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Abstract: In this article, a meshless method using the spacetime collocation for solving 
the two-dimensional backward heat conduction problem (BHCP) is proposed. The 
spacetime collocation meshless method (SCMM) is to derive the general solutions as the 
basis functions for the two-dimensional transient heat equation using the separation of 
variables. Numerical solutions of the heat conduction problem are expressed as a series 
using the addition theorem. Because the basis functions are the general solutions of the 
governing equation, the boundary points may be collocated on the spacetime boundary of 
the domain. The proposed method is verified by conducting several heat conduction 
problems. We also carry out numerical applications to compare the SCMM with other 
meshless methods. The results show that the SCMM is accurate and efficient. 
Furthermore, it is found that the recovered boundary data on inaccessible boundary can 
be obtained with high accuracy even though the over specified data are provided only at a 
1/6 portion of the spacetime boundary. 
 
Keywords: Spacetime, collocation, meshless method, backward heat conduction problem, 
basis functions. 

1 Introduction 
There are many backward heat conduction problems (BHCP) encountered in various 
engineering and industrial practices. Since the initial value of the temperature field of 
heat distribution is unknown in the BHCP, it is of importance that the BHCP is to recover 
the elapsed temperature as well as to obtain the initial temperature [Mera, Elliott, Ingham 
et al. (2002)]. Though boundary conditions for such a system are given, the absent initial 
temperature renders BHCP into the inverse problems [Movahedian, Boroomand and 
Soghrati (2013); Liu (2016); Liu, Qu and Zhang (2018)]. Since the unknown 
temperatures have to be determined from final time and boundary data which may be 
contaminated by measurement error, the BHCP is categorized into one of the ill-posed 
problems where small perturbation on the measured data may amplify error in the 
numerical solutions [Marin (2008)]. As a result, the approach for obtaining the numerical 
solutions is challenging because of the ill-conditioned system of the BHCP. For these 
reasons, the BHCPs remain difficult to solve.  
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Several mesh-based approaches have already been studied for solving the BHCPs, such 
as the boundary element method [Han, Ingham and Yuan (1995); Mera, Elliott, Ingham et 
al. (2001)], the iterative boundary element method [Lesnic, Elliott and Ingham (1998)], 
the finite element method [Wang and Mai (2005)], the finite difference method [Le Dret 
and Lucquin (2016)] , the local Petrov-Galerkin collocation method [Sladek, Sladek and 
Atluri (2004); Wu, Shen and Tao (2007)] or the lattice-free high-order finite difference 
method [Iijima (2004); Iijima and Onishi (2007)]. Besides, the group preserving scheme 
[Liu (2004); Liu, Chang and Chang (2006)], the Lie-group shooting method in the time 
direction [Chang, Liu and Chang (2007); Chang, Liu and Chang (2009); Liu (2010)], the 
fictitious time integration method [Chang and Liu (2010)], and the modified polynomial 
expansion algorithm [Chang, Liu and Wang (2018)] have also been used in solving the 
BHCP. In the past, the finite and boundary element methods play an important role as 
numerical tools for the numerical solutions of boundary value problems [Atalay, Aydin 
and Aydin (2004); Ferronato, Mazzia and Pini (2010)]. However, the mesh-based 
methods require complicated mesh generation in the domain and usually more 
computational time.  
Recently published work demonstrates that the meshless methods such as the Trefftz 
method, the reproducing kernel particle method (RKPM) [Cheng and Liew (2009); Mu, 
He and Dong (2015)], the method of fundamental solutions (MFS) [Mera (2005); Hon 
and Wei (2005); Johansson and Lesnic (2008); Shi, Wang and Wei (2012)], the 
collocation method [Dai, Yue and Liu (2014)], the time domain collocation method [Dai, 
Schnoor and Atluri (2012); Dai, Yue, Yuan et al. (2014)], the smooth particle 
hydrodynamic method (SPH) [Jeong, Jhon, Halow et al. (2003); Shadloo, Oger and Le 
Touzé (2016); Alshaer, Rogers and Li (2017)], and the radial basis function (RBF) 
[Dehghan and Mohammadi (2014); Hanoglu and Sarler (2015)] have been developed and 
attracted much attention to solve heat conduction problems. Johansson and Lesnic 
introduced an application of the MFS defining the solution of the heat conduction 
problems as linear combinations of fundamental solutions to solve time-dependent heat 
conduction problems [Johansson and Lesnic (2008)]. Movahedian et al. [Movahedian, 
Boroomand and Soghrati (2013)] applied the Trefftz method based on adopting the 
exponential basis functions to solve the inverse heat conduction problem. Arghand et al. 
[Arghand and Amirfakhrian (2015)] proposed a meshless method based on the MFS and 
the RBF to solve the inverse heat conduction problem. Moreover, Liu solved the high-
dimensional inverse heat conduction problem using a multiple/scale/direction polynomial 
Trefftz method [Liu (2016)]. The indirect Trefftz method, also called the collocation 
Trefftz method (CTM) which can be traced back to 1926, is a boundary-type solution 
procedure. The CTM belongs to the meshless family in which numerical solutions for 
dealing with boundary value problems are approximated as basis functions satisfying 
exactly the governing equation [Kita and Kamiya (1995); Chen, Wu, Lee et al. (2007); 
Fan and Chan (2011)]. The CTM is originally proposed to solve boundary value 
problems in Euclidean space. Consequently, the adoption of the CTM for solving 
transient problems has never been reported [Karageorghis, Lesnic and Marin (2014); Ku, 
Xiao, Liu et al. (2016); Liu, Kuo and Jhao (2016)]. Recently, a novel advanced meshless 
method based on the spacetime coordinate system has been developed which can provide 
promising numerical solution for the transient flow problems [Ku, Liu, Xiao et al. (2017); 
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Ku, Liu, Su et al. (2018)]. 
In this study, we present a novel spacetime collocation meshless method (SCMM) for 
solving the two-dimensional BHCP. The SCMM is to derive the general solutions as the 
basis functions for the two-dimensional transient heat equation using the separation of 
variables. Numerical solutions of the heat conduction problem are expressed as a series 
using the addition theorem. Since the basis functions are the general solutions of the 
governing equation, the boundary points may be placed on the spacetime boundary of the 
domain. The proposed method is verified by conducting several heat conduction 
problems. We also carry out numerical applications to compare the SCMM with other 
meshless methods. The remainder of this study is arranged as follows. Section 2 
describes the formulation of the heat equation. In Section 3, we introduce the SCMM to 
explain the two-dimensional numerical solutions to the heat equation for heat conduction 
problems. In Section 4, we conducted several numerical examples of heat conduction 
problems to show the stability, convergence and high accuracy of the SCMM. Finally, 
findings and conclusions are summarized in Section 5. 

2 Formulation of the heat equation 
The two-dimensional heat conduction problem in the spatial and time domain is 
described as follows. 
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where 2α  is the heat conductivity, u is the heat distribution, t is the time, L is the length 
of the space time domain, and T is the final elapsed time. For the two-dimensional direct 
heat conduction problem (DHCP) as Eq. (1), the initial and boundary conditions are 
required as follows. 

)0,,()0,,( 0 === tyxtyxu ϕ ,             (2) 

),,(),,( tyxhtyxu = ,             (3) 

where )0,,(0 =tyxϕ  is the initial temperature and ),,( tyxh  is the boundary data. Eq. (1) 
is the governing equation of the DHCP with given initial and boundary conditions for 
modeling the heat transfer process.  
For the inverse heat conduction problem (IHCP), the initial or boundary conditions may 
not be provided. Typically, there are two types of IHCPs. The first type of IHCPs is the 
case where the initial value of the temperature field of heat distribution is unknown. The 
distribution of the temperature in the domain from the specified data on the final time 
boundary is determined by the BHCP [Movahedian, Boroomand and Soghrati (2013)]. 
The elapsed temperature can be recovered by the BHCP. The governing equation of the 
BHCP is expressed as Eq. (1). The boundary condition is expressed as Eq. (3). The final 
time condition is required as follows. 

),,(),,( TtyxTtyxu f === ϕ ,             (4) 

where ),,( Ttyxf =ϕ  is the temperature for the final time condition. Solving the 
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governing equation as depicted in Eq. (1) with the given boundary and final time 
conditions is called the BHCP. The BHCP, which is an inverse problem, is to determine 
the value of ),,( tyxh  for Tt ≤≤0  from the data ),,( tyxh  and ),,( Ttyxf =ϕ . The final 
time heat distributions ),,( Ttyxf =ϕ  are unknowns based on the measurement.  

The other type of the IHCP is to recover the temperature field only from the measured 
data on partial boundary. In addition, white noise for the measured data may also be 
considered [Movahedian, Boroomand and Soghrati (2013)]. A small random noise in the 
measured data ),,( Ttyxf =ϕ  may cause arbitrarily large error in the solution of ),,( tyxh  
because of the ill-posedness. In this study, the noised data on accessible boundary and 
final time data are represented as follows. 

)(1),(),(ˆ randstxhtxh ×+×= ,             (5) 

)(1),(),(ˆ randsTtxTtx ff ×+×=== ϕϕ ,             (6) 

where ),( txh  is the exact boundary data in Eq. (5), ),( Ttxf =ϕ  is the exact final time 

data in Eq. (6), ),(ˆ txh  is the noise data on accessible boundary, ),(ˆ Ttxf =ϕ  is the noise 
data on final time data, rand is the random number generated by the uniform distribution 
in the range of ]1 ,1[− , and s  is the noise level. The number of random number generated 
in Eqs. (5) and (6) are the same with the number of boundary collocation points. To deal 
with the BHCP, it is of importance to examine the accuracy and stability of the SCMM 
with the consideration of different levels of random noise in the measured data. 

3 The spacetime collocation meshless method 
The spacetime coordinate system is adopted to deal with the transient modeling. Recently 
published work indicates that time can be defined as an independent variable based on the 
spacetime coordinate system [Ku, Liu, Xiao et al. (2017);  Ku, Liu, Su et al. (2018)]. For 
example, we conduct a three-dimensional coordinate which includes one-dimensional in 
time and two-dimensional in space for solving a two-dimensional BHCP. Consequently, 
the original two-dimensional BHCP can be transformed into three-dimensional inverse 
boundary value problem (IBVP). It is significant that the temperature values at the final 
time and at space boundary may be given on the spacetime boundary of the domain. 
Considering a two-dimensional heat conduction problem, there is two-dimensional 
simply-connected domain in space and one-dimensional in time. The two-dimensional 
heat conduction problem is expressed as 
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where ρ  denotes the radius, and θ  denotes the polar angle in the polar coordinate system. 
To formulate transient solutions of two-dimensional heat equation, the method of 
separation of variables is applied by assuming the following solution. 

)()()(),,( tTYXtu θρθρ = .             (8) 
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For simplicity, we consider the following equation. 

ρ
ρ

d
dXX )('= , 

2

2 )("
ρ
ρ

d
XdX = , 2

2 )("
θ
θ

d
YdY = , and 

dt
tdTT )('= .           (9) 

Inserting the above equations into Eq. (7), we may obtain 

')"1'1"( 2
2 XYTTXYYTXYTX =++

ρρ
α .             (10) 

Dividing by )()()( tTYX θρ  on both sides in the above equation, Eq. (10) is rewritten as 
following equations. 
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where λ  and ϖ  are unknown constant.  To obtain the eigenvalue of the above equations, 
we adopt the constant v  and k  to ensure positive or negative constant. The detailed 
formulations including six cases are described as follows. 
(1) The first case: 0=ϖ  and 0=λ  
Considering the first case, 0=ϖ  and 0=λ , we obtain the solutions as follows. 
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where 1C , 2C , 3C , 4C  and 5C  are constants. Using the boundary conditions of 
),2,(),0,( tYtY πθρθρ === , we may find that 03 =C . Inserting Eq. (14) into Eq. (7), 

we may obtain  

21 ln),,( CCtu += ρθρ ,             (15) 

where 1C  and 2C  are constant.  

(2) The second case: 0=ϖ  and 2k=λ  

Considering the second case, 0=ϖ  and 2k=λ , we may obtain the solutions as follows. 
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where 0I  is the modified Bessel function of the first kind, 0K  is the modified Bessel 
function of the second kind [Abramowitz and Stegun (1965); Watson (1995)], 6C , 7C , 
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8C , 9C  and 10C  are constants. Substituting Eq. (16) into Eq. (7), we may have 

)()(),,( 0403
2222

ρρθρ αα kKeCkIeCtu tktk += ,             (17) 

where 3C  and 4C  are constant.  

(3) The third case: 0=ϖ  and 2k−=λ  

Considering the third case, 0=ϖ   and 2k−=λ , we may obtain the solutions as follows. 
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where 0J  is the Bessel function of the first kind, 0Y  is the Bessel function of the second 
kind [Abramowitz and Stegun (1965); Watson (1995)], 11C , 12C , 13C , 14C  and 15C  are 
constants. Substituting Eq. (18) into Eq. (7) may yield the following equation. 

)()(),,( 0605
2222

ρρθρ αα kYeCkJeCtu tktk −− += ,             (19) 

where 5C  and 6C  are constant.  

(4) The fourth case: 2v−=ϖ  and 0=λ  

Considering the fourth case, 2v−=ϖ  and 0=λ , we may obtain the solutions as follows. 
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where 16C , 17C , 18C , 19C  and 20C  are constants. Substituting Eq. (20) into Eq. (7) may 
obtain the following equation. 

)sin()cos()sin()cos(),,( 10987 θρθρθρθρθρ vCvCvCvCtu vvvv −− +++=  ,        (21) 

where 7C , 8C , 9C  and 10C  are constants. 

(5) The fifth case: 2v−=ϖ  and 2k=λ  

Considering the fifth case, 2v−=ϖ  and 2k=λ , we may obtain the solutions as follows. 
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where 21C , 22C , 23C , 24C  and 25C  are constants. Substituting Eq. (22) into Eq. (7) may 
have the following equation. 
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where vI  is the modified Bessel function of the first kind of the v order, vK  is the 
modified Bessel function of the second kind of the v order [Abramowitz and Stegun 
(1965); Watson (1995)], 11C , 12C , 13C  and 14C  are constants.  

(6) The sixth case: 2v−=ϖ  and 2k−=λ  

Finally, we consider the last case, 2v−=ϖ  and 2k−=λ . We may obtain the solutions as 
follows. 
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where vJ  is the Bessel function of the first kind of the v order, vY  is the Bessel function 
of the second kind of the v order [Abramowitz and Stegun (1965); Watson (1995)], 26C , 

27C , 28C , 29C  and 30C  are constants. Substituting Eq. (24) into Eq. (7), we have 
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where 15C , 16C , 17C  and 18C  are constants. Collecting all the solutions from the above 
formulations, the linearly independent solutions to heat equation can be expressed as 
follows. 
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where w  is the order of the basis functions for approximating the solution. For a simply 
connected domain, only positive basis functions need to be considered. Therefore, the 
above equation can be simplified as following equation. 
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Using the final time and boundary conditions given by Eqs. (4) and (3), Eq. (27) may be 
discretized at numerous boundary collocation points on the spacetime boundary. 
Consequently, a system of linear equations may be obtained as following equation. 

BAC = ,             (28) 
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A ,

[ ]T0 wwkk hbaa =C  , [ ]T321 pbbbbbbbb =B , A  is a matrix (size of 
qp× ) of the basis functions,  C  is a vector  (size of 1×q ) of unknown coefficients to be 

determined, B  is a vector (size of 1×p ) of given Dirichlet boundary data at boundary 
collocation points, p  is the number of boundary collocation points, q  is the number of 
the terms related to the order of the basis function as depicted in Eq. (28), which can be 
defined as 144 2 ++= wwq , pρρρ ,, , 21   are radiuses, pθθθ ,, , 21   are polar angles, 

wwkk hbaa ,,, ,0   are unknown coefficients to be evaluated, and pbbbbbbbb ,,, , 321    are 
Dirichlet boundary data. The unknown coefficients for the three-dimensional spacetime 
domain may be determined for solving Eq. (28). To obtain the temperature field of the 
heat distribution for the spacetime domain, the inner collocation points in three-
dimensional spacetime domain have to be placed. The heat distribution at inner 
collocation points can be computed by Eq. (28) for the three-dimensional spacetime 
domain. 

4 Verification and comparison examples 
4.1 Two-dimensional direct heat conduction problem 
The scenario investigated is the modeling of two-dimensional DHCP. The time-
dependent heat transfer in an isotropic and homogeneous space is expressed by the heat 
equation given by Eq. (1). The initial condition is given as follows. 

)sin()sin(10)0,,( yxtyxu == .             (29) 
The Dirichlet boundary conditions are given using the following exact solution. 

)sin()sin(10),,(
22 yxetyxu tα−= .             (30) 
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In this example, the length and the width of the space domain is π  m, the heat conductivity 
is 1 W m-1 K-1 and the final elapsed time is 0.25 h.  The initial condition is applied on the 
bottom side of the spacetime domain and the boundary conditions are applied on both left 
and right sides of the three-dimensional spacetime domain, as shown in Fig. 1(a).  

 
(a) two-dimensional DHCP                                     (b) two-dimensional BHCP 

Figure 1: Illustration of the two-dimensional DHCP and BHCP 

For a simply connected domain, it is necessary to locate the source point inside the domain 
and the number of source point is only one for in the SCMM. The source point is the 
reference point for computing the radius and polar angle. There are 1280 boundary 
collocation points. The numbers of boundary collocation points in space domain and in time 
domain are considered to be 256 and 1024, respectively. The Dirichlet boundary values 
obtained from the exact solution are specified on boundary collocation points which placed 
on four vertical sides of the spacetime domain. The order of the basis function is 20. 
To show the accuracy of the computed result from the proposed method and that from other 
meshless methods, we conduct a comparison example with the consideration of DHCP. We 
place 4056 inner collocation points which placed uniformly inside the three-dimensional 
spacetime domain to obtain the computed results of the heat distribution. Then, we select the 
profiles of the computed results at different time to compare with the exact solution. 
Fig. 2 demonstrates the computed results from the proposed method and the exact solution. 
The computed heat distribution from the proposed method are compared with those of the 
RKPM and Trefftz method based on EBFs, as depicted in Tab. 1. For the RKPM, 121 
scattered nodes inside the domain were considered [Cheng and Liew (2009)]. As for the 
Trefftz method based on EBFs, 80 points on the boundary and 100 points as the initial nodes 
inside the domain were considered [Movahedian, Boroomand and Soghrati (2013)]. It is 
found that the computed results using the SCMM agree very well with the exact solution. 
We then compare the maximum absolute error of the proposed method with those of the 
RKPM and Trefftz method based on EBFs. The maximum absolute error of the RKPM and 
Trefftz method based on EBFs reach only to the order of 10-3 and 10-5 [Movahedian, 
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Boroomand and Soghrati (2013)]. On the other hand, the maximum absolute error of the 
SCMM can reach to the order of 10-10, as depicted in Fig. 3. It is significant that the SCMM is 
able to yield highly accurate results. 
 

Table 1: The computed heat distribution from the proposed method 

x  Exact 
solution Computed heat distribution 

  
The RKPM 
[Cheng and 

Liew (2009)] 

The Trefftz method based 
on EBFs [Movahedian, 

Boroomand and Soghrati 
(2013)] 

This study 

0 0 0.0000 0.0000 0.0000 
10/π  1.1368 1.0961 1.1368 1.1368 
10/2π  2.1623 2.1322 2.1623 2.1623 
10/3π  2.9762 2.9387 2.9762 2.9762 
10/4π  3.4987 3.4565 3.4987 3.4987 
10/5π  3.6788 3.6354 3.6788 3.6788 
10/6π  3.4987 3.4565 3.4987 3.4987 
10/7π  2.9762 2.9387 2.9762 2.9762 
10/8π  2.1623 2.1322 2.1623 2.1623 
10/9π  1.1368 1.0961 1.1368 1.1368 

π  0 0.0000 0.0000 0.0000 

 

    
(a) numerical solution                                        (b) exact solution 

Figure 2: Comparison of results for solving two-dimensional DHCP 
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(a)  this study             (b) the Trefftz method based on EBFs [Movahedian,  

Boroomand and Soghrati (2013)] 

Figure 3: Comparison of the absolute error of the computed results and the Trefftz 
method based on EBFs at final time 

4.2 Two-dimensional backward heat conduction problem 
The second example is the modeling of two-dimensional ill-posed BHCP. Because the BHCP 
is ill-posed in nature, it is quite challenging for solving the BHCP with the absent initial 
conditions. The governing equation is given as Eq. (1). We assume the boundary conditions 
to be the Dirichlet boundary conditions. The Dirichlet boundary data are given as follows. 

])1([sin),,(
222 −+= − yxetyxu t παπ .             (31) 

The final time condition is given by 

])1([sin),,(
222 −+== − yxeTtyxu T παπ .             (32) 

In this example, the length and the width of the space domain is 1 m, the heat conductivity 
is 1 W m-1 K-1 and the final elapsed time is assumed to be 0.25 h. The numerical procedure 
for the two-dimensional BHCP is similar with the previous two-dimensional DHCP. The 
final time and boundary conditions are specified on the top and four vertical sides of the 
three-dimensional spacetime domain, as depicted in Fig. 1(b). We collocate 1680 boundary 
collocation points and a source point. The numbers of boundary collocation points in space 
domain and in time domain are considered to be 336 and 1344, respectively. The Dirichlet 
boundary data using the exact solution are applied on boundary collocation points and are 
placed on four vertical sides of the three-dimensional spacetime domain. The order of the 
basis function for the numerical analysis is 20. 
We select the profiles of the numerical solution on different time to view the results clearly. 
To obtain the temperature values of the heat distribution, 4056 inner points are collocated 
uniformly inside the three-dimensional spacetime domain. The absolute error of the 
recovered numerical solution is demonstrated in Fig. 4(a). The maximum absolute error is 
found in the order of 10-6. The global space-time multiquadric (MQ) method as well as the 
Trefftz method based on EBFs have also been applied to solve this BHCP. For the MQ 
method, 121 regular grid points in space domain were considered [Li and Mao (2011)]. As 
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for the Trefftz method based on EBFs, 16 uniform discrete data at the final time were 
considered [Movahedian, Boroomand and Soghrati (2013)]. We compare the absolute error 
of the proposed method with those of the MQ method and Trefftz method based on EBFs. 
Based on their results, the root mean square error (RMSE) using the MQ method and 
Trefftz method based on EBFs can only reach to the order of 10-3 and 10-6. However, the 
RMSE using the SCMM can reach to the order of 10-7. It is significant that the initial heat 
distribution can be recovered with high accuracy using the proposed method. 
Since the proposed method is advantageous in solving problems of irregular geometry, 
the following example is the two-dimensional BHCP enclosed by irregular boundary. 
With a two-dimensional simply connected domain, the governing equation can be 
expressed as Eq. (1). The two-dimensional boundary, as shown in Fig. 5(a), is defined as 

{ }θθρθθρ sin)( ,cos)(),,( ===Ω yxtyx ,             (33) 

where πθθθρ θ 20 ,)3sec()( 6sin ≤≤= . 
We assume that the boundary conditions are from the analytical solutions. The boundary 
data are given by following exact solution. 

)sin()sin()(),,(
2222 yxeyxtyxu tα−+−= .             (34) 

The final time condition is given by 

)sin()sin()(),,(
2222 yxeyxTtyxu Tα−+−== .             (35) 

In this example, the heat conductivity is 1 W m-1 K-1, and the final elapsed time is 0.5 h. 
To examine the effectiveness and stability of the SCMM, we consider that the boundary 
and final time data are contaminated by random noise. The noisy data as depicted in Eqs. 
(5) and (6) are used in the calculation of two-dimensional BHCP. The two-dimensional 
BHCP is one-dimensional in time and two-dimensional in space, as depicted in Fig. 5(a).  
We therefore transform the domain of the two-dimensional BHCP into a three-
dimensional spacetime domain, as depicted in Fig. 5(b). The final time conditions are 
given on the top side of the spacetime domain. The boundary conditions are given on the 
circumferential boundary of the spacetime domain. The two-dimensional BHCP is 
transformed into the three-dimensional IBVP in which the bottom side boundary values, 
also known as the initial conditions, are not assigned. 
We adopt 486 boundary collocation points and one source point. The numbers of 
boundary collocation points in space domain and in time domain are considered to be 236 
and 250, respectively. The order of the basis function for the analysis is 8. 

To obtain the computed results at different times, 1090 inner points are placed. The 
computed results indicate that the numerical solutions agree well with the exact solution. 
Fig. 6(a) shows the absolute error of the recovered solutions. The accuracy of the error is 
found in the order of 10-11 and highly accurate recovered solutions can be obtained using 
the SCMM for this two-dimensional BHCP enclosed by irregular boundary. In addition, 
three different noise level with 01.0=s , 05.0=s , and 1.0=s  are considered to 
investigate the application of the SCMM for dealing with the two-dimensional BHCP. 
The results illustrate that accurate recovered solutions with the accuracy in the order of 
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10-7, 10-6 and 10-5 can be obtained for the noise level 01.0=s , 05.0=s , and 1.0=s , 
respectively, as depicted in Fig. 6(b), Fig. 6(c) and Fig. 6(d).  

 
(a) this study               (b) the Trefftz method based on EBFs [Movahedian,  

Boroomand and Soghrati (2013)] 

Figure 4: Comparison of the absolute error of the computed results and the Trefftz 
method based on EBFs at initial time 

 
(a) original two-dimensional BHCP     (b) spacetime boundary collocation points 

of the two-dimensional BHCP 

Figure 5: Illustration of the collocation scheme for the two-dimensional BHCP 
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(a) 0=s                                                        (b) 01.0=s  

   
(c) 05.0=s                                                         (d) 1.0=s  

Figure 6: Absolute error of the computed results with exact solutions with the 
consideration of noise level 

4.3 Two-dimensional backward heat conduction problem 
Previous examples, including two-dimensional DHCP and BHCP, illustrate that the 
SCMM is appropriately verified using the harmonic boundary conditions. In this 
particular example, we conduct an example with non-harmonic initial and boundary 
conditions. The governing equation can be expressed as Eq. (1). The two-dimensional 
boundary is defined as following equation. 

{ } πθθθρθθρθθρ 20 ,)(8sin0.52)( ,sin)( ,cos)(),,( ≤≤+====Ω yxtyx .         (36) 

The non-harmonic boundary and initial data are given using the following equation.  

)sin()sin(4),,(
23 yxetyxu tα−= .             (37) 
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We consider the final elapsed time to be 0.5 h. It is significant that the above equation is 
not the exact solution of the two-dimensional BHCP. All the input data are the same with 
those for the previous example of two-dimensional BHCP except the boundary shape, 
non-harmonic initial and boundary conditions. Since this example does not have an exact 
solution to verify the correctness, we first carry out a forward analysis of DHCP to obtain 
the heat distribution at the final time. After that, a BHCP is conducted where the 
computed heat distribution at the final time are assumed to be provided. Through the 
BHCP, the initial heat distribution at bottom side of the three-dimensional spacetime 
boundary can then be obtained. The algorithm for the numerical implementation is 
represented as a flow chart depicted in Fig. 7.  
In this example, we adopt 3905 boundary collocation points and a source point. The order 
of the basis function is 10. To validate the example, we compare the given non-harmonic 
initial condition with the computed initial temperature from the BHCP. The computed 
results with the given non-harmonic initial condition are illustrated in Fig. 8. Results 
obtained show that the computed initial temperature from the BHCP agree well with the 
given non-harmonic initial condition, as depicted in Fig. 8. The difference between given 
non-harmonic initial condition and computed initial temperature from the BHCP can 
reach to the order of 10-5, as depicted in Fig. 9. 

Start

Step 3 － Compare the computed results

•  Compute the absolute error of the computed results.

Step 1 － Conduct the forward analysis of DHCP

•  Give initial and boundary data (non-harmonic data)
•  Find the solution of final time

Step 2 － Conduct the backward analysis of BHCP

•  Give the final time data obtained from the previous step
•  Find the solution of initial time

End
 

Figure 7: The flow chart of the validation procedure for the two-dimensional BHCP 
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Figure 8: Comparison of the results computed with the given non-harmonic initial data 
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Figure 9: The difference between given non-harmonic initial condition and computed 
initial temperature 

4.4 Two-dimensional inverse backward heat conduction problem 
The last example is to investigate the effectiveness and stability of the SCMM to solve 
the two-dimensional inverse BHCP in a rectangular domain. In this example, the 
boundary and final time data contaminated by random noise are adopted. The time-
dependent heat transfer in an isotropic and homogeneous space is expressed by the heat 
equation given by Eq. (1). The spacetime boundary data using the Dirichlet boundary 
condition are applied from the following exact solution. 

)cos()sin(),,(
22 yxetyxu tα−= .             (38) 

In this example, we consider the heat conductivity to be 1 m-1 K-1, length and width of the 
space domain to be 1 m, and final elapsed time to be 0.25 h. The two-dimensional inverse 
BHCP in this study is defined that not only the initial conditions are absent, but the partial 
data of the final time and the spacetime boundary conditions are also not specified. In this 
example, four cases with the consideration of the different combinations of missing initial and 
boundary conditions are considered, as depicted in Fig. 10. In case A, we consider absent 
initial condition which is the traditional BHCP, as depicted in Fig. 10(a). In case B, we 
consider partial data of the boundary conditions are absent in which the accessible boundary 
values are provided at 1/2 portion of the overall spacetime boundary, as shown in Fig. 10(b). 
In case C, we consider that the accessible boundary values are specified at 1/3 portion of the 
overall spacetime boundary, as shown in Fig. 10(c). In case D, we further consider that the 
accessible boundary values are provided at only 1/6 portion of the overall spacetime boundary, 
as shown in Fig. 10(d). It is significant that case D is the most challenging and difficult 
example. We collocate 800 boundary collocation points and a source point. The order of the 
basis function is 10. The maximum absolute error for case A to case D are illustrated in Fig. 
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11. Results obtained show that the maximum absolute error for case A to case D are 10-10, 
10-7, 10-6 and 10-5, respectively. It is found that the absent boundary data can be recovered 
with very high accuracy using the proposed method, as depicted in Tab. 2. To show the 
accuracy of the SCMM, we consider that the measurements of the specified data are polluted 
by random noise where the noise level is 310−=s . The maximum absolute error for case A 
to case D with the consideration of noise level 310−=s  is illustrated in Fig. 12. It is found 
that recovered boundary data with the accuracy at the order of 10-2 on inaccessible boundary 
can be obtained even 5/6 portion of the overall spacetime boundary are absent. 

 

(a) case A                                            (b) case B 

 

(c) case C                                                     (d) case D 

Figure 10: Four cases with the consideration of missing initial and boundary conditions 
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Table 2: The maximum absolute error for two-dimensional inverse BHCP 

Noise level 
Maximum absolute error 

case A case B case C case D 
0=s  10104.99 −×  7103.06 −×  6101.93 −×  5102.21 −×  

310−=s  7107.56 −×  4104.25 −×  2101.57 −×  -2109.86×  

   
(a) case A                                                (b) case B 

             
(c) case C                                                   (d) case D 

Figure 11: Absolute error of the computed results for case A to D 
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(a) case A                                                      (b) case B 

     
(c) case C                                                   (d) case D 

Figure 12: Absolute error of the computed results for case A to D with noise level 
310−=s  

5 Conclusions 
A novel spacetime collocation meshless method for solving the two-dimensional 
backward heat conduction problem is proposed. We may conclude the following findings. 
For the modeling of the two-dimensional BHCP, we propose an innovative concept that 
one may collocate boundary points in the spacetime coordinate system. Both the 
boundary and initial conditions can then be regarded as boundary conditions on the 
spacetime domain boundary. We therefore transform the domain of the two-dimensional 
BHCP into a three-dimensional spacetime domain. As a result, we solve a three-
dimensional IBVP instead of the original two-dimensional BHCP by using the SCMM. 
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Moreover, we demonstrate that recovered boundary data with the accuracy in the order of 
210−  on inaccessible boundaries can be obtained even the accessible data are only 

specified at 1/6 portion of the whole spacetime boundary. 
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