n dΓ (16)

and
d
ds

∫
Γ
fdΓ =

∫
Γ

(
f ′ + (∇fv)n− κfν · n

)
dΓ (17)

where κ is the mean curvature and n is the unit outward normal vector.

3.2.2 Direct method

The direct method (DM), also called direct differentiation method (e.g. [Arora (1993);
Tortorelli and Michaleris (1994); Cho and Ha (2009)]), is to take the derivatives of the
objective function Ψ with respect to the design variables di using the chain rule. For both
continuum and discrete approaches, the DM requires to solve the system of equations in
Eq. (8) to obtain the discrete state variable field U , such that the continuum state variable
u can be evaluated at any given location.
Using the transport relation defined in Eqs. (16) and (17), the continuum-based derivatives
of the objective function reads

Ψ̇(u; s) =

∫
Ω
ψω,uu

′ dΩ +

∫
Γ

(
ψωνn + ψγ,uu

′ + (∇ψγν)n− κψγνn
)

Γ (18)

where νn = ν · n. Then, the transport relations are applied to the weak formulation in Eq.
(7) to obtain its derivatives. Note that the spatial derivatives of the test function ū vanishes
using 〈c(u), ū′〉Ω = 0. Following this, discretization is applied to obtain a discrete system:

KU ′ = T (19)

where U ′ is the vector of the spatial derivative of the discrete state variables and T is a
dummy force vector that is a function of u, ∇u, κ, n and V . Eventually, solving Eq. (19)
and use the result to obtain u′ in Eq. (18), the shape sensitivity can be evaluated. It should
be noted that Eq. (19) is derived to compute the spatial derivatives u′, which is easy for
computing the sensitivity of objective function with stress/strain terms. This is because the
spatial derivatives u′ with respect to design variables, and the gradient ∇u, with respect



to spatial locations, commute (e.g., see [Dems and Haftka (1988); Arora (1993); Choi and
Kim (2005a); Wang and Poh (2018)]), i.e.

ε′(u) = (∇u)′ = ∇(u′) = ε(u′); (20)

while the material derivative u̇ and the spatial gradient do not commute, i.e.

ε̇(u) = ∇̇u = (∇u)′ +∇(∇u)v = ∇u̇− (∇u)(∇v) = ε(u̇)− (∇u)(∇v). (21)

It is possible to derive Eq. (19) in terms of material derivatives, paying attention to cases
involving stress/strain terms. The derivation of this approach in the FEM-based regime can
be found, e.g. in the works of Arora et al. [Arora (1993); Tortorelli and Michaleris (1994);
Korycki (2001); Kuci, Henrotte, Duysinx et al. (2017)].
For the discrete derivations, the derivative of objective Ψ(U) with respect to design variable
di can be written as

Ψ̇(U) =
DΨ(U)

Ddi
=

DΨ

DU
DU
Ddi

= Ψ,U U̇ (22)

where U̇ can be computed from the derivatives of Eq. (8):

KU̇ = Ḟ − K̇U . (23)

Note that term Ḟ vanishes for cases where the force vector is design-independent. Solving
this equation for U̇ and substitute it into Eq. (22), the shape sensitivity can be obtained.
The derivation of this approach can be found in many works, e.g. [Braibant and Fleury
(1984, 1985); Hsieh and Arora (1985); Tortorelli (1992); Tortorelli and Michaleris (1994)].
Compared to the continuum-based direct method, the discrete formulations are simpler to
derive. However, the discrete version requires the computation of derivative term K̇ = DK

Ddi
,

which can be problematic for FEM-based shape optimization problems with linear shape
functions. Although it is possible to use high order shape functions in traditional FEM, the
C0 continuity between each element may still lead to an inaccurate strain or stress field
and hence cannot guarantee the accuracy of the sensitivity analysis. Hence, except for the
case where the objective or constraint is defined independently of the BVP in Eq. (6), it is
tricky to implement the direct method. Moreover, the direct method requires to solve an
extra system of equations, either Eq. (19) or Eq. (23), for each design variables. Apart from
simple problems where the inverse of matrixK can be obtained and stored, the overall cost
of using direct method can be significantly big. This severely restrict the DSA method to be
used in typical FEM-based shape optimization problems, especially in the early years when
the computational hardware was much less powerful. Eventually, although the derivations
can be found in above-mentioned works, the actual implementations are limited to simple
examples, such as Hsieh et al. [Hsieh and Arora (1985); Tortorelli (1992); Tortorelli and
Michaleris (1994)].
The IGA utilizes shape functions with a high order of continuity and is able to increase
the order using standard p-refinement algorithms, which makes it easy to obtain the sec-
ond order derivatives of the state variables u, and the first order derivative of stiffness K.
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In addition, IGA is capable of reaching a certain level of accuracy with less degrees of
freedoms, hence reducing the dimensions of matrix K. This makes it possible to store the
inverse of matrixK to significantly reduced the computational costs [Tortorelli and Micha-
leris (1994)]. Eventually, unlike the limitations of using direct method in a FEM-bashed
shape optimization, in Cho et al. the context of IGA, shape sensitivity analysis using direct
method is relatively popular. In Cho et al. [Cho and Ha (2009); Liu, Chen, Zhao et al.
(2017)], the direct method based on continuum derivation using isogeometric discretiza-
tion is presented. In Qian et al. [Qian (2010)], a full analytical direct method based on the
discrete formulations for isogeometric shape sensitivity analysis is developed by consider-
ing both the locations and the weights of control points as design variables. Isogeometric
shape optimization using direct method with discrete derivation for sensitivity analysis can
also be found in other works such as Li et al. [Li and Qian (2011); Manh, Evgrafov, Gers-
borg et al. (2011); Qian and Sigmund (2011); Nørtoft and Gravesen (2013); Taheri and
Hassani (2014); Lian, Kerfriden and Bordas (2016); Kang and Youn (2016); Ding, Cui
and Li (2016); Lian, Kerfriden and Bordas (2017); Lei, Gillot and Jezequel (2018b)]. For
the isogeometric topological shape optimization, the shape sensitivity analysis is relatively
simple because a background mesh is used, which makes it desirable to use direct differen-
tial method, e.g. in the works of Seo et al. [Seo, Kim and Youn (2010a); Cai, Zhang, Zhu
et al. (2014); Zhang, Zhao, Gao et al. (2017); Ahn, Koo, Kim et al. (2018)].

3.2.3 Finite difference (FD) approach

The finite difference (FD) or overall finite difference (OFD) approach is to compute the
shape sensitivity using the difference quotients:

DΨ

Ddi
=

Ψ(di + ∆)−Ψ(di)

∆
and

DΦ

Ddi
=

Φ(di + ∆)− Φ(di)

∆
(24)

where ∆ is the perturbation of the design variable di. Among all of the shape sensitivity
analysis methods, the FD approach is the easiest to implement. However, the FD approach
is not efficient for problems with large number of design variables. For a problem with n
design variables, the BVP problem has to be solved for n + 1 times. The computational
cost of the FD approach can be significantly high for non-linear and time-dependent large
scale problems. Hence, the FD approach is often used to verify the results of other sen-
sitivity analysis methods, e.g. in the works of Cho et al. [Cho and Ha (2009); Wang and
Kumar (2017)], or to deal with special cases where other sensitivity analyses are not easy
to implement, e.g. in Park et al. [Park, Seo, Sigmund et al. (2013)], where it is used to
compute the shape sensitivity of intersecting knots of trimmed surfaces.
It should be noted that the accuracy of FD approach depends on the perturbation size. Thus,
a proper convergence analysis needs to be performed with respect to the perturbation size
for each design variable.



3.2.4 Semi-analytical (SA) approaches

An alternative simple and efficient approach is the semi-analytical (SA) method. For each
design variable, a perturbation ∆ is applied to obtain the the perturbations of the loading
vector F and stiffness matrix K, such that by solving K−1 just once, the full derivatives
of U in Eq. (22) can be obtained:

U̇ = K−1
(∆F

∆di
− ∆K

∆di
U
)
. (25)

Then, solving Eq. (25) and substituting it into Eq. (18) with proper derivation using Eqs.
20 and 21, e.g. in Wang et al. [Wang and Poh (2018)], or into Eq. (22) directly, e.g.
in Haftka et al. [Haftka (1981)], the sensitivity analysis can be computed. Isogeometric
shape optimization using SA method can be found in the works of Seo et al. [Seo, Kim
and Youn (2010a); Park, Seo, Sigmund et al. (2013); Kiendl, Schmidt, WWüchner et al.
(2014); Wang and Poh (2018); Hosseini, Moetakef-Imani, Hadidi-Moud et al. (2018)].
It should be noted that for the cases where the objective function involves stress/strain vari-
ables, the problem can be slightly more complicated. First, Eq. (22) needs to be modified
into DΨ

Dxj
i

= Ψ,U U̇ + Ψ,εε̇. Then, the material derivative of ε can be obtained from u̇ using
Eq. (21):

ε̇(u) = ε(u̇)− (∇u)(∇v), (26)

where u̇ can be computed from the discrete vector U̇ , and the gradient of design velocity
∇v can be computed either analytically or based on perturbations of the design variables.
This is addressed in the work of Wang et al. [Wang and Poh (2018)].
Despite the fact that SA approach is computationally efficient and popular, the accuracy of
the sensitivity analysis can be relatively unsatisfactory for some special cases [Barthelemy
and Haftka (1990)].

3.2.5 Discrete adjoint method

The shape sensitivity analysis using adjoint method is performed by introducing an adjoint
variable field to replace the derivatives of the implicitly-dependent terms. For problems
with n objectives and constraints that are dependent on structural responses, it requires
n + 1 times of analysis. Hence, this approach is efficient for problems with large number
of design variables and small number of constraints [Haftka (1981)].
The derivations based on the discrete fields K, U and F using the form of Ψ(U) for the
objective are called discrete adjoint method, i.e the derivations are done after the system
has been discretized. Firstly, an augmented function is introduced based on the discrete
fields:

Ψ̃ = Ψ = Ψ +U∗T(−KU + F ) (27)

where U∗ is the so-called adjoint variable field. Note that U̇∗(KU − F ) = 0, the full
derivative of above augmented function can be derived as
˙̃Ψ = Ψ,U U̇ +U∗T(−K̇U −KU̇ + Ḟ ) = (Ψ,U −U∗TK)U̇ + Ḟ −U∗TK̇U (28)
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Introducing an adjoint problem KU∗ = Ψ,U and solve it, the shape sensitivity can be
computed using

˙̃Ψ = Ψ̇ = Ḟ −U∗TK̇U . (29)

Despite the computing effect to obtain the full derivative of the stiffness matrix K̇, the dis-
crete adjoint method is relatively popular because the derivations are simple and straight-
forward. In the pioneering work of Wall et al. [Wall, Frenzel and Cyron (2008)], the
derivations and some numerical aspects of the discrete adjoint method are presented in the
framework of IGA. Following this, this method is also used in the context of isogeometric
design optimization to derive the shape and size sensitivity for curved beams to minimize
the structure compliance in Nagy et al. [Nagy, Abdalla and Gürdal (2010a)] and maximize
the fundamental frequency in Nagy et al. [Nagy, Abdalla and Gürdal (2011)], for topolog-
ical shape optimization in Seo et al. [Seo, Kim and Youn (2010b)], for composite shells
to consider the buckling load and structural stiffness in Nagy et al. [Nagy, IJsselmuiden
and Abdalla (2013)], for geometrically exact Timoshenko beams in Ferede et al. [Ferede,
Abdalla and van Bussel (2017)], for shells with multiresolution subdivision surfaces in
Cirak et al. [Cirak and Bandara (2015); Bandara and Cirak (2018)] and for airfoil design
in Wang et al. [Wang, Yu, Wang et al. (2018)]. Details with systematic explanations for
implementations can be found in Nagy et al. [Nagy (2011)].

3.2.6 Continuum adjoint method

Another type of adjoint method, termed continuum adjoint method, e.g. in Choi et al. [Choi
and Kim (2005a)] or continuous adjoint method, e.g. in Papadimitriou et al. [Papadimitriou
and Giannakoglou (2007)], derives the sensitivity based on the continuum formulations.
The derivations of the adjoint problem are based on the continuum variable fields using the
BVP equations in Eq. (6) and Ψ(u) to form an augmented function:

Ψ̃ := Ψ + 〈c(u),u∗〉Ω (30)

where 〈c(u),u∗〉Ω nests the BVP problem defined in Eq. (6) and u∗ is the so-called adjoint
state variables.
The derivatives of the augmented function with respect to the time-like parameter s can
be derived using the transport relations defined in Eqs. (16) and (17). To eliminate the
implicitly dependent terms such as u′ and t′, an adjoint BVP is introduced as

C∇2u∗ + f∗ = 0 with f∗ = ψω,u in Ω;

u∗ = û∗ with û∗ = −ψγ,t on Γu;

t∗ = (C∇u∗)Tn = t̂∗ with t̂∗ = ψγ,u on Γt

(31)

where variable fields with a star symbol are variables for the adjoint BVP. Eventually,
the shape sensitivity can be obtained using terms without involving implicitly dependent
derivatives. For problems with design-independent boundary conditions, it is possible to



express the shape sensitivity as

Ψ̇ =

∫
Γ
g · νdΓ, (32)

where g is local shape derivative that includes the terms with the primary and adjoint vari-
ables (see e.g. [Wang and Turteltaub (2015)]). Using the chain rule to get DΨ

Ds = DΨ
Ddi

Ddi
Ds and

ν = V Ddi
Ds , the sensitivity with respect to each design variable DΨ

Ddi
can be obtained. This

framework can be easily applied to multiple levels discretization for design and analysis,
where the terms in g are computed in the analysis discretization space with refined mesh
for obtaining accurate responses, while the design velocity is implemented in the design
discretization space with coarse mesh for reducing the number of design variables.
Compared to the discrete approach, the continuum adjoint method involves a relatively
more complicated derivation, leading to a tedious numerical implementation. Against its
complexity, various interpretations and derivative approaches have been proposed in litera-
ture, e.g. derivations based on a mutual Hu-Washizu energy principle in Haber et al. [Haber
(1987)], Lagrange multipliers interpretations in Belegundu et al. [Belegundu (1985); Tor-
torelli, Haber and Lu (1989)], energy bilinear forms in Komkov et al. [Komkov, Choi and
Haug (1986); Choi and Haug (1983); Choi (1987)], reciprocity theorems in Tortorelli et
al. [Tortorelli, Subramani, Lu et al. (1991); Dems and Mroz (1984)], a mixed variational
formulation in [Rodrigues (1988)] and a mixed Lagrange multiplier approach in Wang et
al. [Wang and Turteltaub (2015)].
In terms of numerical implementation, the continuum adjoint method is tricky for FEM-
based shape optimization. Apart from a significant account of boundary integrations where
the structural response may not be accurately computed, the boundary geometric parame-
ters, such as the normal vector and the curvature, cannot be accurately preserved. In the
context of isogeometric shape optimization, the exact geometric representation enables the
computation of the boundary geometric parameters easily and seamlessly, hence, providing
a natural platform to implement the continuum adjoint method. This has been intensively
studied by Seonho Cho and his co-authors in Cho et al. [Cho and Ha (2009)] for general dis-
cussions, in Ha et al. [Ha, Choi and Cho (2010)] using T-spline based isogeometric method,
in Ahn et al. [Ahn and Cho (2010)] for level-set-based topology optimization of heat con-
duction problems, in Koo et al. [Koo, Yoon and Cho (2013)] coping with Kronecker delta
property, in Yoon et al. [Yoon, Ha and Cho (2013); Yoon, Choi and Cho (2015)] for shape
design optimization of heat conduction problems, in Choi et al. [Choi and Cho (2014)] for
stress intensity factors of curved crack problems, in Lee et al. [Lee and Cho (2015)] for
optimizing built-up structures, in Lee et al.[Lee, Lee and Cho (2016)] for ferromagnetic
materials in magnetic actuators, in Yoon et al. [Yoon and Cho (2016)] for boundary inte-
gral equations, in Choi et al. [Choi, Yoon and Cho (2016)] for designing curved Kirchhoff
beams with finite deformations, in Lee et al. [Lee, Yoon and Cho (2017)] for topological
shape optimization using dual evolution with boundary integral equation and level sets, in
Choi et al. [Choi and Cho (2018a)] for designing lattice structures embedded on curve
surfaces, in Choi et al. [Choi and Cho (2018b)] for using curved beams to design auxetic
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structures and in Ahn et al. [Ahn, Choi and Cho (2018); Ahn, Koo, Kim et al. (2018)] 
for designing nanoscale structures. Wang and his co-authors implemented the continuum 
adjoint method in Wang et al. [Wang and Turteltaub (2015)] for quasi-static problems con-
sidering discontinuities in the objective functions, in Wang et al. [Wang, Turteltaub and 
Abdalla (2017); Wang and Kumar (2017)] for transient heat conduction problems and in 
Wang et al. [Wang, Poh, Dirrenberger et al. (2017)] to design auxetic structures using nu-
merical homogenization method. The continuum adjoint method is also used in Azegami 
et al. [Azegami, Fukumoto and Aoyama (2013)] enforced with H1 gradient method, Ha 
[Ha (2015)] for curvilinear coordinate systems, and Cirak et al. [Cirak and Bandara (2015)] 
for structural compliance and boundary flux optimizations. The equivalence of the discrete 
and continuum adjoint methods is discussed with a simple selft-adjoint example under the 
framework of IGA in Fusseder et al. [Fußeder, Simeon and Vuong (2015)].

3.3 Gradient-free optimization methods

The gradient-based optimization methods are efficient to find optimal solutions, which may, 
however, lead to local optimal solutions that depends on start point. Moreover, despite the 
great improvements of the computation techniques in the past decades, sensitivity analysis 
for complex problems is still remarkably challenging, e.g. designing complex geometry 
generated with Boolean operations in Wang et al. [Wang, Zhang, Yang et al. (2012)], prob-
lems with large elasto-plastic deformations in Zhu et al. [Zhu, Wang and Poh (2018)], 
nonlinear problems in Meng et al. [Meng, Breitkopf, Raghavan et al. (2015); Hou, 
Sapanathan, Du-mon et al. (2018)], complicated reliability-based design problems in 
[Dubourg, Sudret and Bourinet (2011)] and uncertainty in crashworthiness optimization in 
Qiu et al. [Qiu, Gao, Fang et al. (2018)]. Eventually, gradient-free optimization methods 
become essentially important to diminish these obstacles [Queipo, Haftka, Shyy et al. 
(2005); Forrester and Keane (2009)]. Particularly, the gradient-free optimization methods 
are easy and straightforward to im-plement, which is attractive for engineering 
applications. The IGA-based gradient-free optimization methods can also benefit from 
IGA with its seamless geometry parameteri-zation, possibly higher accuracy of structure 
responses with the same degrees of freedom, and more efficient computation for the same 
level of accuracy, especially for the structures with complicated curved features. 
Representative works of such studies can be found in Benzaken et al. [Benzaken, Herrema, 
Hsu et al. (2017)] and Herrema et al. [Herrema, Wiese, Darling et al. (2017)], where a 
surrogate model technique and a generalized pattern search algorithm, respectively, are 
adopted to optimize the wind turbine blades (see Fig. 6(c)) with complex geometries, 
Kostas et al. [Kostas, Ginnis, Politis et al. (2015)] where evolutionary algorithms are 
utilized to optimize ship-hull shape, Herath et al. [Herath, Natarajan, Prusty et al. (2015); 
Kostas, Ginnis, Politis et al. (2017); Kostas, Fyrillas, Politis et al. (2018)] with genetic 
algorithms, Lieu et al.  [Lieu, Lee, Lee et al. (2018); Lieu and Lee (2019)] with an adaptive 
hybrid evolutionary firefly algorithm, Wang et al. [Wang, Yu, Shao et al.(2018)] with a 
chaotic particle swarm optimization method, and Zhang et al. [Zhang, Li, Shen et al. 
(2019)] with multi-island genetic algorithm and adaptive simulated annealing methods.



3.4 Some remarks and discussions in isogeometric shape optimization

The concept of isogeometric analysis raised renewed interests in developing structural 
shape optimization.Together with the advancement of computational technologies, the in-
creasing interest in isogeometric shape optimization has sparked the development of some 
fundamental theories. To deal with stress constraint problems in isogeometric design 
framework, Nagy et al. [Nagy, Abdalla and Gürdal (2010b)] presented a novel variational 
formulation using isogeometric basis functions to represent Lagrange multipliers. For ge-
ometry parameterization, the NURBS-based CAD geometry description in the past often 
develops diversely aiming simply to improve the geometry modeling. The development 
of isogeometric design and analysis have directed the attention towards an CAD param-
eterization concept that is analysis-suitable, which further enhances the design ability, as 
discussed in Section 3.1. With these efforts, highly integrated platforms with design and 
analysis for large scale and geometrically complicated structures (see the concept presented 
in e.g. [Herrema, Wiese, Darling et al. (2017)]) is becoming more practical and achievable. 
For structural shape sensitivity analysis, IGA has significantly reduced the complexity of 
implementing the direct differentiation method, leading it to become a popular method, as 
presented in Section 3.2.2. Meanwhile, in the context of isogeometric shape optimization, 
implementing continuum adjoint method is easier than traditional FEM-based shape opti-
mization, which makes it possible to adopt it for more practical structure designs, e.g. in 
Wang et al. [Wang, Poh, Dirrenberger et al. (2017); Choi and Cho (2018a)] for auxetic 
structures with complicated curved features. In Wang et al. [Wang and Turteltaub (2015)], 
the shape sensitivity analysis considering discontinuities in the objective functions is de-
rived using continuum adjoint method. In Choi et al. [Choi, Yoon and Cho (2016)], the 
continuum adjoint method is derived for finite deformations of curved beams. It is also 
notable that with the development of isogeometric analysis, shape optimization has been 
applied to structures with increasingly complicated geometries, e.g. the structures depicted 
in Fig. 6, which can be difficult for a FEM-based shape optimization.

4 Isogeometric topology optimization
Isogeometric topology optimization (ITO) using IGA to replace FEM in the topology op-
timization was first proposed by Seo et al. [Seo, Kim and Youn (2010a)], where trimmed 
surfaces were used to accurately represent the topology of the optimized structure, since 
the design variables are the coordinates of control points. However, this method needs 
to deal with inner front creation and inner front merging, which is complicated and thus 
increases the computational time significantly when the number of trim curves is large. 
Later, researchers begin to devote their time to the ITO research and a series of results are 
obtained based on different types of topology optimization framework. In this section, we 
will review the ITO research in the past ten years according to the types of ITO design 
variables.
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(a) (b) (c)

Figure 6: Isogeometric shape optimization for geometrically complicated structures: (a)
petal-shaped auxetic structure design in Wang et al. [Wang, Poh, Dirrenberger et al. (2017)];
(b) Curved 3D chair shape design in Lian et al. [Lian, Kerfriden and Bordas (2017)]; and
(c) Curved wind turbine blade shape design in Benzaken et al. [Benzaken, Herrema, Hsu
et al. (2017)]

4.1 Density-based isogeometric topology optimization

Density-based topology optimization is a category of topology optimizations whose design
variables are comprised of a certain kind of density such as element density and nodal
density.
For a classical topology optimization problem, i.e. the minimum compliance problem, the
mathematical formulation of the optimization problem can be written as

Min : c(d) = UTKU ,

Subject to :KU = F ,

V (d) ≤ Vm,
dmin ≤ d ≤ dmax

(33)

where c is the compliance,K is the global stiffness matrix, U and F are the displacement
and force vectors. V (d) and Vm are the material volume and volume constraint, and vector
d consists of design variables, e.g. element densities and control point densities.
A well-known density-based topology optimization scheme is the modified SIMP scheme
[Andreassen, Clausen, Schevenels et al. (2011)], where for each element e, a density xe is
assigned such that the Young’s modulus Ee can be identified proportionally
Ee(xe) = Emin + xpe(E0 − Emin), xe ∈ [0, 1], (34)
where E0 is the Young’s modulus of solid material, Emin is a small value to prevent the
stiffness matrix from becoming singular, and p is a penalization factor (typically p = 3)
used to ensure black-and-white solutions.



To avoid a checkerboard pattern, filtering techniques such as the sensitivity filter and the
density filter are used in topology optimizations [Andreassen, Clausen, Schevenels et al.
(2011)]. The sensitivity filter modifies the sensitivities ∂c/∂xe as

∂̃c

∂xe
=

1

max(γ, xe)
∑

i∈Ne
Hei

∑
i∈Ne

Heixi
∂c

∂xi
, (35)

where γ(= 10−3) is a small positive number introduced to avoid division by zero, Ne is the
set of elements i whose distance 4(e, i) to element e is smaller than the filter radius rmin

and Hei is a weight defined as

Hei = max(0, rmin −4(e, i)), (36)

and the density filter is

x̃e =
1∑

i∈Ne
Hei

∑
i∈Ne

Heixi. (37)

In IGA, a variable value can be represented by the control point values as Eq. (3), and
thereby the density functions associated to the control points can be utilized as design
parameters. Kumar et al. [Kumar and Parthasarathy (2011)] presented a topology opti-
mization framework using B-spline finite elements where control point densities were used
as design variables, and the B-spline basis functions had a smoothing effect similar to den-
sity filtering schemes for eliminating mesh dependence. Hassani et al. [Hassani, Khanzadi
and Tavakkoli (2012)] presented a similar NURBS-based ITO and pointed out that the ITO
was able to obtain the correct topology without checkerboard even with a coarse net of
control points. However, in such schemes, the filtering region is dependent on the element
order since the higher order B-spline basis function has a larger support region, e.g. the 2D
support region of a B-spline control point with order p = q = 3 is larger that with order
p = q = 2 as shown in Fig. 7. Therefore, when a given design domain is refined with
different element sizes, the filtering region changes, which will result in mesh dependence
as the MBB example in Fig. 8 [Qian (2013)]. To solve the mesh dependence problem, a
weighted penalty on the square of the density gradient was added to the objective function
as follows [Kumar and Parthasarathy (2011)]

min :
∏

= c(φ) + w

∫
V

(5φ)2dV, (38)
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((aa)) ((b)b)

Figure 7: An illustration of the B-spline basis support region corresponding to the black
solid control point: (a) p = q = 2 and (b) p = q = 3

((aa)) ((bb)) ((cc))

((dd)) ((ee)) (f)(f)

Figure 8: Mesh dependence caused by the B-spine orders: (a) p = q = 2, (b) p = q = 4,
(c) p = q = 5, (d) p = q = 6, (e) p = q = 7, (f) p = q = 9 [Qian (2013)]

where φ is the control point density, and ω  is the weighting factor. However, the weight ω  
which has an important influence on the topology of optimized result, needs to be 
manually defined. In Qian [Qian (2013)], the design domain was embedded into a 
domain with density field presented by tensor-product B-splines, and used different B-
spline orders to change the filtering region. However, the analysis was implemented by 
FEM, and the topology optimization therewith cannot be regarded as an ITO.
Note that the conventional filtering techniques as Eqs. (35) and (37) can be used in the 
ITO by setting a filter radius. Although the basis functions are able to avoid checkerboards, 



(a)         (b) 

Figure 9: The parameter space and variable space of MTOP: (a) Discretization in 

parameter space and the basis functions for analysis, and (b) Discretization in variable 

space and the basis functions for MTOP [Lieu and Lee (2017b)] 

the filtering techniques are still recommended to avoid the mesh dependence. In Lieu 

et al. [Lieu and Lee (2017b)], Lieu and Lee proposed a multiresolution topology 

optimization (MTOP) using IGA, where the variable space is separated from the 

parameter space, as depicted in Fig. 9. The density value at the center of each subelement 

(i.e. the element of variable space) is considered as a design variable by assuming 

uniformity within each subelement. In the MTOP using IGA, due to the high accuracy of 

IGA, the analysis space can be refined with fewer elements to reduce the computational 

cost, and the design space is refined with more elements ensuring a sufficient number of 

design variables to generate a correct structural topology with a high resolution. Note 

that, interestingly, this strategy is contrary to the one used in isogeometric shape 

optimization where coarse mesh is used to reduce the design variables while refined 

mesh is used to guarantee the accuracy of the analysis (e.g. in Nagy et al. [Nagy, Abdalla 

and Gürdal (2010a); Wang and Turteltaub (2015)]). In addition, the sensitivity filter (Eq. 

(35)) was used to prevent the mesh dependence, which demonstrated that the filtering 

techniques are also effective for the ITO. 

Advancing for the single-material topology optimization, the IGA has been also used in 

multi-material topology optimization. Lin et al. [Lin, Rayasam and Subbarayan (2015)] 

proposed a strategy to simultaneously insert inclusions or holes as well as a redistribution 

of material to obtain the optimal topology, where NURBS is utilized to interpolate the 

geometry, material and physical field. Taheri et al. [Taheri and Suresh (2017)] proposed an 

ITO approach for multi-material and functionally graded structures. For the multi-material 
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problem, the elasticity matrixD is represented as [Stegmann and Lund (2005)]

D = xp0

m∑
i=1

i−1∏
j=1

[1− (xi6=m)p]xpj

Di, (39)

where x ∈ [0, 1] is the design variable, p is the penalization factor which is used to impose
the intermediate density approaching 0 (void) or 1 (solid),m is the number of materials, and
Di represents the elasticity matrix of material i. For the functionally graded structure, the
average of the lower and upper Hashin-Shtrikman bounds [Hashin and Shtrikman (1962)]
is used as the material model

D = xp0

[
1

2
(D−HS +D+

HS)

]
, (40)

where D−HS and D+
HS are the lower and upper bounds on the elasticity matrix, which are

obtained based on lower and upper bounds of Young’s modulus

E−HS =
(2 + x)E1 + (1− x)E2

2(1− x)E1 + (1 + 2x)E2
E2, (41)

E+
HS =

xE1 + (3− x)E2

(3− 2x)E1 + 2xE2
E1, (42)

where E1 is Young’s modulus of harder material.
Lieu et al. [Lieu and Lee (2017a)] extended the multi-resolution approach (MTOP) [Lieu
and Lee (2017b)] to the multi-material topology optimization, in which the multi-material
model is written as

E(xi) =

m∑
i=1

(xi)
pEi, (43)

where Ei is the Young’s modulus of the ith material and the penalization factor p is usually 
set to 3. A bride structure model is shown in Fig. 9, and the optimized topologies shows 
that the MTOP within the IGA framework can achieve higher resolution designs with a 
lower computational cost.
Recently, Wang et al. [Wang, Xu and Pasini (2017)] proposed an ITO method for graded 
lattice materials. In this work, the mechanical properties were expressed as a function of 
relative density of the unit cell, which avoided the iterative calculations during ITO. The 
optimization results of the cantilever beam are shown in Fig. 11, where we can find that 
topologies that differ between lattice cells influence the material distribution and the opti-
mal solutions. Moreover, using fitting functions to evaluate the derivatives of the objective 
provides a higher accuracy than the SIMP approach.
As mentioned in Section 2.1, one of the most important advantages of IGA is the high 
continuity between elements. Therefore, the IGA is especially suitable for topology opti-
mization with stress constraint, since the stress is discontinuous between elements in FEM. 
Liu et al. [Liu, Yang, Hao et al. (2018)] presented a stress-constrained ITO of thin bending 
plates, where two stability transformation methods (STMs) were proposed to achieve the 
stable iterations. Due to the high continuity of IGA, the ITO can meet the requirement of 



((aa)) ((bb)) ((cc))

Figure 10: Optimized topologies of the bride structure: (a) Design domain and boundary 
condition, (b) 96×96 elements without subelements, c = 49.5033 , and (c) 32×32 elements 
with 3 × 3 subelements in each element, c = 47.8111 [Lieu and Lee (2017b)]

((aa)) ((bb))

((cc)) ((dd))

Figure 11: The optimization results of the cantilever beam: (a) Hexagon lattice, (b) Square
lattice, (c) Acute triangle lattice and (d) Obtuse triangle lattice [Wang, Xu and Pasini
(2017)]
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C1 continuity for the Kirchhoff plate formulations, and the example results 
indicate that the ITO shows superior performance for both accuracy and efficiency.

4.2 Level-set-based isogeometric topology optimization

The level set method (LSM) was first proposed by Osher et al. [Osher and Sethian (1988)] 
to track the evolution of free surfaces in computational fluid dynamics, and has proven to 
be effective in representing complicated boundaries in a wide variety of applications. In the 
LSM, the structural boundary ∂Ω is implicitly embedded as the zero level set of a one-
dimensional-higher level set function (LSF) Φ(x, t), where x is the coordinate vector of a 
point and t is a pseudo time. The level-set-based topology optimization handles the 
complex topological changes by the motions of implicit boundaries represented by the LSF 
Φ(x, t) which is defined over a reference domain D ⊂ Rd (d = 2 or 3). The level set 
representation of the structure is defined as
Φ(x, t) > 0 ∀x ∈ Ω\∂Ω (inside),

Φ(x, t) = 0 ∀x ∈ ∂Ω
⋂
D (boundary),

Φ(x, t) < 0 ∀x ∈ D\Ω (outside)

(44)

Differentiating the LSF Φ(x, t) with respect to the pseudo-time t, the Hamilton-Jacobi
equation is obtained as [Wang, Wang and Guo (2003)]
∂Φ(x, t)

∂t
− vn| 5 Φ| = 0, Φ(x, 0) = Φ0(x), (45)

where the normal velocity vn is

vn = −dx
dt
· OΦ
|OΦ|

. (46)

The Hamilton-Jacobi equation Eq. (45) defines an initial value problem for the time depen-
dent function Φ. In the optimization process, vn is the movement of a point on a surface
driven by the objective function of the optimization, and the optimal structural boundary is
obtained by solving Eq. (45).
A level-set-based topology optimization for the minimum compliance design problem may
be defined mathematically as [Wang and Benson (2016a)]

Min : c(Φ) =

∫
Ω
εTEεH(Φ)dΩ,

Subject to : V (Ω) =

∫
Ω
H(Φ)dΩ ≤ Vmax,

(47)

where H(Φ) is the Heaviside function defined as

H(Φ) =

{
1, if Φ ≥ 0,

0, if Φ < 0,
(48)



(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 12: The level-set-based ITO of the Michell type structures: (a) Design domain with-
out geometric constraint, (b) Design domain with geometric constraint, (c) Optimization
result without geometric constraint and (d) Optimization result with geometric constraint
[Wang and Benson (2016b,a)]

c is the compliance, E is the elasticity matrix and ε is the strain. The inequality V (Ω) ≤
Vmax defines the volume constraint.
To avoid solving the Hamilton-Jacobi equations, Wang et al. [Wang and Benson (2016b)]
used the NURBS basis functions to represent the LSF in a parameterized mode as

Φ(x, t) = N(x)φ(t) =
∑
i

Ni(x)φi(t), (49)

where φi(t) is the ith expansion coefficient and Ni(x) is the corresponding basis function. 
After this parameterization, the LSF associated with both space and time is divided into 
the spatial terms Ni(x) and the time dependent terms φi(t), and only the latter are updated 
during the optimization procedure.
The same NURBS basis functions were also used to evaluate the objective function in the 
level-set-based isogeometric topology optimization (ITO) proposed by Wang and Benson 
[Wang and Benson (2016b)]. They later extended the level-set-based ITO to solve ge-
ometrically constrained problems using trimmed elements [Wang and Benson (2016a)]. 
According to the work of Wang and Benson, using IGA to replace FEM can accelerate 
the optimization more than 3 times when quadratic elements are utilized and make the 
optimization iterations easier to converge. Fig. 12 shows the optimization results for the 
geometrically constrained and the classical Michell type problems.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 13: The level-set-based ITO of the L-shape structure: (a) Design domain and bound-
ary conditions, (b) Initial topology, (c) Optimization result and (d) Von Misses stress con-
tour [Ghasemi, Park and Rabczuk (2017)]

Jahangiry et al. [Ghasemi, Park and Rabczuk (2017)] proposed a similar level-set-
based ITO where the LSF is parameterized using NURBS basis functions, and applied 
the level-set-based ITO to a series of problems including minimizing the mean 
compliance with a material volume constraint, minimizing weight with consideration of 
reducing local stress concentration, and simultaneously minimizing the weight and 
strain energy considering local stress constraints. An L-shape structure with stress 
constraint that is optimized by the proposed method is given in Fig. 13.
With the help of the high-continuity of IGA, the ITO is able to solve some problems that 
may be very difficult for the conventional topology optimization using FEM. For example, 
Ghasemi et al. [Ghasemi, Park and Rabczuk (2017)] presented a level-set-based ITO of 
flexoeletric materials, which requires at least C  1 continuous approximations because of the 
fourth order partial differential equations (PDEs). The proposed ITO is also able to notice-
ably increase the electromechanical coupling coefficient, with substantial enhancements 
observed for higher aspect ratios.
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Figure 14: Numerical examples of the ITO using the phase field m  odel: (a) Design domain 
of the 2D example, (b) Design domain of the 3D example, (c) Design domain of the thin 
shell example, (d) Optimization result of the 2D example, (e) Optimization result of the 3D 
example, and (f) Optimization result of the thin shell example [Dedè, Borden and Hughes 
(2012)]

4.3 Other types of isogeometric topology optimization

Besides density-based and level-set-based topology optimizations, the IGA can also be in-
tegrated with other types of topology optimization methods. Dedè et al. [Dedè, Borden 
and Hughes (2012)] used IGA for topology optimization with a phase field model in which 
the optimal topology is obtained as the steady state of the phase transition described by the 
generalized Cahn-Hilliard equation, and the IGA for the spatial approximation encapsulat-
ing the exactness of the representation of the design domain and is particularly suitable for 
the analysis of phase filed problems. The proposed method has solved both two and three-
dimensional topology optimization problems and some of the results are shown in Fig. 14. 
Recently, Guo et al. [Guo, Zhang and Zhong (2014); Zhang, Yuan, Zhang et al. (2016)] 
developed an explicit topology design optimization approach using the concept of mov-
ing morphable components (MMC). The basic idea of this method is based on that arbi-
trary complicated topology can be decomposed into a finite number of components and 
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Hou et al. [Hou, Gai, Zhu et al. (2017)] first proposed an explicit ITO using IGA to perform 
the MMC-based topology optimization, which not only explicitly preserve the geometric 
and mechanical information in topology optimization, but also provides a more flexible 
process for analysis and optimization. However, there is an imperfection of both conven-
tional MMC-based topology optimization and MMC-based ITO that the overlapped region 
of components is dealt with by the max function with only C0 continuity, which results in 
the objective function becoming nondifferentiable and may cause a low convergence rate of 
optimization. To overcome the C1 discontinuity problem, Xie et al. [Xie, Wang, Xu et al.
(2018)] used the differentiable R-function [Shapiro (1991)] to replace the max function and 
proposed a new MMC-based ITO. Besides, they also presented three new ersatz material 
models based on uniform, Gauss and Greville abscissae collocation schemes to represent 
both the Young’s modulus of material and the density field based on the Heaviside values 
of collocation points, and successfully solve both 2D and 3D optimization problems (see 
Fig. 16).

Figure 15: Geometry description of the ith component with straight skeleton and 
quadratically variable thicknesses [Xie, Wang, Xu et al. (2018)]

the desired topology structure can be obtained by optimizing the central position, length, 
inclined angles, and some other geometrical features of components. In the MMC topol-
ogy optimization, a component with straight skeleton and quadratically variable thick-
nesses (i.e. the ith component) can be described by a set of geometric parameters con-
sisting of coordinates of center, half length, variable thicknesses and inclined angle as Di 
= (x0i, y0i, Li, t1i, t2i, t3i, θi), and the detail meaning is shown in Fig. 15. Based on these 
geometric parameters, the structural topology can be explicitly and uniquely described by a 
vector of design variables D = (DT , D2

T , ..., Dn
T )T .
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Figure 16: Numerical examples of the MMC-based ITO: (a) Design domain of the 2D
example, (b) Initial design of the 2D example, (c) Optimization result of the 2D example, (d)
Design domain of the 3D example, (e) Initial design of the 3D example and (f) Optimization
result of the 3D example [Xie, Wang, Xu et al. (2018)]

5 Conclusions and research trend

In this work, the development of a decade of isogeometric design optimization is compre-
hensively reviewed with proper comparisons to traditional FEM-based design optimization. 
Attention is focused on shape and topology optimizations, with size optimization briefly 
covered in between.
For isogeometric shape optimization, the typical parameterization problems in FEM-based 
shape optimization can be avoided due to the seamless CAD-CAE integration framework, 
however, analysis-suitable parameterization methods for designing complicated geome-
tries become the new challenges, which has been intensively studied in the past few years 
(see Section 3.1). Although the exact geometry representation of isogeometric framework 
averts the problem of jagged boundary in FEM-based shape optimization, proper bound-
ary and domain mesh regulation methods are still necessary to ensure the stability of the 
optimization process (see Section 3.1.3). Isogeometric shape optimization also reduces the 
difficulties of computing derivative terms with respect to design parameters, leading the di-
rect differential method for shape sensitivity analysis to be popularly used (see Section 
3.2). 
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Currently, shape design for curved structures with special applications using IGA is of 
great interest, e.g. using isogeometric shape optimization to design auxetic structures with 
smoothed features in Wang et al. [Wang, Poh, Dirrenberger et al. (2017); Choi and Cho 
(2018b); Weeger, Narayanan and Dunn (2018)], which focuses on the design of lattice 
structures with enhanced properties by exploring possible curved unit structures. Combin-
ing the finite cell method (FCM) [Guo and Ruess (2015)] with isogeometric analysis for 
designing curved structures with openings (e.g. in He et al. [He, Pan, Zou et al. (2014)]) or 
further apply it to topology optimization (e.g. in Cai et al. [Cai, Zhang, Zhu et al. (2014); 
Zhang, Zhao, Gao et al. (2017)]) is also interesting as it promotes the isogeometric design 
optimization to be applied to geometrically complicated structures. With the development 
of analysis-suitable parameterization methods, proper design platforms integrating these 
new methods for industrial applications would also be interesting. As the IGA has such 
unique advantages in both analysis [Hughes, Cottrell and Bazilevs (2005)] and design, it 
should be used to promote the development of challenging problems, e.g. design optimiza-
tions for time-dependent, nonlinear solid and fluid mechanical problems. The convenience 
and efficiency of both geometry and analysis modeling can help to improve global opti-
mization algorithms, which are becoming increasingly practical and favorable (see Haftka 
et al. [Haftka (2016); Haftka, Villanueva and Chaudhuri (2016)]).
The integrated design-analysis framework in IGA averts the manual transition effort from a 
CAD model to a FE model, which makes it possible to perform large amount of analysis au-
tomatically by varying the geometry design parameters. This is relatively advantageous in 
the age of big data. With massive results, data-driven design for structural optimization can
become increasingly applicable and useful [Queipo, Haftka, Shyy et al. (2005); Forrester 
and Keane (2009); Xu, You and Du (2015)]. Hence, developing proper methods integrat-
ing surrogate modeling, e.g. in Benzaken et al. [Benzaken, Herrema, Hsu et al. (2017)], 
and artificial intelligence using IGA should also be encouraged to benefit the engineering 
industry and human society.
For isogeometric topology optimization (ITO), the advantages of IGA has been successful-
ly integrated into topology optimizations. For example, the local support property can free 
the checkerboards, better efficiency for high order elements greatly increase the efficiency 
of topology optimization with high-order elements, and the high continuity property can 
easily solve topology optimizations requiring high continuity, such as the Kirchhoff plate 
optimization and flexoeletric material optimization. In the future, the IGA will be extended 
to solve more topology optimization problems, especially for the problems which are im-
possible or very difficult to complete by conventional topology optimizations. Some of the 
ITO research trends are summarized hereinafter.

The seamless CAD-CAE integration framework also promote the development of 
structural designs with increasingly complicated geometries. Novel software platforms 
with highly integrated design-analysis engines are becoming more practical and 
achievable, which will be a great revolution for computer added design technologies.



The IGA with high continuity and accuracy is suitable for shell topology optimization, e-
specially for the shell with curved boundary and the curved shell in 3D space [Benson, 
Bazilevs, Hsu et al. (2010, 2011); Lei, Gillot and Jezequel (2018a)]. Since the shell struc-
tures are widely used in the engineering domains such as aerospace, vehicle and ship, the 
ITO for shell structure optimization has a bright prospect for solving engineering problems. 
Moreover, the IGA has the local refinement ability [Vuong, Giannelli, Jüttler et al. (2011); 
Scott, Li, Sederberg et al. (2012); Wu, Huang, Liu et al.(2015)], which provides an op-
portunity to easily implement the topology optimization with adaptive mesh [Lambe and 
Czekanski (2018); Wang, Kang and He (2013)]. Definitely, the ITO can be also combined 
with other approaches used in conventional topology optimizations, e.g. Shepard interpo-
lation [Xia and Shi (2018)], size control approach [Zhou, Lazarov, Wang et al. (2015)], etc., 
and extend its application for more physical domains such as thermoelasticity [Xia, Xia and 
Shi (2018)], fluid-structure interaction [Jenkins and Maute (2015)] and thermal-fluid flow 
[Yaji, Yamada, Yoshino et al. (2016)].

Besides, Topology optimization has demonstrated its great potential in designing architec-
tured materials with tunable properties since 1980s [Sigmund (1994, 1995)]. The effort of 
designing such materials in a concurrent multiscale levels is gaining renewed interests, e.g. 
in Abdalla et al. [Abdalla, Setoodeh and Gürdal (2007); Wang, Abdalla and Zhang (2017, 
2018); Wang, Abdalla, Wang et al. (2018)] for designing composite laminate with tailored 
local properties; in Xia et al. [Xia and Breitkopf (2014a,b); Da, Cui, Long et al. (2017); Da, 
Yvonnet, Xia et al. (2018); Wang, Arabnejad, Tanzer et al. (2018); Wu, Xia, Wang et al. 
(2019)] for general lattice structures designs. Such work can been extended in the context of 
isogeometric analysis and will become a new research trend.

Acknowledgement: This work was supported by National Natural Science Foundation of 
China (51705158), the Fundamental Research Funds for the Central Universities (2018M-
S45), and Open Funds of National Engineering Research Center of Near-Net-Shape Form-
ing for Metallic Materials (2018005).

References
Abdalla, M. M.; Setoodeh, S.; Gürdal, Z. (2007): Design of variable stiffness 
compos-ite panels for maximum fundamental frequency using lamination parameters. 
Composite Structures, vol. 81, no. 2, pp. 283-291.
Adeli, H.; Kumar, S. (1995): Distributed genetic algorithm for structural optimization. 
Journal of Aerospace Engineering, vol. 8, no. 3, pp. 156-163.
Adelman, H. M.; Haftka, R. T. (1986): Sensitivity analysis of discrete structural 
systems. AIAA Journal, vol. 24, no. 5, pp. 823-832.
Ahn, S. H.; Cho, S. (2010): Level set-based topological shape optimization of heat 
conduction problems considering design-dependent convection boundary. Numerical Heat 
Transfer, Part B: Fundamentals, vol. 58, no. 5, pp. 304-322.

490   Copyright ©  2018 Tech Science Press     CMES, vol.117, no.3, pp.455-507, 2018 



Structural Design Optimization Using Isogeometric Analysis 491

Ahn, S.-H.; Choi, M.-J.; Cho, S. (2018): Isogeometric shape design optimization of
nanoscale structures using continuum-based shell theory considering surface effects. In-
ternational Journal of Mechanical Sciences, vol. 141, pp. 9-20.
Ahn, S.-H.; Koo, B.; Kim, J.-H.; Cho, S. (2018): Isogeometric design sensitivity analysis
and experimental validation of nanoscale structures considering surface effects. Structural
and Multidisciplinary Optimization, vol. 58, no. 2, pp. 435-444.
Allaire, G.; Jouve, F.; Toader, A.-M. (2004): Structural optimization using sensitivity
analysis and a level-set method. Journal of Computational Physics, vol. 194, no. 1, pp.
363-393.
Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O. (2011):
Efficient topology optimization in matlab using 88 lines of code. Structural and Multidis-
ciplinary Optimization, vol. 43, no. 1, pp. 1-16.
Arora, J. S. (1993): An exposition of the material derivative approach for structural shape
sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, vol. 105,
no. 1, pp. 41-62.
Azegami, H.; Fukumoto, S.; Aoyama, T. (2013): Shape optimization of continua using
NURBS as basis functions. Structural and Multidisciplinary Optimization, vol. 47, no. 2,
pp. 247-258.
Azegami, H.; Takeuchi, K. (2006): A smoothing method for shape optimization: Traction
method using the Robin condition. International Journal of Computational Methods, vol.
3, no. 1, pp. 21-33.
Bandara, K.; Cirak, F. (2018): Isogeometric shape optimisation of shell structures using
multiresolution subdivision surfaces. Computer-Aided Design, vol. 95, pp. 62-71.
Barthelemy, B.; Haftka, R. T. (1990): Accuracy analysis of the semi-analytical method
for shape sensitivity calculation. Mechanics of Structures and Machines, vol. 18, no. 3, pp.
407-432.
Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J. R. (2010): Isogeo-
metric analysis using t-splines. Computer Methods in Applied Mechanics and Engineering,
vol. 199, no. 5-8, pp. 229-263.
Belegundu, A.; Rajan, S. (1988): A shape optimization approach based on natural design
variables and shape functions. Computer Methods in Applied Mechanics and Engineering,
vol. 66, no. 1, pp. 87-106.
Belegundu, A. D. (1985): Lagrangian approach to design sensitivity analysis. Journal of
Engineering Mechanics, vol. 111, no. 5, pp. 680-695.
Bendsøe, M.; Kikuchi, N. (1988): Generating optimal topologies in structural design us-
ing a homogenization method. Computer Methods in Applied Mechanics and Engineering,
vol. 71, no. 2, pp. 197-224.
Bendsøe, M. P. (1989): Optimal shape design as a material distribution problem. Structural
Optimization, vol. 1, no. 4, pp. 193-202.



Bendsoe, M. P.; Sigmund, O. (2003): Topology Optimization: Theory, Methods, and
Applications. Springer Science & Business Media, Berlin, Germany.
Bennett, J.; Botkin, M. (1985): Structural shape optimization with geometric description
and adaptive mesh refinement. AIAA journal, vol. 23, no. 3, pp. 458-464.
Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T. (2010): Isogeometric shell analysis:
The reissner-mindlin shell. Computer Methods in Applied Mechanics and Engineering, vol.
199, no. 5-8, pp. 276-289.
Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T. (2011): A large deformation, rotation-
free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, vol.
200, no. 13-16, pp. 1367-1378.
Benzaken, J.; Herrema, A. J.; Hsu, M.-C.; Evans, J. A. (2017): A rapid and efficient
isogeometric design space exploration framework with application to structural mechanics.
Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 1215-1256.
Bletzinger, K.-U.; Firl, M.; Linhard, J.; Wüchner, R. (2010): Optimal shapes of me-
chanically motivated surfaces. Computer Methods in Applied Mechanics and Engineering,
vol. 199, no. 5, pp. 324-333.
Boggs, P. T.; Tolle, J. W. (1995): Sequential quadratic programming. Acta Numerica, vol.
4, pp. 1-51.
Boor, C. D. (1972): On calculating with B-splines. Journal of Approximation Theory, vol.
6, no. 1, pp. 50-62.
Borel, P. I.; Harpøth, A.; Frandsen, L. H.; Kristensen, M.; Shi, P. (2004): Topology
optimization and fabrication of photonic crystal structures. Optics Express, vol. 12, no. 9,
pp. 1996-2001.
Boyd, S.; Vandenberghe, L. (2009): Convex Optimization. Cambridge University press,
Cambridge, United Kingdom.
Braibant, V.; Fleury, C. (1984): Shape optimal design using b-splines. Computer Methods
in Applied Mechanics and Engineering, vol. 44, no. 3, pp. 247-267.
Braibant, V.; Fleury, C. (1985): An approximation-concepts approach to shape optimal
design. Computer Methods in Applied Mechanics and Engineering, vol. 53, no. 2, pp. 119-
148.
Cai, S.-Y.; Zhang, W. H.; Zhu, J. H.; Gao, T. (2014): Stress constrained shape and
topology optimization with fixed mesh: A B-spline finite cell method combined with level
set function. Computer Methods in Applied Mechanics and Engineering, vol. 278, pp. 361-
387.
Cheng, K.-T.; Olhoff, N. (1981): An investigation concerning optimal design of solid
elastic plates. International Journal of Solids and Structures, vol. 17, no. 3, pp. 305-323.
Cho, S.; Ha, S.-H. (2009): Isogeometric shape design optimization: Exact geometry and
enhanced sensitivity. Structural and Multidisciplinary Optimization, vol. 38, no. 1, pp. 53-
70.

492   Copyright © 2018 Tech Science Press     CMES, vol.117, no.3, pp.455-507, 2018 



Structural Design Optimization Using Isogeometric Analysis 493

Choi, K. K. (1987): Shape design sensitivity analysis and optimal design of structural
systems. Computer Aided Optimal Design: Structural and Mechanical Systems, pp. 439-
492.
Choi, K. K.; Haug, E. J. (1983): Shape design sensitivity analysis of elastic structures.
Journal of Structural Mechanics, vol. 11, no. 2, pp. 231-269.
Choi, K. K.; Kim, N.-H. (2005): Structural Sensitivity Analysis and Optimization 1: Lin-
ear Systems. Springer-Verlag, New York.
Choi, K. K.; Kim, N.-H. (2005): Structural Sensitivity Analysis and Optimization 2: Non-
linear Systems and Applications. Springer-Verlag, New York.
Choi, M.-J.; Cho, S. (2014): Isogeometric shape design sensitivity analysis of stress in-
tensity factors for curved crack problems. Computer Methods in Applied Mechanics and
Engineering, vol. 279, pp. 469-496.
Choi, M.-J.; Cho, S. (2015): A mesh regularization scheme to update internal control
points for isogeometric shape design optimization. Computer Methods in Applied Mechan-
ics and Engineering, vol. 285, pp. 694-713.
Choi, M.-J.; Cho, S. (2018): Constrained isogeometric design optimization of lattice struc-
tures on curved surfaces: Computation of design velocity field. Structural and Multidisci-
plinary Optimization, vol. 58, no. 1, pp. 17-34.
Choi, M.-J.; Cho, S. (2018): Isogeometric configuration design optimization of shape
memory polymer curved beam structures for extremal negative poisson’s ratio. Structural
and Multidisciplinary Optimization, vol. 58, no. 5, pp. 1861-1883.
Choi, M.-J.; Yoon, M.; Cho, S. (2016): Isogeometric configuration design sensitivity
analysis of finite deformation curved beam structures using jaumann strain formulation.
Computer Methods in Applied Mechanics and Engineering, vol. 309, pp. 41-73.
Cirak, F.; Bandara, K. (2015): Multiresolution shape optimisation with subdivision sur-
faces. Isogeometric analysis and applications 2014, pp. 127-156.
Da, D.; Cui, X.; Long, K.; Li, G. (2017): Concurrent topological design of composite
structures and the underlying multi-phase materials. Computers & Structures, vol. 179, pp.
1-14.
Da, D.; Yvonnet, J.; Xia, L.; Le, M. V.; Li, G. (2018): Topology optimization of periodic 
lattice structures taking into account strain gradient. Computers & Structures, vol. 179, pp. 1-4.
da Veiga, L. B.; Buffa, A.; Cho, D.; Sangalli, G. (2012): Analysis-suitable t-splines are
dual-compatible. Computer Methods in Applied Mechanics and Engineering, vol. 249, pp.
42-51.
Daxini, S. D.; Prajapati, J. M. (2017): Parametric shape optimization techniques based
on meshless methods: A review. Structural and Multidisciplinary Optimization, vol. 56,
no. 5, pp. 1197-1214.
Dedè, L.; Borden, M. J.; Hughes, T. J. (2012): Isogeometric analysis for topology op-
timization with a phase field model. Archives of Computational Methods in Engineering,
vol. 19, no. 3, pp. 427-465.



Dems, K.; Haftka, R. (1988): Two approaches to sensitivity analysis for shape variation
of structures. Mechanics of Structures and Machines, vol. 16, no. 4, pp. 501-522.

Dems, K.; Mroz, Z. (1984): Variational approach by means of adjoint systems to structural
optimization and sensitivity analysis-II: Structure shape variation. International Journal of
Solids and Structures, vol. 20, no. 6, pp. 527-552.

Deng, X. W.; Wu, N.; Yang, K.; Chan, W. L. (2018): Integrated design framework
of next-generation 85-m wind turbine blade: Modelling, aeroelasticity and optimization.
Composites Part B: Engineering.

Ding, C.; Cui, X.; Li, G. (2016): Accurate analysis and thickness optimization of tailor
rolled blanks based on isogeometric analysis. Structural and Multidisciplinary Optimiza-
tion, vol. 54, no. 4, pp. 871-887.

Ding, Y. (1986): Shape optimization of structures: a literature survey. Computers & Struc-
tures, vol. 24, no. 6, pp. 985-1004.

Dubourg, V.; Sudret, B.; Bourinet, J.-M. (2011): Reliability-based design optimization
using kriging surrogates and subset simulation. Structural and Multidisciplinary Optimiza-
tion, vol. 44, no. 5, pp. 673-690.

Eberhart, R.; Kennedy, J. (1995): Particle swarm optimization. Proceeding of IEEE In-
ternational Conference on Neural Network, pp. 1942-1948.

Ferede, E.; Abdalla, M. M.; van Bussel, G. J. (2017): Isogeometric based framework for
aeroelastic wind turbine blade analysis. Wind Energy, vol. 20, no. 2, pp. 193-210.

Firl, M.; Wüchner, R.; Bletzinger, K.-U. (2013): Regularization of shape optimization
problems using FE-based parametrization. Structural and Multidisciplinary Optimization,
vol. 47, no. 4, pp. 507-521.

Fleury, C. (1989): Conlin: An efficient dual optimizer based on convex approximation
concepts. Structural Optimization, vol. 1, no. 2, pp. 81-89.

Forrester, A. I.; Keane, A. J. (2009): Recent advances in surrogate-based optimization.
Progress in Aerospace Sciences, vol. 45, no. 1-3, pp. 50-79.

Francavilla, A.; Ramakrishnan, C.; Zienkiewicz, O. (1975): Optimization of shape to
minimize stress concentration. Journal of Strain Analysis, vol. 10, no. 2, pp. 63-70.

Fußeder, D.; Simeon, B.; Vuong, A.-V. (2015): Fundamental aspects of shape optimiza-
tion in the context of isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, vol. 286, pp. 313-331.

Ghasemi, H.; Park, H. S.; Rabczuk, T. (2017): A level-set based iga formulation for
topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics
and Engineering, vol. 313, pp. 239-258.

Gillebaart, E.; De Breuker, R. (2016): Low-fidelity 2d isogeometric aeroelastic analysis
and optimization method with application to a morphing airfoil. Computer Methods in
Applied Mechanics and Engineering, vol. 305, pp. 512-536.

494   Copyright © 2018 Tech Science Press     CMES, vol.117, no.3, pp.455-507, 2018 



Structural Design Optimization Using Isogeometric Analysis 495

Guo, X.; Zhang, W.; Zhong, W. (2014): Doing topology optimization explicitly and
geometrically-a new moving morphable components based framework. Journal of Applied
Mechanics, vol. 81, no. 8, pp. 081009.
Guo, Y.; Ruess, M. (2015): Nitsche’s method for a coupling of isogeometric thin shells
and blended shell structures. Computer Methods in Applied Mechanics and Engineering,
vol. 284, pp. 881-905.
Ha, S.-H.; Choi, K.; Cho, S. (2010): Numerical method for shape optimization using t-
spline based isogeometric method. Structural and Multidisciplinary Optimization, vol. 42,
no. 3, pp. 417-428.
Ha, Y. D. (2015): Generalized isogeometric shape sensitivity analysis in curvilinear coor-
dinate system and shape optimization of shell structures. Structural and Multidisciplinary
Optimization, vol. 52, no. 6, pp. 1069-1088.
Haber, R. B. (1987): A new variational approach to structural shape design sensitivity
analysis. Computer Aided Optimal Design: Structural and Mechanical Systems, pp. 573-
587.
Haftka, R. T. (1981): Techniques for thermal sensitivity analysis. International Journal
for Numerical Methods in Engineering, vol. 17, no. 1, pp. 71-80.
Haftka, R. T. (2016): Requirements for papers focusing on new or improved global opti-
mization algorithms. Structural & Engineering, vol. 17, no.1, pp. 71-80.
Haftka, R. T.; Adelman, H. M. (1989): Recent developments in structural sensitivity
analysis. Structural Optimization, vol. 1, no. 3, pp. 137-151.
Haftka, R. T.; Grandhi, R. V. (1986): Structural shape optimization-a survey. Computer
Methods in Applied Mechanics and Engineering, vol. 57, no. 1, pp. 91-106.
Haftka, R. T.; Villanueva, D.; Chaudhuri, A. (2016): Parallel surrogate-assisted global
optimization with expensive functions-a survey. Structural and Multidisciplinary Optimiza-
tion, vol. 54, no. 1, pp. 3-13.
Hao, P.; Wang, Y.; Ma, R.; Liu, H.; Wang, B.; Li, G. (2018): A new reliability-based 
design optimization framework using isogeometric analysis. Computer Methods in Applied 
Mechanics and Engineering, vol. 345, pp.476-501.
Hashin, Z.; Shtrikman, S. (1962): A variational approach to the theory of the elastic
behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, vol. 10, no. 4,
pp. 343-352.
Hassani, B.; Hinton, E. (1998): A review of homogenization and topology optimization
iii-topology optimization using optimality criteria. Computers & Structures, vol. 69, no. 6,
pp. 739-756.
Hassani, B.; Khanzadi, M.; Tavakkoli, S. M. (2012): An isogeometrical approach to
structural topology optimization by optimality criteria. Structural and Multidisciplinary
Optimization, vol. 45, no. 2, pp. 223-233.
He, G.; Pan, Z.; Zou, Z.; Zhu, D. (2014): The isogeometric shape optimization method
based on finite cell method. Key Engineering Materials, vol. 621.



Herath, M. T.; Natarajan, S.; Prusty, B. G.; John, N. S. (2015): Isogeometric analysis
and genetic algorithm for shape-adaptive composite marine propellers. Computer Methods
in Applied Mechanics and Engineering, vol. 284, pp. 835-860.
Herrema, A. J.; Wiese, N. M.; Darling, C. N.; Ganapathysubramanian, B.; Krishna-
murthy, A. (2017): A framework for parametric design optimization using isogeometric
analysis. Computer Methods in Applied Mechanics and Engineering, vol. 316, pp. 944-965.
Hirschler, T.; Bouclier, R.; Duval, A.; Elguedj, T.; Morlier, J. (2018): Isogeometric 
sizing and shape optimization of thin structures with a solid-shell approach. Structural and 
Multidisciplinary Optimization, pp. 1-19.
Hosseini, S. F.; Moetakef-Imani, B.; Hadidi-Moud, S.; Hassani, B. (2018): Prebent 
shape design of full free-form curved beams using isogeometric method and semi-analytical 
sensitivity analysis. Structural and Multidisciplinary Optimization, vol. 58, no. 1, pp. 2621-2633.
Hou, W.; Gai, Y.; Zhu, X.; Wang, X.; Zhao, C. (2017): Explicit isogeometric topology
optimization using moving morphable components. Computer Methods in Applied Me-
chanics and Engineering, vol. 326, pp. 694-712.
Hou, Y.; Sapanathan, T.; Dumon, A.; Culière, P.; Rachik, M. (2018): A novel develop-
ment of bi-level reduced surrogate model to predict ductile fracture behaviors. Engineering
Fracture Mechanics, vol. 188, pp. 232-249.
Hsieh, C.; Arora, J. (1985): A hybrid formulation for treatment of point-wise state vari-
able constraints in dynamic response optimization. Computer Methods in Applied Mechan-
ics and Engineering, vol. 48, no. 2, pp. 171-189.
Hsu, M.-C.; Bazilevs, Y. (2012): Fluid-structure interaction modeling of wind turbines:
Simulating the full machine. Computational Mechanics, vol. 50, no. 6, pp. 821-833.
Hsu, Y.-L. (1994): A review of structural shape optimization. Computers in Industry, vol.
25, no. 1, pp. 3-13.
Huang, X.; Xie, M. (2010): Evolutionary Topology Optimization of Continuum Structures:
Methods and Applications. John Wiley & Sons, West Sussex, United Kingdom.
Huang, X.; Xie, Y. (2009): Bi-directional evolutionary topology optimization of continu-
um structures with one or multiple materials. Computational Mechanics, vol. 43, no. 3, pp.
393.
Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y. (2005): Isogeometric analysis: Cad, finite
elements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied Me-
chanics and Engineering, vol. 194, no. 39-41, pp. 4135-4195.
Imam, M. H. (1982): Three-dimensional shape optimization. International Journal for
Numerical Methods in Engineering, vol. 18, no. 5, pp. 661-673.
Inzarulfaisham, A. R.; Azegami, H. (2004): Solution to boundary shape optimization
problem of linear elastic continua with prescribed natural vibration mode shapes. Structural
and Multidisciplinary Optimization, vol. 27, no. 3, pp. 210-217.
Jao, S.; Arora, J. (1992): Design sensitivity analysis of nonlinear structures using en-
dochronic constitutive model. Computational Mechanics, vol. 10, no. 1, pp. 39-57.

496   Copyright © 2018 Tech Science Press     CMES, vol.117, no.3, pp.455-507, 2018 



Structural Design Optimization Using Isogeometric Analysis 497

Jenkins, N.; Maute, K. (2015): Level set topology optimization of stationary fluid-
structure interaction problems. Structural and Multidisciplinary Optimization, vol. 52, no.
1, pp. 179-195.
Kang, P.; Youn, S.-K. (2016): Isogeometric shape optimization of trimmed shell struc-
tures. Structural and Multidisciplinary Optimization, vol. 53, no. 4, pp. 825-845.

Kiendl, J.; Schmidt, R.; WWüchner, R.; Bletzinger, K.-U. (2014): Isogeometric shape 
optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. 
Computer Methods in Applied Mechanics and Engineering, vol. 274, pp. 148-167.
Komkov, V.; Choi, K. K.; Haug, E. J. (1986): Design Sensitivity Analysis of Structural
Systems, volume 177. Academic Press, Orlando, FL, USA.
Koo, B.; Yoon, M.; Cho, S. (2013): Isogeometric shape design sensitivity analysis using
transformed basis functions for Kronecker delta property. Computer Methods in Applied
Mechanics and Engineering, vol. 253, pp. 505-516.
Korycki, R. (2001): Two-dimensional shape identification for the unsteady conduction
problem. Structural and Multidisciplinary Optimization, vol. 21, no. 3, pp. 229-238.
Kostas, K.; Fyrillas, M.; Politis, C.; Ginnis, A.; Kaklis, P. (2018): Shape optimization
of conductive-media interfaces using an iga-bem solver. Computer Methods in Applied
Mechanics and Engineering.
Kostas, K.; Ginnis, A.; Politis, C.; Kaklis, P. (2015): Ship-hull shape optimization with
a t-spline based bem-isogeometric solver. Computer Methods in Applied Mechanics and
Engineering, vol. 284, pp. 611-622.
Kostas, K. V.; Ginnis, A. I.; Politis, C. G.; Kaklis, P. D. (2017): Shape-optimization
of 2d hydrofoils using an isogeometric bem solver. Computer-Aided Design, vol. 82, pp.
79-87.
Kuci, E.; Henrotte, F.; Duysinx, P.; Geuzaine, C. (2017): Design sensitivity analysis for
shape optimization based on the lie derivative. Computer Methods in Applied Mechanics
and Engineering, vol. 317, pp. 702-722.
Kumar, A. V.; Parthasarathy, A. (2011): Topology optimization using b-spline finite
elements. Structural and Multidisciplinary Optimization, vol. 44, no. 4, pp. 471.
Lambe, A. B.; Czekanski, A. (2018): Topology optimization using a continuous den-
sity field and adaptive mesh refinement. International Journal for Numerical Methods in
Engineering, vol. 113, no. 3, pp. 357-373.
Le, C.; Bruns, T.; Tortorelli, D. (2011): A gradient-based, parameter-free approach to
shape optimization. Computer Methods in Applied Mechanics and Engineering, vol. 200,
no. 9, pp. 985-996.
Lee, S.-W.; Cho, S. (2015): Isogeometric configuration design optimization of built-up
structures. Structural and Multidisciplinary Optimization, vol. 51, no. 2, pp. 319-331.
Lee, S.-W.; Lee, J.; Cho, S. (2016): Isogeometric shape optimization of ferromagnetic
materials in magnetic actuators. IEEE Transactions on Magnetics, vol. 52, no. 2, pp. 1-8.



Lee, S.-W.; Yoon, M.; Cho, S. (2017): Isogeometric topological shape optimization using
dual evolution with boundary integral equation and level sets. Computer-Aided Design, vol.
82, pp. 88-99.

Lei, Z.; Gillot, F.; Jezequel, L. (2018): An isogeometric reissner-mindlin shell ele-
ment based on mixed grid. Advances in Mechanical Engineering, vol. 10, no. 4, pp.
1687814018766997.

Lei, Z.; Gillot, F.; Jezequel, L. (2018): Shape optimization for natural frequency with
isogeometric kirchhoff-love shell and sensitivity mapping. Mathematical Problems in En-
gineering, vol. 2018.

Li, K.; Qian, X. (2011): Isogeometric analysis and shape optimization via boundary inte-
gral. Computer-Aided Design, vol. 43, no. 11, pp. 1427-1437.

Lian, H.; Kerfriden, P.; Bordas, S. (2016): Implementation of regularized isogeometric
boundary element methods for gradient-based shape optimization in two-dimensional lin-
ear elasticity. International Journal for Numerical Methods in Engineering, vol. 106, no.
12, pp. 972-1017.

Lian, H.; Kerfriden, P.; Bordas, S. (2017): Shape optimization directly from cad: An
isogeometric boundary element approach using t-splines. Computer Methods in Applied
Mechanics and Engineering, vol. 317, pp. 1-41.

Lieu, Q. X.; Lee, J. (2017): A multi-resolution approach for multi-material topology op-
timization based on isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, vol. 323, pp. 272-302.

Lieu, Q. X.; Lee, J. (2017): Multiresolution topology optimization using isogeometric
analysis. International Journal for Numerical Methods in Engineering, vol. 112, no. 13,
pp. 2025-2047.

Lieu, Q. X.; Lee, J. (2019): An isogeometric multimesh design approach for size and
shape optimization of multidirectional functionally graded plates. Computer Methods in
Applied Mechanics and Engineering, vol. 343, pp. 407-437.

Lieu, Q. X.; Lee, J.; Lee, D.; Lee, S.; Kim, D. (2018): Shape and size optimization
of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid
evolutionary firefly algorithm. Thin-Walled Structures, vol. 124, pp. 588-604.

Lin, H.-Y.; Rayasam, M.; Subbarayan, G. (2015): Isocomp: Unified geometric and
material composition for optimal topology design. Structural and Multidisciplinary Opti-
mization, vol. 51, no. 3, pp. 687-703.

Liu, C.; Chen, L.; Zhao, W.; Chen, H. (2017): Shape optimization of sound barrier using
an isogeometric fast multipole boundary element method in two dimensions. Engineering
Analysis with Boundary Elements, vol. 85, pp. 142-157.

Liu, H.; Yang, D.; Hao, P.; Zhu, X. (2018): Isogeometric analysis based topology op-
timization design with global stress constraint. Computer Methods in Applied Mechanics
and Engineering, vol. 342, pp. 625-652.

498   Copyright © 2018 Tech Science Press     CMES, vol.117, no.3, pp.455-507, 2018 



Structural Design Optimization Using Isogeometric Analysis 499

Liu, H.; Yang, D.; Wang, X.; Wang, Y.; Liu, C. (2018): Smooth size design for the
natural frequencies of curved timoshenko beams using isogeometric analysiso. Structural
and Multidisciplinary Optimization.
Luo, Z.; Tong, L.; Wang, M. Y.; Wang, S. (2007): Shape and topology optimization of
compliant mechanisms using a parameterization level set method. Journal of Computation-
al Physics, vol. 227, no. 1, pp. 680-705.
Manh, N. D.; Evgrafov, A.; Gersborg, A. R.; Gravesen, J. (2011): Isogeometric shape
optimization of vibrating membranes. Computer Methods in Applied Mechanics and Engi-
neering, vol. 200, no. 13-16, pp. 1343-1353.
Marco, O.; Ródenas, J. J.; Fuenmayor, F. J.; Tur, M. (2018): An extension of shape sen-
sitivity analysis to an immersed boundary method based on cartesian grids. Computational
Mechanics, vol. 62, no. 4, pp. 701-723.
Mass, Y.; Amir, O. (2017): Topology optimization for additive manufacturing: Account-
ing for overhang limitations using a virtual skeleton. Additive Manufacturing, vol. 18, pp.
58-73.
Meng, L.; Breitkopf, P.; Raghavan, B.; Mauvoisin, G.; Bartier, O. (2015): Identifica-
tion of material properties using indentation test and shape manifold learning approach.
Computer Methods in Applied Mechanics and Engineering, vol. 297, pp. 239-257.
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