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Abstract: Progressive damage models (PDMs) have been increasingly used to simulate the 
failure process of composite material structures. To accurately simulate the damage in each 
ply, 3D PDMs of composite materials have received more attention recently. A 
characteristic element length (CEL), which is an important dimensional parameter of PDMs 
for composite materials, is quite difficult to obtain for 3D elements, especially considering 
the crack directions during damage propagation. In this paper, CEL models for 3D elements 
in PDMs of unidirectional composite structures are presented, and their approximate 
formulae are deduced. The damage in unidirectional composite materials can be divided 
into fiber cracks and inter-fiber cracks. The fiber crack and inter-fiber crack directions are 
considered in the CEL derivations, and thus, the CELs of 3D elements that have various 
damage modes and damage directions could be obtained relatively precisely. Static tensile 
and compressive tests of open-hole laminates were conducted, and the corresponding 
numerical analyses by the progressive damage method, including the proposed CEL models 
and those models from the literature, were performed. The numerical results are in good 
agreement with the experimental results, which proves the fidelity and effectiveness of the 
proposed CEL models. In addition, the proposed CEL models have better performance in 
improving the mesh independence of the numerical models. 
 
Keywords: Laminates, finite element analysis (FEA), mechanical testing, progressive 
damage analysis, CEL. 

1 Introduction 
Composite materials have been widely used in aircraft, automobiles, ships, etc., due to 
their significant advantage in reducing the structural weight. However, a composite 
material has many different damage modes, such as fiber failure, matrix failure, 
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fiber-matrix debonding, delamination, etc. which lead to extreme difficulty in predicting 
the damage process and the strength of composite structures [Ray, Dong and Atluri 
(2016)]. Recently, the progressive damage method has increasingly been used to predict 
the failure of composite structures [Sane, Padole and Uddanwadiker (2018)], and many 
PDMs have been proposed in published papers. Some use sudden degradation damage 
models, which are implemented by decreasing the damaged material properties to zero or to 
a portion of the initial values, to describe the mechanical properties of the damaged 
materials [Labeas, Belesis and Stamatelos (2008)]. Clearly, the sudden degradation damage 
models divide the materials into two states: undamaged and completely damaged. In fact, 
during the damage propagation of the composite materials, the mechanical behavior of the 
materials exhibits a gradual reduction. As a result, gradual degradation damage models, in 
which the stresses gradually decrease to zero after the damage onset, are used increasingly 
in the strength prediction of composite structures [Wang, Liu, Xia et al. (2015)]. 
In FEA, stress softening in constitutive equations brings about a severe mesh dependency 
problem [Guo and Nairn (2017)] when the gradual degradation damage model is 
implemented, which makes the numerical results not objective any more. Bažant proposed 
a crack band model for the gradual degradation damage models to overcome this problem, 
which simulates a crack using a layer of damaged elements and spreads the fracture energy 
of the crack over the full volume of the element [Bažant and Oh (1983)]. A CEL, which 
characterizes a dimensional parameter of the finite element, is induced into the crack band 
model to bridge the fracture energy and the computed dissipated energy. The CEL is a key 
parameter in the crack band model because it ensures the objectivity of the finite element 
model (FEM) by regularizing the computed dissipated energy. 
Overall, an accurate measurement of the CEL is quite complex and difficult, because the 
CEL of an element is not only associated with the element dimension but also the crack 
directions, including the transverse and longitudinal directions. In published reports, only 
a few approximate models were established to determine the CEL for 2D elements. 
Bažant provided approximate expressions of the CEL for square elements with known 
and unknown crack directions [Bažant and Oh (1983)]. Maimi proposed an average CEL 
expression for triangular elements [Maimí, Camanho, Mayugo et al. (2007b)]. However, 
the CEL expressions for more general elements such as parallelogram elements have not 
yet been provided. In addition, the existing models cannot characterize the various crack 
directions in the composite materials, and moreover, in some models, the crack directions 
are even not accounted for.  
With the increasing requirements for reliable failure analysis of composite structures, more 
accurate stress analysis models are needed, and more damage mechanisms in composite 
materials should be considered in failure analysis. Establishing a suitable 3D PDM for 
composite materials has been a major interest and goal of worldwide researchers [Hinton 
and Kaddour (2012); Zhou, Tian and Zhang (2015); Chowdhury, Chiu, Wang et al. (2016); 
Vanegas-Useche, Abdel-Wahab and Parker (2018)]. As a result, the CEL for 3D elements is 
critical for the fidelity of the PDM. However, thus far, there are not proper methods to 
calculate the 3D CELs while accounting for the various crack directions. 
In previous work, a modified maximum stress criterion, which could predict the initiation 
of the fiber failure and inter-fiber failure of unidirectional composite materials, was 



 
 
 

Model of CEL for 3D Elements in PDMs of Unidirectional                      159 

 
 

proposed and combined with a sudden degradation model to investigate the failure of 
composite π joints [Zhao, Qin, Zhang et al. (2013); Zhao, Qin, Chen et al. (2014)]. In 
later work, a 3D gradual degradation model was developed to account for the nonlinear 
behavior and some damage characters such as the inter-fiber crack orientation, crack 
closure, etc. [Zhao, Qin, Zhang et al. (2015)]. However, the CEL in the 3D gradual 
degradation model was determined using a rough model that was simply extended from 
2D CEL. In this work, more precise CEL models are proposed to calculate the CELs of 
3D elements for the PDMs of composite structures. The fiber crack direction and 
arbitrary inter-fiber crack direction, which change with the stress variations, are 
considered in these models to accurately calculate the CELs of the 3D elements. Some 
damage characteristics and modeling conventions of unidirectional composite materials 
can facilitate reducing the uncertainties in determining the relative positions of the cracks 
and the element dimension, which make the deduction of CEL more effective. Further, 
the models are applied to the 3D progressive damage analysis of open-hole laminates 
under tension loadings. The advantages of the models are validated by comparing the 
results with the results obtained by progressive damage analysis using other CEL 
expressions. Tensile experiments on open-hole laminates were conducted to further 
validate the numerical results from the proposed models. 

2 CEL model for 3D elements in PDMs of unidirectional composites 

2.1 Definition of CEL 
In composite materials, the damage always initiates from the weakest region such as a 
rich resin region, micro cracks, etc. The material does not lose all of the load carrying 
capability suddenly. With the damage propagating and developing into a macro crack, 
such as a crack shown in Fig. 1(a), the stresses carried by the material decrease to zero 
gradually. A linear softening model is commonly used in the progressive damage analysis 
of composite materials [Bandaru and Ahmad (2016)], as shown in Fig. 1(b). Here, σ is the 
stress component inducing the crack, and ε is the corresponding strain component. When 
the stress is less than a damage onset stress σ0, it increases linearly with the strain, which 
is shown as the AB part; when the stress reaches σ0, damage occurs, after which the stress 
decreases to zero linearly, which is shown as the BC part. Point B corresponds to the 
damage initiation, and point C is related to the full damage state. The area of the triangle 
ABC represents the energy dissipated per unit volume due to the damage.  

      
(a)                         (b)  

Figure 1: The crack band model: (a) crack in a brick element; (b) linear softening model 
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In the crack band model [Bažant and Oh (1983)], the fracture is modeled as a blunt 
smeared crack band. The smeared crack band is simulated by a layer of damaged 
elements in numerical model, which has strain-softening stress-strain relations. The 
energy absorbed by each damaged element is used to form the fracture surfaces in it. 
Therefore, the absorbed energy is equal to the energy consumed by the crack passing 
through it, as shown in Fig. 1(a). The absorbed energy WD of the damaged element is 
calculated as follows: 
WD =Γ·V                                                            (1) 
where V is the element volume, and Γ is the energy dissipated per unit volume. 
The fracture energy WC consumed by the crack with area A could be given as 
WC = GC·A                                                          (2) 
where GC is the fracture toughness of the composite materials, which is constant.  
Therefore, the relation between Γ and GC can be obtained: 

*/
C CG G

V A l
G = =                                                        (3) 

Eq. (3) is the smeared formulation of the crack band model. The parameter l* is the CEL. 
For a cubic element with a regular crack similar to the crack shown in Fig. 1, the CEL is 
the thickness of the element, which represents the width of the crack band in the model. 

In a linear degradation damage model, the Γ can be expressed as 01
2

fσ εG = . 

Substituting it into Eq. (3), Eq. (4) is obtained.  

0 *

2f CG
l

ε
σ

=                                                            (4) 

Clearly, this equation shows that the energy absorbed by the damaged element of a unit of 
cracked area equals the fracture toughness, which makes the numerical results 
independent of the mesh refinement. 

2.2 Assumptions of the 3D CEL model for unidirectional composite materials 
Accurately calculating the CEL of 3D elements with arbitrary cracks is extremely 
difficult because determining the crack area in the element is impossible in PDMs in 
which the crack is not actually modeled. The CEL models here provide only the 
approximate CEL values. Some assumptions about the damage modes and FE modeling 
rules of unidirectional composite materials are adopted to simplify the problems. 

2.2.1 Damage modes of unidirectional composite materials 
The failure mechanism of unidirectional composite materials is quite complex due to 
their multiscale characteristics and two-component composition. At the meso-scale, the 
damage in the composite materials includes the fiber breakage, fiber buckling, matrix 
cracking, interface debonding, fiber bridging, etc. [Maimí, Camanho, Mayugo et al. 
(2007a); Daniel and Ishai (1994)]. At the macroscale, commonly, five failure modes are 
concluded: fiber tensile and compressive failure, matrix tensile and compressive failure, 
and fiber-matrix shearing failure. Under the loading, after the appearance of damage in 
the composite material, the fiber tensile and compressive failure induce cracks 
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perpendicular to the fiber, while matrix tensile and compressive failure and fiber-matrix 
shearing failure lead to cracks parallel to the fiber [Puck and Schürmann (1998); Puck 
and Schürmann (2002)]. Therefore, the CEL model assumes that the unidirectional 
composite material has two classes of damage: fiber cracks occurring in fiber tensile and 
compressive failures, and inter-fiber cracks mainly occurring in matrix tensile and 
compressive failures and fiber-matrix shearing failures, as shown in Fig. 2. A fiber crack 
is always perpendicular to the fiber. An inter-fiber crack is parallel to the fiber. The angle 
of the inter-fiber crack in the ply depends on the stresses acting on the material. It can be 
observed by some researchers’ work [Pinho, Iannucci and Robinson (2006)]. 

      
(a)                (b)  

Figure 2: Damage in unidirectional composite materials: (a) fiber crack; (b) inter-fiber 
crack 

2.2.2 FE modeling rules of unidirectional composite materials 
To easily obtain the CEL, the crack position relative to the element dimension is 
preferred to be as simple as possible. Therefore, the CEL model requires that only the 
hexahedral elements and wedge elements can be used in the FEM of the composite 
structures, and at least one surface of the elements is parallel to the fiber. As a result, the 
fiber directions in different elements are inerratic, as shown in Fig. 3. Fig. 3(a) illustrates 
a hexahedral element with a pair of parallelogram surfaces parallel to the fibers. Fig. 3(b) 
and Fig. 3(c) show two wedge elements. The former has a pair of triangle surfaces 
parallel to the fibers, while the latter has one parallelogram surface parallel to the fibers. 
The principle coordinates of the material are marked in the figures, which is very 
important for describing the damage directions and calculating the CEL. 

 
Figure 3: 3D element configurations of composite structures 
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2.3 Formulae of CEL models for 3D elements 
The CEL for 2D parallelogram elements is deduced first, from which useful references 
are expatiated for establishing the CEL model for 3D elements. Then, the formulae of the 
CEL model for hexahedral elements and wedge elements are deduced. 

2.3.1 Formulae of CEL model for 2D parallelogram elements 
The accurate deduction of the CEL needs the exact position information of the crack in an 
element. It cannot be provided by the PDM because the crack is not modeled exactly. As a 
result, an accurate calculation of the CEL is impossible. The typical position of the crack 
with its path passing through the center of an element is adopted in this work. The crack 
angle should be provided with the failure criteria capable of predicting the crack direction. 
Assume that a crack passes through the center of a parallelogram element with an angle 
of θcrc, as shown in Fig. 4(a). In the case of θcrc≦∠CAD, the crack length lcrc can be 
expressed as  

cos( ) cot( )sin( )
crc

crc crc

al
θ ϕ θ

=
−

                            (5) 

According to the definition of the CEL, the following can be obtained from Eq. (6): 
* sin( ) cos( ) cot( )sin( ) sin( )crc crc crcl b bϕ θ ϕ θ ϕ θ = − = −               (6) 

When θcrc﹥∠CAD, the CEL l* is deduced as  
* sin( )crcl a θ=                                                (7) 

  
(a)          (b) 

Figure 4: A parallelogram element and its equivalent element: (a) parallelogram element; 
(b) equivalent element 

For elements that have the same crack areas, they will have the same CELs when their 
volumes are the same, such as the elements in Fig. 4. They are called equivalent elements 
in this work. This finding means that the CEL of an element can be calculated with its 
equivalent element. It will be easier to calculate the CEL of an arbitrary element by using 
its equivalent element with a regular shape, especially for 3D elements. 

2.3.2 Formulae of the CEL model for 3D elements  
For hexahedral elements, assume that the fiber crack and inter-fiber crack pass through 
the center of the elements when either of them occurs, as shown in Fig. 5(a). Clearly, the 
fiber crack is always perpendicular to the fiber axis, from which the fiber crack direction 
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is fixed. Because the edges of AE, BF, CG and DH are commonly required to be nearly 
perpendicular to the top face in the FEM, it is appropriate to replace the derivation of the 
CEL for fiber crack fl∗  with the CEL of parallelogram EFGH, as follows: 

*

*

EFH, FG sin( )

EFH, EFsin( )

crc crc
f f f

crc crc
f f f

if l EFG

if l

θ θ

θ θ

 ≤ ∠ = ∠ −


> ∠ =
                    (8) 

The fiber crack length crc
fl  is given by Eq. (9):  

*/crc
f EFGH fl S l=                                         (9) 

 
Figure 5: Transformation of the hexahedral CEL model 

For the inter-fiber crack, it is difficult to obtain a concise expression of the CEL, because 
calculating the crack area in the 3D model is cumbersome. The approximately equivalent 
model that has a regular shape with respect to the inter-fiber crack is established to obtain 

ml
∗  in this work. Technically, the equivalent model should have exactly the same crack 

area and volume as its original model. To simplify the deduction, the crack area is 
approximately equal to the original area during the element transformation, while the 
element volume stays constant.  
Two steps are adopted to obtain the equivalent model. First, replace the top and bottom 
surfaces of the original model with rectangle surfaces, whose width is parallel to the fiber 
crack, as shown in Fig. 5(b). The width and length are equal to crc

fl  and fl∗ , respectively. 
Let the crack pass through the center of the new model. It is easy to know that the model 
volume equals that of the original model. The change of the crack area in the model is 
negligible when the side edges are nearly perpendicular to the top and bottom faces. At 
this time, the crack position in the model is still not easy to obtain. In the next step, 
project the side surfaces AEH'D' and B'F'G'C' to the plane perpendicular to the fiber and 
keep the crack through the center of the new model, as shown in Fig. 5(c). The crack area 
and model volume do not change in the second transformation. As a result, an 
approximately equivalent model that has a more regular shape is obtained. 
The inter-fiber crack angle is defined from inter-fiber crack to the element surface 
parallel with the fiber in 3D model. Because the inter-fiber crack is parallel with the fiber, 
it is easy to know that the inter-fiber crack angle can be represented by the angle crc

mθ  in 
Fig. 5(c), which could be predicted with appropriate failure criteria. For the third model, 
the model volume divided by the crack area equals the face A'EH'D'' divided by the line 
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L''M'', which means that the calculation of ml
∗  for the 3D model degenerates into the 

CEL calculation of A'EH'D''. The angle ∠EH'D'' could be deduced by the vector 
calculations, as follows: 

(H D ) (EA EF)                  

(H E) (EF EH)                    

(H D ) (H E)EH D =arccos( )

f

f

e e e
e e e

e e

′ ′′ ×

′ ×

′ ′′ ′

 = ×


= ×
 ′ ′′∠ ⋅

  

  

 

  

  

 

                                  (10) 

where e


 is the unit vector. 
The modified maximum stress failure criterion [Zhao, Qin, Zhang et al. (2013)] is used to 
predict the inter-fiber crack orientation in this work. Once the inter-fiber crack angle crc

mθ  
relative to the top surface of the element is gained, the CEL ml

∗  could be given as 
*

*

EH A , H D sin( EH A )

EH A , H Esin( )

crc crc
m m m

crc crc
m m m

if l

if l

θ θ

θ θ

 ′ ′ ′ ′′ ′ ′≤ ∠ = ∠ −


′ ′ ′> ∠ =
                (11) 

For a wedge element, the CEL is obtained by extending a wedge model to a hexahedral 
model, because a single wedge element could not form a complete crack band in the FEM. 
As shown in Fig. 6, the formulae of the CEL for wedge elements are established using the 
same derivation process as in the hexahedral model. To minimize the error during the 
derivation of the CEL, each surface of the hexahedral model is required to be nearly 
rectangle. An expected extended model of the wedge element is a cube, which shows that 
choosing a proper extending surface of the wedge model is beneficial.  

 
Figure 6: Extension of wedge elements: (a) fiber parallel to top face; (b) fiber parallel to 
side face 

3 Validation of the 3D CEL model in the PDM  
As the element CELs mainly affect the PDM’s objectivity when the mesh sizes change, 
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the applicability of the CEL calculation method could be verified by observing the result 
variations of the PDMs that have different mesh sizes. In this paper, the CEL model of 
3D elements is applied to the PDMs for open-hole laminates under tensile and 
compressive loading. The CEL model, failure criteria and material degradation model are 
embedded into the software ABAQUS® using the subroutine UMAT. The mesh 
independence of the numerical model is verified by comparing with the progressive 
damage analysis using other CEL expressions. Further, static tensile and compressive 
tests of the open-hole laminates are conducted to validate the numerical results. 

3.1 Static tensile and compressive tests 
The laminates were made of X850/IM+-190 carbon/epoxy composite materials. Four groups 
of open-hole plates were tested under tensile loads, which were marked as HPT-1~4. Another 
group of open-hole plates were tested under compressive loads, which were labeled as HPC. 
Each group had three specimens. The lay-up of HPT-1 was [45/0/-45/90/45/0/-45/90]s. The 
lay-ups of HPT-2~4 and HPC were [45/0/-45/0/90/0/45/0/-45/0]s. The thickness of each layer 
was 0.185 mm. The specimen configurations are shown in Fig. 7. The hole diameters for 
HPT-1~4 were 4.76 mm, 6 mm, 8 mm and 10 mm, respectively, and those for HPC were 6 
mm. The ratio of w/d in each specimen was 6. Strengthening plates were adhesively bonded 
at the ends of the specimens for the test clamping. They had the same lay-ups as the 
open-hole laminates. 

 
Figure 7: Dimensions and FEM of open-hole laminates: (a) dimensions; (b) global model; 
(c) local model of Mesh1; (d) local model of Mesh2; (e) local model of Mesh3 

The tests were conducted on a 250 kN Instron 8803 testing machine. Two ends of the 
specimens were clamped by the testing machine. The displacement controlled load, at a 
rate of 2 mm/min, was applied up to the catastrophic failure of the specimens. The 
applied load and grip holder displacement were recorded automatically by the computer. 
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3.2 PDM 
The 3D PDM is applied to simulate the failure process of the open-hole laminates under 
tensile and compressive loading. The modified maximum stress criterion [Zhao, Qin, 
Zhang et al. (2013)] is adopted to predict the initiation of the fiber crack and interfiber 
crack. The 3D gradual material degradation model [Zhao, Qin, Zhang et al. (2015)] is used 
to define the damage evolution and the constitutive equation of the damaged materials. 

3.2.1 Failure criteria 
The modified maximum criterion [Zhao, Qin, Zhang et al. (2013)] assumes that the fiber 
failure is mainly affected by the stress component σ11. When the stress component σ11 
exceeds the longitudinal tensile or compressive strength, the fiber crack onset occurs. The 
inter-fiber failure is caused by either the maximum tensile/compressive stress in the 
transversal isotropic plane max

mσ / min
mσ  or the maximum fiber-matrix shear stress max

Sσ . 
The inter-fiber crack angles are given according to the experiment observations [Maimí, 
Camanho, Mayugo et al. (2007a); Puck and Schürmann (1998); Puck and Schürmann 
(2002); Pinho, Iannucci and Robinson (2006)]. 
Fiber crack initiation 

11 11

11 11

0, / 1
0, / 1

t

c

X
X

σ σ

σ σ

> =

< =
                                       (12) 

where Xt and Xc are the longitudinal tensile and compressive strength, respectively. The 
fiber crack is perpendicular to the fiber.  
Inter-fiber crack onset 
If any criterion among the matrix tensile failure criterion, matrix compressive failure 
criterion and fiber-matrix shearing failure criterion is satisfied, the inter-fiber crack onset 
is detected.  
Matrix tensile ( max

m 0σ ≥ ) and compressive ( min
m 0σ ≤ ) failure 

max
m t

T 23
m

22 33

1

21 arctg( )
2

Yσ

σ
θ

σ σ

=



= 
− 

   

min
m c

C 23
m

2 3

| | 1

21 arctg( )+143
2

Yσ

σ
θ

σ σ

=



= °
− 

                (13) 

where ( ) ( ) 2
22 33 22 33max 2

m 232 2
σ σ σ σ

σ σ
 + −

= + + 
 

, ( ) ( ) 2
22 33 22 33min 2

m 232 2
σ σ σ σ

σ σ
 + −

= − + 
 

. Yt 

and Yc are the transverse tensile and compressive strength, respectively. T
mθ  and C

mθ  are 
the inter-fiber crack angles that correspond to the matrix tensile and compressive failure, 
respectively. 
The fiber-matrix shearing failure is expressed as follows: 

max
S 12

13
S

12

=1

arctg( )

Sσ

σ
θ

σ





= 


                                               (14) 
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where max 2 2
S 12 13σ σ σ= + . S12 is the fiber-matrix shearing strength, and θS is the inter-fiber 

crack angle corresponding to the fiber-matrix shearing failure. 

3.2.2 Material degradation model 
The material degradation model is established under a local coordinate O-1'2'3' fixed to the 
cracks [Zhao, Qin, Zhang et al. (2015)], as shown in Fig. 8. The axis 1’ is along the normal 
direction of the fiber crack P(D1). The axis 2' is along the normal direction of the inter-fiber 
cracks P(D2) that first occur in the materials. To make it simple, assume the second 
inter-fiber crack P(D3) is perpendicular to the inter-fiber crack P(D2) and fiber crack P(D1). 
The axis 3’ is along the normal direction of the second inter-fiber cracks P(D3). 

 
Figure 8: Definition of damage variables and coordinate systems 

The material degradation model uses three damage variables, D1, D2 and D3, to describe 
the damage: D1 corresponds to the fiber crack; D2 to the first inter-fiber crack; and D3 to 
the second inter-fiber crack. The evolution of each crack obeys the linear degradation 
damage model except for the longitudinal compressive behavior with lateral constraints. 
The general expression of the damage variable is defined as  

0

0

( )max 0,min(1, )
( )

f

fD ε ε ε
ε ε ε

 −
=  − 

                                       (15) 

For the fiber cracks, the damage variable D1 is provided as 
0

11 11 11
1 0

11 11 11

( )min(1, )
( )

f

fD ε ε ε
ε ε ε

+ +

+ +

−
=

−
, 11 0ε > ; 

0
11 11 11

1 0
11 11 11

( )min(1, )
( )

f

fD ε ε ε
ε ε ε

− −

− −

−
=

−
, 11 0ε <     (16) 

where 0
11ε +  and 11

fε +  relate to the onset and final failure strain of the fiber tensile 
damage, respectively; and 0

11ε −  and 11
fε −  are the onset and final failure strain of the fiber 

compressive damage, respectively.  
For the inter-fiber cracks, the normal stress σN, longitudinal shear stress τL and transversal 
shear stress τL could lead to the damage propagation. The most critical stress is assumed 
to drive the inter-fiber crack without regard to the stress interaction. The damage variable 
is expressed as  

max( , , )   2,3N L T
i i i iD D D D i= =                                      (17) 

where
0

0

( )min(1, )    , ,
( )

k f k k
k i i i
i k k f k

i i i

D k N L Tε ε ε
ε ε ε

−
= =

−
; and N, L and T denote the normal, 

longitudinal and transversal variables, respectively. 
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The PDM [Maimí, Camanho, Mayugo et al. (2007b)] has comprehensively considered 
the effects of the inter-fiber crack orientation, the coupling of fiber failures and inter-fiber 
failures under longitudinal loads, the closure effect for inter-fiber cracks, longitudinal 
compressive behaviors under transversal constraints, etc. The effective properties of the 
damaged materials are given in Tab. 1. 2

nD  and 3
nD  denote the effective normal damage 

variables; and 2
tD and 3

tD  denote the effective shear damage variables for the inter-fiber 
damage. The material stiffness matrix D in the global coordinate can be further deduced 
with the local stiffness matrix D'. The detailed derivations are reported in reference [Zhao, 
Qin, Zhang et al. (2015)]. 

Table 1: Material parameters in 3D PDM 

D1=0 or D1>0, σ11≥0 D1>0, σ11<0 

1 1 1 1 1(1 )E E D′ ′ ′ ′= −  
2 2 2 2 2 (1 )nE E D′ ′ ′ ′= −  

3 3 3 3 3(1 )nE E D′ ′ ′ ′= −  
1 2 1 2 2(1 )tG G D′ ′ ′ ′= −  1 3 1 3 3(1 )tG G D′ ′ ′ ′= −  
2 3 2 3 2 3(1 )(1 )t tG G D D′ ′ ′ ′= − −  

1 2 1 2 1(1 )Dν ν′ ′ ′ ′= − , 1 3 1 3 1(1 )Dν ν′ ′ ′ ′= −  
2 3 2 3 2(1 )nDν ν′ ′ ′ ′= −  
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1 1 1 1 2 2 1 2 2( 0.01 )(1 ) 0.01E E E D E′ ′ ′ ′ ′ ′ ′ ′= − − +  
2 2 2 2 20.01 (1 )nE E D′ ′ ′ ′= − , 3 3 3 3 30.01 (1 )nE E D′ ′ ′ ′= −   
1 2 1 2 2(1 )tG G D′ ′ ′ ′= − , 1 3 1 3 3(1 )tG G D′ ′ ′ ′= −  
2 3 2 3 2 3(1 )(1 )t tG G D D′ ′ ′ ′= − −  

1 2 1 2 1( 0.499)(1 ) 0.499Dν ν′ ′ ′ ′= − − +  
1 3 1 3 1( 0.499)(1 ) 0.499Dν ν′ ′ ′ ′= − − +  
2 3 2 3 1 2(( 0.499)(1 ) 0.499)(1 )nD Dν ν′ ′ ′ ′= − − + −  

2 3 2 3 1 2(( 0.499)(1 ) 0.499)(1 )nD Dν ν′ ′ ′ ′= − − + − , 1 2
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3.2.3 Viscous regularization 
To overcome the convergence difficulties caused by the strain-softening constitutive 
models in the implicit analysis programs, the Duvaut-Lions viscosity model [Duvaut and 
Lions (1976)] is implemented. 
The time derivatives of the damage variable can be defined as  

1 ( )v vD D D
η

= −                                        (18) 

where η denotes the viscous parameter, and Dv denotes the regularized damage variable. 
The backward-Euler scheme is used to update the regularized damage variable for the 
time integration.  

t t t t t
v v

tD D D
t t

η
η η

+D +DD
= +

+ D + D
                               (19) 

Because the viscous parameter will increase the energy dissipated at a material 
integration point that is undergoing damage evolution, it should be as small as necessary 
to solve convergence difficulties. A value of 0.001 is adopted in this work. 
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3.2.4 CELs of the element 
In addition to the CEL models proposed in this work, the CEL expressions for 2D 
elements are simply modified for applications in 3D models. The CEL expression for the 
square element [Maimí, Camanho, Mayugo et al. (2007b)] is used to calculate the CEL of 
hexahedral elements.  

*

cos( )crc

Al
θ

=                                            (20) 

where A is the average area of the top and bottom surfaces of the hexahedral elements, 
and θcrc is the angle of the crack direction with the mesh line of the top surface.  
The CEL expression for the triangular element [Maimí, Camanho, Mayugo et al. (2007b)] 
is used to calculate the CEL of the wedge element. 

* 2
3

Al =                                             (21) 

3.3 FEM of open-hole laminates 
The FEM of the open-hole laminates is established using C3D8 elements with one 
element per layer, as shown in Fig. 7. The meshes around the hole are refined due to the 
large stress gradient. The clamp sections of the laminates are not of concern and are not 
modeled because they are far enough from the hole. The left end of the FEM is fully 
restrained, while a tensile displacement in the longitudinal direction of the laminates is 
applied to the right end of the model. Meanwhile, the clamped areas of up and bottom 
surfaces are restrained in out-of-plane degree. Three mesh schemes with hole element 
sizes of about 0.59 mm, 0.39 mm and 0.29 mm are respectively established to evaluate 
the mesh independence of the PDM, which are marked as Mesh1, Mesh2 and Mesh3, as 
shown in Fig. 7. 
Tab. 2 lists the mechanical properties of the X850/IM+-190 carbon/epoxy composite 
materials. The out-of-plane elastic modulus and strengths are deduced from the in-plane 
properties using the transversal isotropic assumption [Qin, Zhao and Zhang (2013)]. 

Table 2: Properties of X850/IM+-190 carbon/epoxy composite materials 

Elastic 
modulus/GPa 

E11 E22=E33 G12=G13 G23 v12=v13 v23 
195 8.58 4.57 2.90 0.33 0.48 

Strength/MPa Xt Xc Yt=Zt Yc=Zc S12=S13 S23 
3071 1183 88 271 143 102 

Fracture 
toughness/N/mm 

2
n
CG  2 2

L T
C CG G=  1CG+  1CG−  

0.368 1.480 55.00 30.00 

3.4 Results and discussion 
Figs. 9(a) and 9(b) provide the predicted load-displacement curves of HTP-1 and HPC by 
the PDMs using the CELs proposed here and in the literature. Three different mesh 
schemes are adopted for each case. With the FE model mesh changing, the predicted 
load-displacement curves are closer for models that use the CELs proposed here in both 
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the tensile and compressive cases. For the laminates that have a lower proportion of 0° 
plies, such as HPT-1 specimens, the mesh independence improvement by the proposed 
CELs is more obvious because the inter-fiber damage plays a more important role in the 
structural failure process. The comparison in both the tensile and compressive predictions 
indicates that the proposed CEL models can effectively ensure the mesh independence of 
the PDM. 

 
(a)                             (b)  

Figure 9: Predicted load-displacement curves of open-hole laminates by PDMs using 
different CELs: (a) HPT-1; (b) HPC 

Figs. 10(a) and 10(b) illustrate the typical experimental and numerical load-displacement 
curves for open-hole laminates in the tensile and compressive tests. The numerical models 
predict the plate stiffness changes well under both tensile and compressive loads. Tab. 3 
lists the experimental and numerical ultimate failure loads. It can be seen that when the hole 
diameter, ply sequence and load change, the errors in the numerical results are between 
-5.9% and 2.3%. The numerical results are very close to the experimental results. 

  
(a)                           (b) 

Figure 10: Experimental and numerical load-displacement curves of open-hole laminates: 
(a) results in tension; (b) results in compression 
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Table 3: Experimental and numerical ultimate failure loads 

Specimens d/mm Exp. Ult. load/kN Avg. 
Val./kN Cv /% Num. Ult. 

load /kN Error/% 

HPT-1 4.76 46 48.7 47.5 47.4 2.85 48.4 2.1 
HPT-2 6 122.1 121.8 119.7 121.2 1.08 116.7 -3.7 
HPT-3 8 155.4 161.4 150.4 155.7 3.54 146.5 -5.9 
HPT-4 10 184.7 188.3 183.4 185.5 1.37 177.5 -4.3 
HPC 6 55.3 56.3 56 55.9 1 57.2 2.3 

Fig. 11 and Fig. 12 show the predicted inter-fiber damage and fiber damage accumulation 
in HPT-1 under the tensile load. The colored areas represent the damage zone, in which 
the blue denotes the damage onset and the dark red denotes severe damage. Tab. 4 lists 
the damage propagation in different plies of HPT-1. The inter-fiber damage first occurred 
in the 90° plies at 29.5 kN (1.36 mm of displacement). When the load went up to 40.3 kN 
(1.88 mm of displacement), new inter-fiber damage occurred in the 0° plies and 45° plies. 
Meanwhile, slight fiber damage was detected at the hole edge in the 0° plies. Before 43.8 
kN (2.05 mm of displacement), the inter-fiber damage propagated slowly along the 
cross-section of the plate. When the load reached the peak of 48.4 kN (2.32 mm of 
displacement), serious inter-fiber damage occurred in all of the plies near the hole, and 
the propagations of fiber damage in the 0° plies were obvious. Little fiber damage 
appeared away from the hole edge in the 45° plies. Afterward, the load decreased sharply. 
When the displacement was 2.36 mm, the load decreased to approximately 2 kN. The 
inter-fiber damage regions in the 0° plies were usually straight along the plate section. 
However, the inter-fiber damage in the 45° plies and 90° plies spread near the plate edges, 
which formed the triangle damage zone. For fiber damage, the propagation paths in the 0° 
plies turned to the 45° direction near the plate edges. The fiber damage in the 45° plies 
propagated almost straight in the middle regions. Scattered fiber damage in the 45° plies 
occurred near the plate edges. No serious fiber damage was predicted in the 90° plies. 
The damage accumulation in all of the plies formed a relatively straight tensile fracture at 
the middle region and the complex damage zone near the edges. 

 
Figure 11: Inter-fiber damage accumulation of HPT-1 in tension 
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Figure 12: Fiber damage accumulation of HPT-1 in tension 

Table 4: Damage accumulation of HPT-1 in tension 

End 
disp./mm Load/kN 

Inter-fiber damage Fiber damage 
0°  45°  90° 0°  45°  

1.36 29.5 - - Initiation - - 
1.88 40.3 Initiation Initiation Little - - 
2.05 43.8 Little Little Large Initiation - 
2.32 48.4 Serious Large Serious Little Initiation 

2.36 2 Through 
width  

Through 
width 

Through 
width 

Through 
width Large 

Fig. 13 shows the final failure morphologies of HPT-1 predicted by the PDM using the 
proposed CEL models and obtained from the experiments. Three simulations with 
different mesh sizes were carried out to investigate the damage propagation in HPT-1 
under tensile load. No damage and sounds were found before a sudden failure in the 
experiments. A dominant fracture crossed the open-hole plate. The outer 45° plies near 
the plate edges were peeled off, as shown in Fig. 13(a). Similar failure morphologies 
were predicted by the PDM. The gray areas in Fig. 13(b) describe the severe damage, 
which exhibits a relatively straight fracture near the hole. Serious inter-fiber damage near 
the plate edges makes the fracture uneven. 

   
(a)                        (b)  

Figure 13: Failure morphologies of HPT-1 in tension: (a) From experiments; (b) From 
numerical predictions 
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Fig. 14 and Fig. 15 show the predicted inter-fiber damage and fiber damage accumulation 
in HPC under compressive loads. Tab. 5 lists the damage propagation in different plies. 
The inter-fiber damage initiated in the 0°, 90° and 45° plies at 47.9 kN, 49.0 kN and 50.1 
kN (1.30 mm, 1.33 mm and 1.36 mm of displacement), respectively. The fiber damage in 
the 0° plies were at 47.9 kN, and in the 45° plies were at 56.8 kN (1.57 mm of 
displacement). When the load reached the peak of 57.2 kN (1.60 mm of displacement), 
the inter-fiber damage in all of the plies and the fiber damage in the 0° plies propagated 
to a certain distance along the cross section. The development of fiber damage in the 45° 
plies was slight. The compressive load decreased sharply after the peak point. The 
inter-fiber damage in all of the plies and the fiber damage in the 0° and 45° plies 
extended to the plate edges rapidly. Little fiber damage occurred in the 90° plies. The 
damage accumulation in all of the plies formed relative straight fractures at the middle 
regions. The final fracture formed by the damage accumulation was relatively straight at 
the middle regions and turned at a certain angle near the plate edges. 

 
Figure 14: Inter-fiber damage accumulation of HPC in compression 

 
Figure 15: Fiber damage accumulation of HPC in compression 
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Table 5: Damage accumulation of HPC in compression 

End 
disp./mm 

Load/k
N 

Inter-fiber damage Fiber damage 
0°  45°  90° 0°  45°  90° 

1.30 47.9  Initiation - - Initiation - - 
1.33 49.0 Little - Initiation Little - - 
1.36 50.1 Little Initiation Little Little - - 
1.57 56.8 Little Little Little Little Initiation - 
1.60 57.2 Large Large Large Large Little - 
1.65 10 Through 

width 
Through 
width 

Through 
width 

Through 
width 

Through 
width Large 

Fig. 16 shows the experimental and numerical failure morphologies of HPC. A dominant 
fracture is observed crossing the open-hole plate in the experiment. In addition, obvious 
delamination could be found from the side viewpoint. The PDMs provide similar failure 
morphologies with the experiment results, including the deformation of the delaminated 
plies, which indicates the good agreement between the numerical and experimental results. 

  
(a)                                   (b)  

Figure 16: Failure morphologies of HPC in compression: (a) From experiments; (b) 
From numerical predictions 

4 Conclusions 
Due to various crack directions in 3D elements for progressive damage analyses, the CEL 
is difficult to calculate but essential to ensure the objectivity of the progressive damage 
analyses. The CEL models for 3D elements in progressive damage analyses of 
unidirectional composite structures are proposed, which account for various fiber and 
inter-fiber crack directions in the 3D elements to obtain relatively accurate CELs. The 
PDM of open-hole laminates under tensile and compressive loading was established with 
the CEL models proposed, which was simply extended from 2D CELs. The numerical 
results show that the proposed CEL models can better improve the mesh independence of 
the numerical models. In addition, tensile and compressive tests of the open-hole 
laminates were conducted. Good agreements between the numerical and experimental 
results further validate the PDM with the proposed CEL models. 
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