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LiToTac: An Interactive-Interface Software for Finite 
Element Analysis of Multiple Contact Dynamics

Abstract: In order to investigate the mechanical behavior of systems with complex archi-
tecture and a large number of contacting bodies, a finite element software, named LiToTac,
has been developed by using the object-oriented programming technique. This software,
with an interactive graphical user interface, is able to handle highly non-linear problems
including multiple contacts and large deformation. More importantly, the contact detec-
tion based on a hybrid three-stages methodology can be performed automatically, which
is more efficient than the common strategies of pre-defining contact zones in commercial
FEM software like ANSYS, ABAQUS, etc. In addition, the contact solver in LiToTac is
portable between dynamic and quasi-static codes and can accurately solve contact coupled
with friction in a reduced system. Several numerical examples are carried out to illustrate
the functionality and capacity of the software package.

Keywords: Finite element software, object-oriented programming, automatic contact de-
tection, multiple contact dynamics.

1 Introduction

Contact/impact problem is a very difficult issue in computational mechanics and many
engineering fields. The main difficulty comes from the high nonlinearities on the con-
tact surface and the discontinuous nature of motion. Over the years, numerical solutions
of such problems accounting for large deformation effects have been intensively studied
[Mahmoud, El-Shafei, Abdelrahman et al. (2013); Mlika, Renard and Chouly (2017); Hart-
mann, Oliver, Weyler et al. (2009); Chen, Joli and Feng (2015)]. Consequently, systems
composed of only a few interacting bodies may require significant computational efforts.
More complex scenarios such as soft textile composite reinforcements [Misra, Dixit and
Mali (2014)] and biomechanical systems [Bei and Fregly (2004); Lin, Walter, Banks et al.
(2010)] are particularly challenging and prone to very long simulating time.
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The finite element method has become one of the most powerful tools for solving complex
contact problems during the past several decades. Integration of contact dynamics with the
finite element method has been realized in different commercial CAE software packages
like ANSYS, ABAQUS, NASTRAN, COMSOL, etc. These commercial software con-
tain complete material libraries, computing solvers, advanced functionalities of pre- and
post-processors, which enable them to solve different kinds of engineering or scientific
problems. But to the viewpoints of the authors, these software have several drawbacks.
Firstly, too many parameters are required to be set and a lot of complicated operations on
the interface need to be performed during the modeling procedures. Whereas, for average
users, they may have backgrounds or experiences only in one discipline. It is difficult for
them to define appropriate parameters so as to obtain good results. Secondly, with regard
to some specific problems, for example the layered composites [Liu, Cheng, Zeng et al.
(2015)] which considers Monte Carlo simulation, incorporating new algorithms and mod-
els are not always possible since most commercial software packages are closed-source.
This necessitates the development of special software for local problems.
Object-oriented programming (OOP) is currently a well-suited approach for designing new
FEM applications, because the object-oriented concepts (abstraction, encapsulation, inher-
itance, polymorphism) present much similarities with the structure of FEM system. The
entities such as nodes, elements, displacements, constraints can be viewed as objects with
a hierarchical structure, which allows them to be accessed at various levels of abstraction.
Besides, OOP also improves the code with reusability, modificability, and maintainability.
Recently, the object-oriented philosophy has been applied by researchers to develop finite
element programs in various domains of interest, such as nonlinear multi-physics [Yuan and
Fish (2015)], pavement analysis [Fang, Hand, Haddock et al. (2007)], multi-body system
[Feng, Joli and Seguy (2004)], etc.
In this work, our objective is to describe the development of an efficient object-oriented
FEM software for solving a contact system with complex architecture and a large number
of deformable bodies. We remark that the commercial software can also address this is-
sue. However, pre-defining the slave-master contact sets in these software is particularly
tedious. All the possibilities of contact pairs should be considered, nevertheless, the contact
areas inside the scenario are difficult to be selected by simply picking operations on the in-
terface. In addition, as the number of bodies becomes very large, complexity will increase
quadratically, which makes predefining contact zones generally impossible. In LiToTac,
we propose to overcome these shortcomings through the new function of automatic contact
detection. This function offers improvements in the efficiency of contact inspections and
simplicity of interface operations. The improvements are the result of a hybrid boxes-based
identification strategy that uses a global Octree search and an optimal bounding volume hi-
erarchy query. This algorithm also permits to directly get vertex-elementary contacting
pairs, and can handle interactions between multiple solids, beams, and shells.
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In general, the nonlinear contact system of equations in commercial software can either
be solved by the penalty methods or the multiplier Lagrangian methods. As is known,
the penalty methods are easy to be implemented, but the contact boundary conditions
and friction laws can not be accurately satisfied. Besides, the value of penalty factor is
problem-dependent, and depends particularly strongly on the stiffness ratio between the
contact objects, which may result in spurious oscillations in contact forces. The multiplier
Lagrangian methods are able to enforce the zero-penetration condition exactly by intro-
ducing a set of multipliers representing contact forces. Nevertheless, both the generalized
coordinates and multipliers are unknown values, thus leading to an increase in the size
of the equation systems. In LiToTac, the techniques of bi-potential [De Saxcé and Feng
(1998)] are adopted, which shows several favorable properties as follows: (1) The reaction
force appearing as the projection of a linear combination of the reaction with the relative
velocity onto Coulomb’s cones, can lead to a unique variational inequality rather than t-
wo minimum principles, as compared to classic augmented Lagrangian methods [Jean and
Touzot (1988)]. (2) The unique mathematical operator of projection can can make a certain
mathematic reduction, because it does not consider the Lagrangian multipliers as addition-
al unknowns. (3) The nonlinearities of equations are separated to be solved, which can
overcome the computational complexity resulting from the non-differentiable contact bi-
potential and the inequalities of frictional contact rules. (4) The whole solution process
requires only one user-defined parameter: the friction coefficient. This enables users to ob-
tain very good results even though they are not familiar with the contact mechanics theory.
The article is organized as follows: in Section 2, the object-oriented approach to design the
software is presented. The structure of the developed software and the simulation methods
are given in Section 3. Section 4 describes the main functionalities of the software. Sec-
tion 5 presents several examples to highlight the graphical representation of the numerical
solutions. In Section 6, a few concluding remarks are drawn.

2 Object-oriented programming (OOP)

LiToTac, as a prototype finite element software of the CAE family, employs the OOP ap-
proach for the designing process. Several crucial components have been incorporated into
the software using an OOP architecture, these include an interactive graphical user inter-
face, standard mechanical elements and material libraries to assist in the modeling, postpro-
cessing for the manipulation and display of results. The code is implemented with careful
software-engineering procedures, management of data, re-use of the programming strategy.
The basic features of object-oriented programming include data abstraction, encapsulation,
data-hiding, modularity, hierarchy, inheritance, and polymorphism, etc, allowing the finite
element code to be easily extended for implementing new ideas and new algorithms. The
detailed explanation of these key concepts can be referred to the articles [Fenves (1990);
Dubois-Pèlerin and Pegon (1998)]. In this section, we will only briefly present them as
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they relate to our own program.

OMTOMT

OmtProductBaseOmtProductBase

OmtSolveSetupOmtSolveSetup OmtDataBaseOmtDataBase

ModuleOmtBaseModuleOmtBase

Figure 1: Base abstraction classes of OMT platform

One main characteristic of OOP is to define various classes. A class incorporates the set of
objects that shares the same structure and behavior. An object is called an instance of the
class, which can be treated as the realization of the data type defined by the class. In our
code, the object-oriented architecture is organized around several important base classes
of OMT (Objected and Methodological Technology), as illustrated in Fig. 1. The main
functions of these classes are summarized as follows:

• OmtProductBase: this base class is in charge of managing the version, name, reg-
istered modules of a software developed on OMT platform.

• ModuleOmtBase: the user project is organized by splitting the problem into differ-
ent modules, while each module derives from the base abstract class ModuleOmt-
Base.

• OmtDataDef: this base class is used to define specific data class in the user modules,
such as the boundary condition, velocity, load, etc.

• OmtSolveSetup: this base class is generated to create different setups for different
solver engines.

By using the inheritance concepts, new classes for contact system codes can be directly
created from the existing base class. In other words, the derived classes inherit the data
and member functions of the base class. And at the same time, some additional meth-
ods and attributes relating to it can be implemented. As is shown in Fig. 2, we register
the new developed software as "ProductLiToTac". Then some version information about
the current developed software would be provided to the OMT platform according to the
virtual methods in OmtProductBase class. ModuleContactDetection, ModuleInitVelocity,
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ModuleLimits, ModuleLoad, ModuleMesh, ModuleMaterial, ModuleSolution are the pro-
fessional concrete modules derived from the base abstract class ModuleOmtBase. Each
module, as its name explains, corresponds to a necessary function for contact dynamic
simulation. These modules are created individually, and inherit the basic function member-
s like InitalModule(), ReadModule(), GetModuleActions(), etc from the OmtProductBase
class. As a result, they can independently manage their own data and behaviors.

OmtSolveSetupOmtSolveSetup

SetupStaticSolverSetupStaticSolver

SetupDynamicImplicitSetupDynamicImplicit

InheritanceInheritance AggregationAggregation

SetupStaticSolverSetupStaticSolver

SetupDynamicImplicitSetupDynamicImplicit

SetupDynamicSemiExplicitSetupDynamicSemiExplicit

OmtProductBaseOmtProductBase

ProduceLiToTacProduceLiToTac

OMTOMT

ModuleOmtBaseModuleOmtBase

ModuleContactDetectionModuleContactDetection

ModuleInitVelocityModuleInitVelocity

ModuleLimitsModuleLimits

ModuleLoadModuleLoad

ModuleMeshModuleMesh

ModuleMaterialModuleMaterial

ModuleSolutionModuleSolution

OmtDataDefOmtDataDef

ConDetectionDefConDetectionDef

OctreeBvhDefOctreeBvhDef

InitialVelocityInitialVelocity

BCFixDisplacementBCFixDisplacement

LoadForceLoadForce

Figure 2: Derived class from OMT base class

It is clear that the modularization by splitting one project into several small modules can be
a big advantage of OOP in large scale software design, because each programmer just needs
to take charge of one part of them, then the total design time can be significantly reduced.
Also, one can easily extend the software to multiple suites by plugging in other functional
modules. For instance, ModuleInitialVelocity is in charge of adding initial velocities to
nodes before performing time loops. It manages the related date from the geometry and
from the interactive interface. If someone wants to use acceleration as the initial condition,
ModuleInitalVelocity can be deleted, and then be replaced with a ModuleInitialAccelera-
tion. These kinds of operations do not affect the running of other modules and also have no
influence on the final simulation results.
The encapsulation of OOP is a way of defining private data members and function members
that are hidden from view outside of the object’s definition. That means only the object’s
own method can directly have access to manipulate its field. In our code, the ModuleMesh
class has two private data: NumNodes and NumElements. The value of these two items
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can be obtained by inputting data operation defined by the ModuleMesh, but they are not
allowed to be recalled or modified by the methods of other modules, even though these
modules have to gather information from mesh geometry. By allowing the developers to
limit the inter-dependencies between software components, the encapsulation mechanism
can enormously help reduce the system complexity and increase robustness.
Polymorphism, which means a variety of forms", is the fundamental technique of OOP. 
Polymorphism is generally implemented by virtual member functions, which allow redef-
inition in the subclasses. This characteristic enables objects to respond to messages dif-
ferently for the same function. Here, we take the operation of saving data function as an 
example to illustrate this concept in our code. It is very common to click the "save project" 
button in the menu items when one wants to reuse the current data or simulation operations 
for the next time. By this operation, the OMT manager will firstly create a project file, and 
then send messages to each module to call the function "SaveProductData". SaveProduct-
Data is a virtual function in the base class of ModuleOmtBase, while its subclasses override 
this method too. As a result, although all the modules are told to save ProductData, the con-
crete module only saves its own data inside the project file. Also, through polymorphism, 
the ModuleMesh can draw any geometry components (selected nodes, elements, surface 
sets, etc by the operation on the interface) in run-time without pretreatment of geometrical 
types before compiling. This is so-called dynamic polymorphism, which ensures multiple 
methods can be implemented by one connector.

3 General structure of the software and computational methods

Contact detection engine:Contact detection engine:
OctreeOctree

BVHBVH

Minimum distance projectionMinimum distance projection

LiToTac SoftwareLiToTac Software

Preprocessor:Preprocessor:
OpenGL+QTOpenGL+QT

Contact detection setContact detection set Input fileInput file Result fileResult file Post-processorPost-processor
OpenGL+QTOpenGL+QT

Input meshInput mesh

MaterialMaterial

ConstraintsConstraints

Load forcesLoad forces

VelocityVelocity

Contact informationContact information CoordinateCoordinate
updatingupdating

Finite element solver engine:Finite element solver engine:

1. Static solver1. Static solver
2. Implicit dynamic solver2. Implicit dynamic solver
3. Semi-explicit dynamic solver3. Semi-explicit dynamic solver

Figure 3: Flow diagram of the developed software

Fig. 3 gives the flow diagram of the software, in which the contact detection module and
the finite element module are the core components. Once the preprocessing and the contact
detection are finished, an input file will be produced for the contact detection engine and
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solver engine. Within a time step, the contact detection engine based on a hybrid methodol-
ogy consisting of Octree and bounding volume hierarchy (BVH), can calculate the contact
information (actual contact area, nodes, penetration, etc) and transform these data to the
finite element solver engine. The Octree and BVH need to be updated based on the cur-
rent coordinates, thus they have to consider the solved displacements for each time step.
The solver engine includes three analysis types: static solver, implicit dynamic solver, and
semi-explicit dynamic solver. The final computed results are written in an output file and
displayed by the post-processor.

3.1 Automatic contact detection

Contact detection is usually considered as a prerequisite for solving contact forces. It can
be found in applications of virtual reality, game development, and robotics, etc. In the lit-
erature, the range of contact detection algorithms proposed for the finite element modeling
is various. These include methods based on the slave-master surface [Hallquist, Goudreau
and Benson (1985)], the nested bucket [Benson and Hallquist (1990)], the sweep and prune
[Cohen, Lin, Manocha et al. (1995)], the closest features [Gilbert, Johnson and Keerthi
(1988); Cameron (1997); Lin and Canny (1991)], the LC-grid [Chen, Lei and Zang (2014)],
etc. For survey articles on contact detection, the reader is referred to [Jiménez, Thomas and
Torras (2001); Lin and Gottschalk (1998)].
In the multiple contact systems with a large number of bodies, contact detection becomes
quite complicated. For one thing, bodies within the scene can move and deform unpre-
dictably from the previous loading steps. For another thing, highly frequent occurrences
of contact events can significantly increase the computational cost. The most widely used
methods in CAE software such as ANSYS and ABAQUS, are based on slave-master ap-
proaches, in which the user should pre-define contact zones. This may result in a heavy
burden for users to find potential contact nodes and surfaces in order to establish a list
of contact zones. Moreover, for systems with very complex geometry architecture, contact
zones may be inside the body, which is generally impossible to be predefined by simple op-
erations like picking nodes or elements from the interface. In our code, these problems can
be solved by performing automatic contact detection based on a three-stages methodology.
The main idea behind each stage will be briefly introduced in the following subsections.

LiToTac: An Interactive-Interface Software for Finite Element Analysis 
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3.1.1 Top stage for broad inspections
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Figure 4: Octree partition [Ericson (2004)]

The top-stage inspections implemented in ModuleContactDetection is based on a pointer-
based Octree data structure [Wilhelms and Van Gelder (1992)], which can quickly enu-
merate pairs of objects that may potentially collide. The Octree (Fig. 4) represents the 3D
volume as a hierarchy of discrete octants, in which each parent octant is recursively subdi-
vided into eight child octants. The octant can be added or removed as required, thus is well
suited to dynamic problems that update frequently.

Struct OctreeNodeStruct OctreeNode
{
public:public:
         Vector3f    MinCor;          //minimum coordinate of bounding box  Vector3f    MinCor;    //minimum coordinate of bounding box
         Vector3f    MaxCor;         //maximum coordinate of bounding boxVector3f    MaxCor; //maximum coordinate of bounding box

Vector3f    Center;            //center coordinateVector3f    Center; //center coordinate

           OctreeNode *Children[2][2][2]:              //eight children pointers  OctreeNode *Children[2][2][2]:    //eight children pointers
OctreeNode *Parent;OctreeNode *Parent;
bool HasChild ; //if the node needs to be partitionedbool HasChild ; //if the node needs to be partitioned
int NodeHeight; //node heightint NodeHeight; //node height

}

Figure 5: Octree node struct

The definition of a typical Octree node is shown in Fig. 5. Each octant stores pointers to
its eight children. But only these non-empty octants are considered to take memory, while
others are defined Null. This allows all the search paths to be tested with a lower memory
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storage. The recursive location of objects terminates when the branch reaches the tree
depth, or the number of objects per octant below the predefined value. The Octree structure
is searched from the root down to determine collisions. Only objects that share the same
octants are taken to have potential contacts.
Note: each object in an Octree hierarchy should be firstly culled by an approximated bound-
ing box for a rough test. To locate the real contact nodes or elements in the following stages,
each object is also decomposed of a finite element mesh.

3.1.2 Middle stage for interactions between two FEM meshes

After the filtering of the first stage, the middle stage lies in how to precisely detect the 
contact elementary pairs (e.g., node-segment(2D), node-triangle(3D), node-quad(3D)) 
be-tween two meshes. Accordingly, the technique of bounding volume hierarchies 
(BVH) is adopted for primitive queries. Types of BVs include spheres, axis aligned 
bounding boxes (AABBs), discretely oriented polytopes (K-DOPs), or a hybrid of them. 
In this work, we employ the popular hierarchy of AABBs as the fundamental BVHs, 
because they provide a good trade-off between tightness of fit and computation cost.
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Figure 6: Elementary test between vertex A and face t9

We create bounding volumes based on specific geometric components, i.e., vertices, 
edges and faces, see Fig. 6(b). This strategy can largely reduce duplications of elementary 
queries compared to traditional methods by merely using triangle elements (Fig. 6(a)). For 
example, the vertex A (Fig. 6(a)) is incident to eight triangles (t1„,t8), and A comes into 
contact with triangle t9, which will produce eight times triangle-triangle tests, and 24 times 
vertex-triangle tests. But in Fig. 6(b), each bounding volume enclosing a vertex is 
represented only once in the hierarchy, thus the overlapping between vertex A and triangle 
t9 would be unique. Furthermore, the separate hierarchies can improve the culling 
efficiency of elementary testing, because the volume of a vertex can be much smaller than 
any other type of geometric component.
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Figure 7: (1) Triangle-based BVH and Vertex-based BVH, (2) Hierarchy traversal between
two meshes

A triangle-based hierarchy or a vertex-based hierarchy can be built in a typical top-down
manner [Bergen (1997)], see Fig. 7(1). It starts out by enclosing the hull of all finite el-
ement primitives with a tight Axis-aligned bounding box (AABB). Then these primitives
are successfully sorted into two smaller subsets from one level to a deeper lever, thus pro-
ducing a binary tree hierarchy. The recursion stops when the leaf nodes of the tree consist
of only a single primitive. For the constructing process, the most important part is to find
a suitable splitting plane to partition the primitives. To ensure a balanced tree, we position
the splitting plane orthogonal to the longest AABB axis, which should pass through the
median of the centroid coordinates. Any primitive is classified depending on its location
with respect to the splitting plane.
In Fig. 7(2), all the contacting elementary pairs between object 0 and a can be searched 
by a recursive traversal algorithm. The two trees are traversed down from the root, and 
recursively descend to deeper levels. The primitive contact tests are finally performed 
between the leaf BV 4 and BV d. This tree search complexity is in logarithmic order, 
which is particularly efficient for cases with very few contact e lements, but a  very large 
data system. Note that, for finite element contact calculation, the simplest l inear triangle 
element can be replaced by other more complicated types in the context of finite element 
analysis, e.g., 6-node triangle, 4-node quad, 8-node quad, etc.

3.1.3 Bottom stage for local calculation

Finally, the bottom stage functions to discern whether these pairs detected by middle stage
are really in penetrated condition. Consider a surface ϕ , any point on the surface can be
presented by a parametric form: S(ε,η) = ∑Ni(ε,η)xi, where Ni denotes the Lagrangian
shape function associated with node position xi. Let point y be the potential counterpart of
the contact surface ϕ as illustrated in Fig. 8.



121

1x

2x

y

n

1t

2t�

( , )� �S

�

�

Figure 8: Contact node location

Therefore, the closest point from surface ϕ to an arbitrary point y can be obtained after
solving the following system of equations:

f (l) =
[

f1(l) = (S(ε,η)−y) ·vε

f2(l) = (S(ε,η)−y) ·vη

]
= 0, l =

[
ε

η

]
(1)

{
J(l(k))(∆l(k)) = f (l(k))
l(k+1) = l(k)−∆l(k)

(2)

where J(l(k)) =

 ∂ f1(l(k))
∂ε

∂ f1(l(k))
∂η

∂ f2(l(k))
∂ε

∂ f2(l(k))
∂η

. The iterations usually converge in four or less

iterations. The final solution (ε∗,η∗) should satisfy the conditions: −1 ≤ ε∗ ≤ 1,−1 ≤
η∗ ≤ 1.
Herein, the outward normal vector of point (ε∗,η∗) is determined by the cross product of
rε and rη

n =
∂S(ε,η)

∂ε
× ∂S(ε,η)

∂η
|ε=ε∗,η=η∗ (3)

The gap vector is given by

g = ∑Ni(ε
∗,η∗)xi−y (4)
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where vε = ∂S(
∂

ε

ε

,η ) , vη = ∂S
∂

(ε
η

,η ) . The problem stated by Eq. (1) may be nonlinear when
the surface ϕ is curved, for example, the quadrilateral face. Therefore, the solution can be
obtained by the Newton-Raphson iterative process:
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3.2 Finite element computation

The solver in ModuleSolution is based on the finite element method for multiple contact
dynamic analysis. Typically, the finite element formulation of this problem in the discrete
form can be written as:

Mü+Au̇ = Fext +Fint +R (5)

where Fext the vector of external loads, Fint the internal forces, R the contact reaction vec-
tor, M the mass matrix, A the damping matrix, u̇ the velocity vector and ü the acceleration
vector. It is worth noting that the internal forces Fint are derived from the physics-based
deformable model related to the stiffness effect.
The variables such as velocity and stress inside the continuum field are not known. The
shape interpolating function N is needed to approximate them by the nodal values of the
field variable. The shape functions N are generally written in the form of polynomials
depending on the element’s shape. If the displacement vector u in an element Ωe is ap-
proximated by u = N ·ue, where ue represents the displacements at nodes. Then the mass
matrix Me, the damping matrix Ae can be defined as:

Me =
∫

V e
ρ

eNT NdV, Ae =
∫

V e
κ

eNT NdV, (6)

where ρe is the mass density, κe the damping parameter, V e the volume of Ωe.
The solution to Eq. (5) differs between explicit and implicit approaches. The explicit 
method appears to be efficient, but unstable, and without checking convergence. The 
implicit method is supposed to be accurate. Nevertheless, the computation is much 
more expen-sive for large deformations. Currently, our code offers three solvers for 
different types of analysis: (1) the implicit solver [Feng, Joli, Cros et al. (2005); Feng, 
Magnain and Cros (2006)] to address low-velocity or quasi static cases; (2) the semi-
explicit solver [Peng, Feng and Joli (2018)] to handle high-velocity impact problems; (3) 
the static solver [Feng, Hjiaj, De Saxcè et al. (2006)] to deal with static frictional cases.

3.2.1 Computation of contact forces

Our contact solver is based on the bi-potential method [De Saxcé and Feng (1998)], in
which a formulation extended by the augmented Lagrangian method is provided. Con-
sidering a local reference frame (normal vector n and tangential vector τττ), there exists an
implicit relationship between the constraint displacement x and the contact reaction forces
r:

x = Wr+ x̃ (7)

CMES, vol.118, no.1, pp.111-137, 2019
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where W and x̃ represent respectively the global compliance matrix and the free displace-
ment. For each contact point α , among Nc instantaneous contact points, the relationship
can be written as:

xα −Wααrα = ∑
α−1
β=1 Wαβ rβ +∑

Nc

β=α+1 Wαβ rβ + x̃α (8)

where Wαβ is an influence matrix that takes account of the coupling between contact points 
α and β . With regard to point α, Eq. (8) can be treated by considering other contact points 
(α 6= β ) as "frozen".
In the work of [De Saxcé and Feng (1998)], the contact bi-potential is formulated as fol-
lows:

bc(−x,r) = ∪
ℜ−

(−xn)+ ∪
Kµ

(r)+µrn||xτ || (9)

where ℜ− is the set of negative and null real numbers, Kµ the so-called Coulomb cone.
∪
Kµ

(r) denotes the indicator function of the closed convex set Kµ .

In order to avoid non-differentiable potentials, it is convenient to use the Augmented 
La-grangian method [De Saxcé and Feng (1991)], Eq. (9) can be equal to

r = ProjKµ
(r∗) (10)

and

r∗ = r−ρx∗ with x∗ = x+µ ‖xτ‖n (11)

where r∗ is the so-called augmented contact forces, and ρ is a positive real parameter, µ the
friction coefficient. ProjKµ

(r∗) means that r is the projection of r∗ onto the closed convex
Coulomb cone.
The Uzawa technique can be used to solve the implicit Eq. ( 8), which leads to a prediction-
correction procedure as:

Prediction : r∗(i+1) = r(i)−ρ(i)(x(i)+µ||x(i)τ ||n)
Correction : r(i) = ProjKµ

(r∗(i+1))
(12)

where the correction is explicitly carried out with respect to three possible contact statues
as:

if ||(r∗τ)i+1|| ≤ µ(r∗n)
i+1 then ri+1 = (r∗)i+1 (sticking)

else if µ||(r∗τ)i+1||<−(r∗n)i+1 then ri+1 = 0 (no contact)

else ri+1 = (r∗)i+1− (
||(r∗τ )i+1||−µ(r∗n)

i+1

1+µ2 )(
(r∗τ )i+1

||(r∗τ )i+1|| +µn) (sliding)
(13)
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Figure 9: GUI of LiToTac

After the prediction-correction procedure converges, the global contact forces R can be
obtained by

R = H(u)r (14)

where H(u) is the mapping matrix from the local frame to the global frame.

4 Functionalities of the software

Qt is an efficient application framework for developing multi-platform applications, by
which the code can be run on various systems and hardware platforms with little or even
no change. In the current project, Qt has been largely used to design the graphical user
interface (GUI) objects such as Dialog, Menu, Toolbar, Label, Icon, etc. Also, to render
the scene with high fidelity, the OpenGL library is applied to draw graphic primitives like
points, lines, surfaces, volumes, etc.
As mentioned, the software LiToTac is an integrated environment which consists of four
main parts: the preprocessor, the contact detector, the solver, and the post-processor. The
GUI of the program is shown in Fig. 9. Some main characteristics of LiToTac are presented
as follows.

4.1 Preprocessor

• Mesh: to allow the user to make certain operations on the model geometry such as
creating, deleting, modifying the sets of primitives (nodes, elements, surfaces, etc).

CMES, vol.118, no.1, pp.111-137, 2019

In addition, it helps to render the view environment based on user’s habits. The user
can achieve some special effects by defining light, texture, transparency, color, and
so on.
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• Material: to set the parameters for different material models. Several material mod-
els including linear elasticity, and non-linear hyperelasticity have been implemented
in our code. Particularly, users are allowed to quickly add their own material models
into the library in very few steps, which provides better convenience over general
commercial softwares.

• Create input files: after finishing the procedures as described above, an input file
with only necessary information is produced. This file can also be generated for
supporting ANSYS or other commercial software.

4.2 Contact detection

• The contact detection is performed automatically to gather the basic data for calcu-
lating contact forces. The construction of Octrees and bounding volume hierarchies
should rely on the current coordinates provided by the initial mesh as well as the
motion displacements.

• For some particular materials, different areas within a body may produce several d-
ifferent frictional coefficients when interacting with another kind of material. This
may add complexity to the computation of frictional force and the management of
data. In our software, the user can well handle this issue by defining frictional co-
efficients between two kinds of groups, wherein, one is the node groups, the other
is the element edge groups. The value of coefficients will be recorded in a 1D ar-
ray. Consequently, once a contact detection query is solved, each of the resulting
contact pairs can have a individual frictional coefficient based on the node ID and its
counterpart element ID. This methodology allows users to make further researches
on inhomogeneous friction and anisotropic friction problems.

4.3 Solver

The solver consists of the following tasks:

• to read the input file from the preprocessor.

• to exchange data with the contact detection engine.

• to solve contact problems via implicit, semi-explicit, and static methods.
• to perform hourglass control for semi-explicit simulation, when one point Gauss in-

tegration is applied to accelerate the computing speed.
• to create output files of the solutions for the purpose of post-processing.

4.4 Post-processor

The roles of the post-processor can be summarized as follows:

• to read the result file produced by the solver engine.
• to import the stress analysis solutions.
• to display the structure of a solid body by scanning.

• to create reports about the CPU time for the simulation.

LiToTac: An Interactive-Interface Software for Finite Element Analysis 
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5 Example

In order to test and validate the functions and the capability of LiToTac, several specific
examples have been carried out. It is noted that the following analysis are performed on a
PC (i7-8550U, 1.80 GHz).

CMES, vol.118, no.1, pp.111-137, 2019

5.1 Example 1: 2D quasi-static contact simulation

A

B

C

The first model consists of 16 hyperelastic bodies (spheres) and 4 rigid bodies (rectangles), 
as is shown in the left side of Fig. 10. The highlighted yellow points on the rigid bodies 
are fixed, while the left rectangle body is imposed by constant force loading. The plots of 
Von-Mises stress at the final step are presented in the right side of Fig. 10. This example is 
a very special quasi-static case, which can not be modeled by a traditional static solution. 
Because several spheres inside the system are enforced without displacement limits, but 
only with contact constraints, which leads to a singularity of the global stiffness matrix. It 
is also difficult to apply a general dynamic solver to perform this simulation. Since quasi-
static simulations requires extremely accurate and robust computation of dynamic contact 
forces. Whereas, most dynamic solvers in commercial softwares may produce numerical 
oscillations when taking account of impact effects. By using the implicit method [Feng, 
Joli, Cros et al. (2005)], LiToTac can well address this case. As is shown in the left side of 
Fig. 11, the hyperelastic bodies can deform stably in very low velocity, since it generally 
exists no obvious oscillations in the evolution of Von-Mises versus time.

Figure 10: A quasi static model with 20 interacting bodies. Left side: initial mesh. 
Right side: the final distribution of Von-Mises stress

• to perform animation of the deformation evolution and the stress distribution along
time.

• to show the evolution of actual contact areas.
• to create reports about the energy including total energy, kinematic energy, and elastic

energy with change of time.



Figure 11: Left side: evolution of Von-Mises stress versus time of node A, B, C. Right side: 
the comparison of CPU time between our automatic method and the brute force method, 
where Curve1 is the automatic contact detection, and Curve2 the brute force detection

By means of the powerful post-processing capabilities of LiToTac, users can import the 
results of different situations and plot the reports together to view the influences by applying 
different computing algorithms. For example, an analysis report of contact searching is 
given in the right side of Fig. 11. The result shows the computational time of the automatic 
contact detection (Curve1) is significantly lower than the brute force (Curve2). Therefore, 
the efficiency of automatic contact detection is confirmed. Additionally, it is worthy noting 
a multi-window function of LiToTac. In Fig. 9 or Fig. 11, the mesh window and plots 
window are able to be viewed at the same time. This function can provide great convenience 
for users when they need to gather information from different views.

5.2 Example 2: 3D soft rope system under pure torsion
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This 3D example is a typical "1+6" structure [Ghoreishi, Davies, Cartraud et al. (2007)]
composed of seven hyperelastic fibers. Large deformation and sliding are analyzed by
using the static solver. The total torsion angle is θ = 95◦, the bottom surface is fixed,
and the displacements of Z direction on the top surface are set to zero. 25 load steps are
performed for this problem, so a pure torsion of 3◦48′ is applied to each step.



Figure 12: Left side: Initial mesh. Right side: Final state of Von-Mises stress distribution

Figure 13: Left side: Vector quantity of displacements at Step 25. Right side: vector 
quantity of reaction force at Step 25

Figure 14: Contour plots of contact force at real interacting nodes. Left-Step 13, middle-
Step 18, right-Step 25

The initial mesh and the final state of distribution of Von-Mises stress are shown in Fig. 12.
From the obtained results, it can be seen that the stress distribution is symmetrical to the
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center point. The vector quantity of displacements and reaction forces at Step 20 are given
in Fig. 13. Fig. 14 depicts the contour plots of contact forces at real contacting nodes at
different loading steps, which allows us to observe the inter fiber-fiber interactions.
Numerical modeling of fiber systems still remains a very difficult issue in FEM field. The
inter contacts between fibers may become unpredicted because of its complicated archi-
tecture and large number of bodies. Example 2 presented here aims at illustrating the
capacity of LiToTac, thus no detailed analysis of mechanical behavior is performed. The
functionalities mentioned such as multi-windows, cut plane of inter structure, animation of
real contact areas, view plotting of contact force contour, etc are quite convenient, which
permits LiToTac to handle complicated fiber-fiber interacting simulations with much less
operations than commercial software.

5.3 Example 3: 2D comparison between LiToTac and commercial software

To illustrate the computational efficiency of LiToTac, we consider here one example to 
make a comparison with the commercial software ANSYS and ABAQUS. This example is 
inspired by the work of Wriggers et al. [Wriggers, Van and Stein (1990)], which involves a 
hyperelastic cylinder impacting upon two oblique rigid symmetric surfaces, see Fig. 15. 
During the pro-cess, there exists no damping except for Coulomb friction between contact 
surfaces. The Yeoh material model is considered to describe the hyperelasticity behavior. 
The character-istics of this example are: c10 = 3794000 Pa, c20 = 232000 Pa, c10 = −3000 
Pa, d1 = 1e−7, d2 = 1e−7, d3 = 1e−7, initial mass density ρ = 1207 kg/m3, initial velocity 
vy = −30 m/s. The total simulation time is 3e−3 s, and the time step is ∆t = 10e−5 s. The 
cylinder consists of 209 nodes and 192 linear quadrilateral plane strain elements. The 
cylinder is positioned at center point O (0.0, 0.03) and its radius is R = 0.01 m. The right 
side of the rigid block is located by four points: A(0.005, 0.0), B(0.015, 0.0), C(0.015, 
0.035), D(0.012, 0.035).

Mesh LiToTac

A B

CD

N1
N2
N3

Figure 15: Deformable-rigid impact
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Firstly, the distribution of Von-Mises stress contour at time t = 0.002 s is displayed in
Fig. 16. From the results, we can observe that the maximum value of Von-Mises stress
in LiToTac is slightly lower than ANSYS and ABAQUS. In Tab. 1, N1, N2, N3 are three
selected nodes that interpenetrate with surface AD at time t = 0.002 s. As is shown, the
contact penetrations δ of these nodes in LiToTac can be controlled in the order of 10−16,
while the value just approaches to 10-5 in ANSYS, and 10-6 in ABAQUS. This differ-
ence indicates that LiToTac can be more accurate than ANSYS and ABAQUS to satisfy
the contact impenetrability condition. The performance of computational time is reported
in Tab. 2. Through the result, we can find that LiToTac possesses a small performance
difference with ABAQUS, but is much faster than ANSYS.

(Avg: 75%)
S, Mises

+3.015e−23
+6.787e+05
+1.357e+06
+2.036e+06
+2.715e+06
+3.394e+06
+4.072e+06
+4.751e+06
+5.430e+06
+6.109e+06
+6.787e+06
+7.466e+06
+8.145e+06

MN

MX

.200E-08
899533

.180E+07
.270E+07

.360E+07
.450E+07

.540E+07
.630E+07

.720E+07
.810E+07

ANSYS ABAQUS

Figure 16: Distribution of Von-Mises stress
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Figure 17: Comparison of total energy
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It is also interesting to compare the energy evolution of the two softwares. Fig. 17 plots 
the total energy as a function of time in the case of frictionless contact. We can see that the 
total energy for these three softwares is conserved within an acceptable range of error (less 
than 0.5%). However, the change of energy curves confirms a better robustness of LiToTac 
over ANSYS and ABAQUS.

Table 1: Comparison of contact penetration

Code Method δN1 (m) δN2 (m) δN3 (m)

ANSYS Penalty −1.114e-5          −1.643e-5           −1.824e-5

ABAQUS Lagrange-multiplier       −3.567e-6          −4.040e-6           −4.653e-6

LiToTac Bi-potential −7.758e-18         −6.939e-18         −2.194e-17

Table 2: Comparison of CPU performance

Code Formulation Contact algorithm Total CPU (s)

ANSYS Second-order implicit Penalty 71.3
ABAQUS Second-order implicit Lagrange-multiplier 18.5
LiToTac First-order implicit Bi-potential 16.3

5.4 Example 4: 3D comparison between LiToTac and commercial software

As a comparison, a 3D example consisting of two deformable blocks is also analyzed here,
see Fig. 18. For convenience, the normalized units are used. The smaller block is created
by its diagonal corner coordinates (0.5, 0.0, 1.05) and (1.5, 1.0, 2.05), and the larger one
is defined by (0.0, 0.0, 0.0) and (2.0, 2.0, 1.0). The smaller block impacts onto the large
block with a initial rigid-body velocity (0.0, 2.0, -1.0), and the base of the larger block is
fixed. The whole structure is set with the same density 0.01. We consider again the Yeoh
model: c10 = 0.3794, c20 = 0.0232, c10 =−0.0003, d1 = 0.01, d2 = 0.01, d3 = 0.01. The
total simulation time is 0.5 scaled time unit, and the time step is ∆t = 0.005. The frictional
coefficients are set as: µ = 0.0. During the process, no damping effects are considered.
The finite discretization includes 208 nodes and 102 eight-node hexahedrons.
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Figure 18: Initial configuration

Fig. 19 shows the plots of the Von-Mises stress of Node A versus time. We can observe
that the curves produced by LiToTac and ABAQUS are close to each other, and are more
robust than the case of ANSYS. Fig. 20 indicates the evolution of total energy as a function
of time. The results confirms that LiToTac allows a better conservation of energy than
ABAQUS for 3D frictionless contact problem. Whereas, for ANSYS, an increase of total
energy can be produced because of numerical instability.
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Figure 19: Von-Mises stress at point A
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Figure 20: Evolution of total energy for µ = 0.0
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Figure 21: Evolution of total energy for µ = 0.5
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To investigate the frictional effects on the algorithm performance, we change the frictional 
coefficient to µ  = 0 .5. Fig. 21 gives the plots of whole kinetic energy versus t ime. In L-
iToTac and ABAQUS, the kinetic energy decreases as expected by frictional contact effects 
after time t = 0.05 when the impact occurs. However, in ANSYS, a jump takes places at 
time t = 0.065. The performance of the applied algorithms in each software is summarized 
in Tab. 3. The Lagrange-multiplier method in ABAQUS is replaced by penalty method 
because of its non convergence in dealing with this frictional case. Though the results ob-
tained by computing a 3D example, we can see that LiToTac is faster than ANSYS, but a 
little bit slower than ABAQUS.

Table 3: Comparison of CPU performance

Code Algorithm
Total CPU (s)

µ = 0.0
Total CPU (s)

µ = 0.5

21.8 24.7ANSYS   Second-order implicit+Penalty 
ABAQUS Second-order implicit+Penalty 7.1 8.1
LiToTac   First-order implicit+Bi-potential 9.3 9.6

6 Conclusion

In this paper, we have presented a new finite element software for the modeling and anal-
ysis of multiple contact dynamics. This software is able to handle strong non-linearities 
including multiple contacts and large deformations, and it can also perform automatic con-
tact detections without predefining contact zones. The program has been designed by using 
the object-oriented principles and the OMT technology. These techniques allow us to sim-
plify the architecture of the program and to incorporate quite easily new features to other 
specific suites. Through several complicated numerical examples, the new function of auto-
matic contact detection confirms a good convenience over slave-master approaches. Also, 
by comparing with the commercial software ANSYS and ABAQUS, the bi-potential tech-
niques in LiToTac are demonstrated to possess higher accuracy and better robustness than 
penalty and Lagrange multiplier algorithms.
The software presented can be further extended to study local phenomenon occurring in 
polymer chains, and DNA, or in the domain of computer graphics to improve the rendering 
of hairs. It does not need to completely redefine the software architecture. Some optimiza-
tion methods can also be added to perform parallel computation of large-scale problems.
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