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Abstract: Maintenance is an important aspect in the lifecycle of communication network 

devices. Prevalent problems in the maintenance of communication networks include 

inconvenient data carrying and sub-optimal scheduling of work orders, which 

significantly restrict the efficiency of maintenance work. Moreover, most maintenance 

systems are still based on cloud architectures that slow down data transfer. With a focus 

on the completion time, quality, and load balancing of maintenance work, we propose in 

this paper a learning-based virus evolutionary genetic algorithm with multiple quality-of-

service (QoS) constraints to implement intelligent scheduling in an edge network. The 

algorithm maintains the diversity of the population and improves the speed of 

convergence using a fitness function and a learning-based population generation 

mechanism. The test results demonstrate that the algorithm delivers good performance in 

terms of load balancing and QoS guarantee. We also propose a knowledge push 

algorithm based on a context model for intelligently pushing relevant knowledge 

according to the given conditions. The simulation results demonstrate that our scheme 

can improve the efficiency of on-site maintenance. 

 

Keywords: Internet of things (IoT), edge computing, Augmented Reality (AR), 

maintenance, communication network. 

 

1 Introduction 

Efficient and stable operation all equipment in a communication network is important. 

The safety, quality, and efficiency of on-site maintenance are direct consequences of the 

effectiveness of maintenance work, because of which stringent requirements govern these 

factors [Ahmed, Hasan, Pervez et al. (2017)]. However, environments for the 

maintenance of communication networks are complex for several reasons. A maintenance 

site is usually remote. The mobility of on-site maintenance personnel may imply an 

intermittent Internet connection. Poor data exchange results in the failure of maintenance 

work orders to arrive in time, resulting in unreasonable task scheduling, and low 

utilization and efficiency [Zhao, Chen, Li et al. (2014)]. Moreover, work order 
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scheduling uses manual allocation and relies on experience. The diversity of the skills 

and capabilities of workers is rarely considered. Network data analysis is still based on 

traditional empirical observations. The on-site maintenance of non-intelligent attributes 

(dumb resources, such as equipment and lines) that constitute the network requires 

substantial human involvement. The relevant work relies on personal experience and 

local information. 

To solve the above problems, researchers have proposed using augmented reality (AR) to 

aid maintenance. AR technology superimposes computer-generated virtual objects or 

information on the environment in real time to present to the user a scenario with sensory 

effects and rich scene-related information [Yang, Gong, Song et al. (2017); Gupta 

(2018)]. This coexistence of real and virtual scenes provides users with flexible and 

intuitive guidance in the complex equipment maintenance process, such that unskilled 

workers can maintain equipment to shorten its maintenance cycle and reduce costs [Hou, 

Lu, Dey et al. (2017)]. 

Although many studies related to maintenance work for communication networks have 

been undertaken, many problems in the area remain unsolved. For example, it is 

important to push auxiliary information to the devices intelligently according to the on-

site environment. The contributions of this paper are as follows: 

⚫ We propose an AR-based edge maintenance architecture, where on-site maintenance 

work is carried out in the edge network of a communication network using AR 

technology. Compared with the widely used cloud architecture, this improves the 

speed of information circulation, meets the needs of real-time interaction with AR 

devices, and helps on-site maintenance personnel obtain auxiliary information 

through the integration of real and virtual information on AR devices. 

⚫ We develop a model that describes the complex environment and resource 

relationships of maintenance site in a communication network. There are three types 

of nodes in the context model: user, task, and equipment. They correspond to on-site 

maintenance personnel, maintenance tasks, and equipment to be maintained at the 

maintenance site. 

⚫ Based on the above context model, we propose a learning-based virus evolutionary 

genetic algorithm (L-VEGA) with multiple quality-of-service (QoS) constraints to 

implement intelligent scheduling in an edge network. We consider time, quality, and 

load balancing as multiple QoS goals by considering the impact of multiple factors 

on the quality of the work. We use the virus evolutionary genetic algorithm (VEGA) 

for horizontal and vertical search, and introduce a learning mechanism to avoid the 

loss of the optimal solution and improve the efficiency of evolution. Following the 

completion of the assignment of personnel, tasks, and equipment, we propose a 

knowledge push algorithm based on the context model (CMKP) to push related 

knowledge according to the given conditions. By comparing the similarity between 

the on-site maintenance context model and the knowledge context model, and 

filtering based on popularity, auxiliary information is pushed to reduce the cost of 

knowledge acquisition for on-site maintenance personnel. These two measures 

improve the efficiency of on-site maintenance personnel. 

The remainder of this paper is organized as follows: Section 2 explains related research, 
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and Section 3 presents our AR-based edge maintenance architecture. Context-based 

intelligent scheduling and knowledge push algorithms are explained in Section 4, 

followed by a discussion of the evaluation of our research in Section 5. Section 6 

concludes the paper and proposes future work in the area. 

2 Related work 

Interactive AR guidance has been widely used in maintenance work to improve the 

efficiency of maintaining complex equipment. The results of many studies have been 

reported. Fiorentino et al. [Fiorentino, Uva, Gattullo et al. (2014)] proposed an empirical 

study in which 14 participants performed four tasks related to the maintenance of 

motorcycle engines with the help of a paper manual and AR-based instructions. The 

results showed that enhanced instructions significantly reduce overall execution time and 

the error rate of the participants. In Palmarini et al. [Palmarini, Erkoyuncu, Roy et al. 

(2017)], the authors analyzed the state of the art in AR maintenance and the most relevant 

technical limitations. Amo et al. [Amo, Erkoyuncu, Roy et al. (2018)] proposed an 

information framework to integrate AR into maintenance systems. 

Some results on experiments related to task scheduling have been reported, but many 

defects persist. Qi et al. [Qi and Zha (2013)] applied the VEGA algorithm to the work 

order scheduling of locomotive maintenance, with the skill of personnel and time as the 

targets of measurement. However, although the algorithm used vertical and horizontal 

search, which is an improvement over the genetic algorithm (GA), it had poor population 

diversity and may lose the optimal solution. To meet the needs of users and ensure 

efficient use of cloud resources, Yang et al. [Liu, Bi, Yang et al. (2016)] proposed a 

scheduling mechanism based on double fitness and load balancing. They introduced 

variance to calculate the loads on workers and weighed a multi-fitness function. The 

scheduling ensures load balancing and reduces the cost of task completion. In Dai et al. 

[Dai, Lou, Lu et al. (2015)], the authors proposed a task scheduling algorithm based on 

the GA and the ant colony optimization algorithm with multiple QoS constraints (MQoS-

GAAC) in cloud computing environments. It improves user QoS and balances loads on 

resources. These two algorithms are an improvement on the GA [Rodriguez, García-

Martínez, Blum et al. (2012)], which is intended to solve the high rate of utilization of 

cloud resources in a cloud computing environment. When the GA solves a scheduling 

problem, it transmits evolution-related information vertically to ensure the global 

convergence of the algorithm. However, its high-adaptation strategy retains both efficient 

and inefficient genes, leading to a decline in the diversity of subsequent generations and 

premature convergence. 

Knowledge push is a way to actively provide knowledge to users during the maintenance 

process. It can help improve the efficiency and quality of maintenance work. Methods of 

pushing knowledge used in current maintenance work are generally based on users and 

content. Wang et al. [Wang, Tian, Wu et al. (2016)] proposed such a method based on the 

intent of the design and user interest to improve the usability of knowledge. Liu et al. 

[Liu, Wang, He et al. (2016)] proposed an intelligent method for measuring the cohesion 

between the contexts of workflow in process-aware information systems and their use for 

recommending task knowledge at runtime. Xu et al. [Xu, Yin, Nie et al. (2013)] proposed 
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an active knowledge service framework based on capturing collaborative intent to assist 

in the conceptual design of products. However, in the on-site maintenance scenario, 

knowledge is context dependent. The context here includes the business process and task 

characteristics as well as the personality characteristics of users and the equipment. 

Knowledge matching is an important part of knowledge push, and aims to find 

knowledge that best meets the requirements of related tasks or users. In Zhang et al. 

[Zhang and Li (2016)], the authors proposed a general method to push business process 

knowledge using a multi-dimensional hierarchical context model. By creating a 

representative context model, they considered the two dimensions of user and task, and 

proposed different combinations of types of schemes to calculate text similarity and 

semantic similarity. Wang et al. [Wang, Tian, Wu et al. (2016)] proposed three types of 

semantic similarity calculation and a functional behavior structure. The work in Gu et al. 

[Gu, Hu, Wu et al. (2015)] developed a mapping relationship between cases and 

knowledge to obtain appropriate knowledge by comparing the similarities between the 

given tasks and past cases. However, these methods are mainly based on the similarity of 

text or symbols, and do not consider the similarity of equipment. Moreover, in the 

knowledge push process, knowledge matching updates need to be considered. 

Based on the results of prevalent research, we propose an AR-based edge architecture 

maintenance scheme with context-based intelligent scheduling and knowledge push 

algorithms. 

3 Architecture of AR-based edge maintenance 

Most maintenance systems in communication networks use a cloud service architecture 

[Lojka, Bundzel, Zolotova et al. (2016)]. Maintenance personnel collect resource 

information, such as operation status and fault information, and forward it to the cloud 

server for processing and analysis. The cloud server remotely guides the maintenance 

work on-site. However, given that most cloud servers are stationed far from terminal 

devices and users [Bonchi, Brogi, Canciani et al. (2017)], the mobility of on-site 

maintenance personnel may lead to an intermittent Internet connection. Moreover, AR 

glasses require fast real-time performance. The resource and bandwidth limitations of AR 

glasses may mean that they do not adapt well to cloud architecture. 

As a result, we use the concept of edge computing in the maintenance architecture of a 

communication network [Qiao, Ren, Dustdar et al. (2018); Schneider, Rambach, Stricker 

et al. (2018)]. Edge computing migrates applications, data resources, and computing 

services originally provided by the central node to edge nodes, providing nearest-end 

services at nearby locations [Ai, Peng, Zhang et al. (2017); Cicirelli, Guerrieri, Spezzano 

et al. (2017); Aazam and Huh (2016); Dolui and Datta (2017)]. This method of providing 

nearby computing services meets technical and application-related requirements in terms 

of rapid connection and response, and real-time analysis [Al-Shuwaili and Simeone 

(2017)]. As shown in Fig. 1, we propose an AR-based edge maintenance architecture for 

a communication network. 

On-site maintenance personnel are provided with AR glasses. Smart glasses have a voice-

controlled display screen that can visualize real-time data, pictures, and video 

information. On-site maintenance personnel can be connected in real time with remote 
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experts to gain valuable knowledge and skills during the work process. Regardless of the 

time of day or location of the workers, interconnected technology can be used for their 

assistance. This implies that on-site maintenance personnel will have decades of 

accumulated expertise that can be accessed through commands in simple language. Such 

a solution can keep workers safe and make them more efficient. 

 

Figure 1: AR-based edge maintenance architecture 

The intelligent scheduling and push scenario of on-site maintenance in communication 

networks are shown in Fig. 2. An edge server assigns work orders to the on-site 

maintenance personnel in the covered area. Workers, equipment, and tasks must be 

considered when assigning work orders. During the work, the edge server pushes relevant 

knowledge to the user to assist them based on the context. Once the tasks have been 

completed, the on-site maintenance personnel upload a work record to the edge nodes, 

and the central server implements data synchronization using them. 

 

Figure 2: Maintenance scenario in communication networks 
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4 Context-based intelligent scheduling and knowledge push algorithms 

4.1 Context model 

The context model is an abstraction of the maintenance work in a complex 

communication network, and includes user context, equipment context, and task context. 

The user model is mainly composed of basic information and usage records. The 

equipment model is an abstraction of the maintained resources, and includes equipment 

type, location, and components. Different equipment maintenance tasks require assistance 

with diverse knowledge such that the equipment must be modeled. In maintenance work, 

the tasks include on-site inspection, on-site overhaul, and on-site troubleshooting. The 

information required for separate working periods is different. Therefore, task models 

should be considered when modeling context models. 

The attributes of user context, equipment context, and task context can be dynamically 

adjusted based on the maintenance conditions. Fig. 3 shows a generic context model. 

 

Figure 3: Multi-dimensional context model 

4.2 Intelligent scheduling of the communication network 

4.2.1 Problem description  

For the task set P={P1, P2, …, Pn}, there are n different tasks, each containing k processes. 

J is a collection of k processes. J={J1, J2, …, Jk},, where J1 and Jk are the start and end 

virtual tasks. Let bti and eti be the start and execution times of the process; then, 

bt1=0,et1=etk=0. Considering the importance and difficulty of the process, the weight of 

the i-th process is set to i, i∈{1, 2, …, 10}, 1=k=0. 

We use the directed acyclic graph G=(V, E) to describe timing constraints between 

processes. The vertex set is V⊆J. Set E={(Ja, Jb), Ja, Jb∈J, a≠b} indicates that process Jb 
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must start after the completion of process Ja. The set of processes completed before 

process Ji is PJi, and the set of processes completed after process Ji is NJi. PJi and NJi can 

be obtained from the adjacency matrix of G, as shown in Fig. 4. The second row is the set 

of processes completed after J2, that is, NJ2. The fourth column is the set of processes 

completed before J4, that is, PJ4. 

 

Figure 4: Timing constraints on tasks  

The user set is M={M1, M2, …, Mm}. The n tasks are completed by m maintenance 

personnel, each with skills of different types at different levels. Maintenance personnel 

are assigned to different departments or groups according to their majors, or skills, to 

accept different maintenance tasks. S is a collection of f skills, S={S1, S2, … Sf}. The skill 

level ranges from one to ten, and the higher the level, the better the mastery of the 

relevant skill. 

We use matrices to represent the demand relationship between tasks and user skills. MS is 

a user-skill relationship matrix. The value of MSij is the level at which the i-th 

maintenance person has the j-th skill. MSij=0 means that the i-th maintenance person does 

not have the j-th skill. JS is a task–skill relationship matrix. JSij=1 means that process i 

must be completed by the maintenance personnel who has skill j. Otherwise, JSij=0. 

Equipment set E={E1, E2, …, El}. There is a many-to-many mapping between tasks and 

devices. A task can involve multiple devices, and a device can carry multiple tasks. sij is 

the distance between the maintenance personnel and the device displayed by the AR 

device according to positioning information. 

The constraints are as follows: There is no constraint on the process between tasks, but 

there are constraints within a task. Assignments must meet skill requirements of the tasks 

at hand. If an available candidate set is empty, the relevant task must be suspended for a 

period of time and allocated once the resources are released. A process is completed by a 

worker, and a worker performs only one task at a time. There is no interruption in process 

execution. 

4.2.2 Objective function 

The goal of intelligent scheduling is to find a reasonable scheduling scheme that achieves 

the shortest completion time, the highest quality, and the most balanced load [Hu and 

Jiang (2017); Lopes (2017)]. When solving scheduling problems, most algorithms use the 

minimum completion time as a goal, and ignore the impact of workers on the quality of 
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the work. We propose an intelligent scheduling method for on-site work orders with 

multiple QoS constraints. Multi-QoS targets are evaluated by fitness functions. 

The completion time of a maintenance task depends mainly on the execution time of the task, 

and the distance between the maintenance personnel and the equipment to be maintained. 

For a given scheduling scheme, the shortest execution time for tasks can be represented as 

the minimum start time of the virtual end process Jk. This is calculated as follows: 

( ) |a i i i kT max bt et J PJ= +                                                                                           (1) 

The time it takes for maintenance personnel to arrive at the maintenance site is as follows: 

ij

b

s
T =

v
                                                                                                                              (2) 

Thus, the shortest completion time as goal can be expressed as: 

( )1 a bf = min T +T                                                                                                               (3) 

The assignment of maintenance personnel directly influences the quality of the 

maintenance tasks. Let a and b be the maximum and minimum values of skill levels for 

all maintenance personnel that can execute process Ji. The quality evaluation of process Ji  

performed by maintenance personnel at skill levels a and b are qia and qib, respectively. 

Then, the quality evaluation of process Ji when executed by maintenance personnel with 

skill level j is qij. 

( )( )ia ib

ij ib

j b q q
q q

a b

− −
= +

−
                                                                                               (4) 

According to the weight and quality of each process, the overall quality of a task can be 

obtained as follows: 
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In Eq. (3), i is the weight of process Ji. ij is used to indicate whether Ji is assigned to Mj. 

If ij=1, Ji is assigned to Mj. Otherwise, ij=0. qij  is the quality evaluation value when Mj 

executes process Ji. 

Thus, the goal with the highest completion quality can be expressed as: 

2

1
f = min

Q

 
 
 

                                                                                                                    (6) 

Maintenance personnel with the same skills at same skill levels should have the same 

workload. Maintenance personnel with the same skills at different skill levels need to be 

assigned according to need. Load balancing can be measured by the mean-squared 

deviation of work done by maintenance personnel per unit time. 

Let a and b be the maximum and minimum values of the skill levels, respectively, of all 

maintenance personnel who can execute process Ji. The execution time of process Ji 
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performed by the maintenance personnel at skill levels a and b are tia and tib, respectively. 

Then, the execution time of process Ji when executed by maintenance personnel at skill 

level  j is tij. 

( )( )ia ib

ij ib

j - b t - t
t = t +

a - b
                                                                                                    (7) 

The amount of work done by Mj per unit time is: 
1
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In Eq. (8), ij is used to indicate whether Ji is assigned to Mj. If ij=1, Ji is assigned to Mj. 

Otherwise, ij=0. i is the weight of process Ji. 

Thus, the goal of load balancing can be expressed as: 

( )10 1
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f m k
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f
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= = = =

−
=                                                                                 (9) 

In Eq. (9), Nls is the number of personnel with skill Sl at skill level s, and lsnum  is the 

average amount of work done. 

Then, the three-dimensional (3D) QoS objective function is: 

1 1 2 2 3 3f = w f + w f + w f                                                                                                    (10) 

In Eq. (10), w1, w2, and w3 are the weights of f1, f2, and f3, respectively. We use expert 

scoring to determine the weight of each objective function [Chao, Meng, Tingting et al. 

(2016)]. We solicited the opinions of 30 industry experts to score the 3D QoS evaluation 

indicators. We considered evaluation indicators {f1, f2, f3} as a fuzzy concept, treating 

each indicator as an element and scoring it from one to 10. 

Each expert independently provided a score for element fi, and we obtained a 3×30 

adjacency matrix. Once the scores had been average weighted and normalized, we 

obtained the weights below: 

Table 1: Weights of three-dimensional QoS evaluation indicators 

Indicator f1
 f2

 f3
 

Weight 0.55 0.3 0.15 

Rank 1 2 3 

4.2.3 Learning-based VEGA algorithm with multiple QoS constraints 

The chromosome of a host individual contains n×k genes, where n is the number of tasks 

and k is the number of processes per task. Each gene represents a worker assigned to the 

process of a task. The coding of a virus is obtained by adding a wildcard * related to the 

coding of the host population. 
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Fitness is used to assess the quality of individuals in a population. In this paper, the 

reciprocal of the 3D QoS objective function is chosen as the fitness function of the host 

generation, I, and is expressed as follows: 

( )
1

Fitness I =
f

                                                                                                               (11) 

In Eq. (11), f is the 3D QoS objective function. The smaller the value of the objective 

function, the larger that of the fitness function, and the higher the corresponding 

chromosome fitness. 

A virus can infect several host individuals. The fitness of a virus is expressed by the 

change in fitness before and after infection of the hosts it infects. The fitness function of a 

virus is: 

( )'

i j jj S
fitvirus fithost fithost


= −                                                                              (12) 

In Eq. (12), fitvirusi is the fitness of virus i, S is the set of hosts infected by i, and fithostj 

and fithostj
’ are the fitness values of the host individuals before and after infection. 

The traditional VEGA algorithm randomly selects the initial population. The selection of 

the initial population influences the efficiency of the algorithm. We use a learning-based 

population initialization method. When initializing the population, we first query the 

knowledge base to avoid losing the optimal solution and improve evolution capability. 

When generating the initial population, we search the database to find the results of 

calculations of the same or similar conditions. If these are available, a portion of the 

chromosome is randomly selected, and another portion of it is randomly generated. If not, 

the initial population is randomly generated, as shown in Fig. 5. This ensures that the initial 

population has a higher average fitness value, that individual diversity is maintained in the 

initial population, and that the loss of the optimal solution is prevented as much as possible. 

 

Figure 5: Generation of initial population 
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The genetic operation involves the following three steps: 

(1) Selection: The selection step consists of choosing suitable individuals from the host 

generation and eliminating relatively inferior ones. It is based on a fitness assessment. 

Individuals with greater fitness are more likely to be selected. We use roulette selection 

to determine their selection probability. 

(2) Crossover: In the host generation, two individuals are randomly selected and crossed 

using a single-point crossover method with crossover probability Pcross to obtain sub-

chromosomes and enter the next-generation set. The value of the crossover probability is 

usually between 0.6 and 0.9. 

(3) Mutation: For each gene of the population obtained following the crossover, we adopt 

the shift variation method to determine whether to mutate according to the preset 

mutation probability Pmut. 

The viral population infects the host population with Pinfect. If the fitness of the infected 

population increases, the infected individuals replace the host individuals; otherwise, a 

new virus is generated to replace the corresponding individual in the original virus 

generation. 

In the traditional VEGA algorithm, a new virus is generated only when the vitality of a 

previous virus decays to zero. When a virus infects a generation of individuals, its vitality 

may not have weakened to zero. However, with multiple infections of the same virus, the 

diversity of the population is difficult to maintain, and the probability of mutation is 

challenging to select. We use a learning-based virus update mechanism to maintain the 

diversity of the population and improve the speed of convergence of the algorithm. 

Let Genik and Genjk be the k-th genes on chromosomes i and j, respectively. The 

Euclidean distance between the chromosomes of the host population is as follows: 

( )
n

2

ij ik jk

k=1

Dis = Gen - Gen                                                                                            (13) 

The similarity between the chromosomes is as follows: 

ij

ij

1
Simil =

1+ Dis
                                                                                                            (14) 

If the host population achieves the similarity standard, new viruses are generated in the 

next-generation genetic operation to maintain the diversity of the population. If not, no 

new virus is generated. 

The above analysis relates to the genetic and evolutionary processes of the virus. On this 

basis, we propose a learning-based VEGA algorithm with multiple QoS constraints.   

The algorithm is as follows. 

Step 1: initialize the parameters of the algorithm.  

Pmut, Pcopy, Pcross, Pcut, Pinfect, , POPhost=100, POPvirus=10, t=0. 

Step 2: initialize the generation. Search the database to find the results of calculation for 

the same or similar conditions. If there is any, a portion of the chromosome is randomly 

selected, and the other portion of the chromosome is randomly generated. If not, the 
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initial population is randomly generated. 

Step 3: perform a geneticoperation on the host population. 

Step 4: perform an evolutionary operation on the virus. 

Step 5: generate new viruses. Determine whether a new virus is to be generated based on 

the similarity between the chromosomes. 

Step 6: evaluate the host population based on fitness and retain the best individuals. 

Step 7: if the termination conditions are met, the algorithm ends. Otherwise t=t+1, and 

move to Step 3. 

The brief algorithm is as follows: 

Algorithm 1: Learning-based VEGA algorithm with multiple QoS constraints

Input: List of tasks, on-site maintenance personnel and the equipment to be maintained
Output: The optimal solution for task allocation
Steps:
1:   Initialize algorithm parameters. Pmut, Pcopy, Pcopy, Pcut, Pinfect, , POPhost=100, POPvirus=10, t=0.
2:   Initialize generation
3:   Search database
4:   If(The same or similar conditions exist)
5:         Select some individual
6:         Generate the remaining individuals randomly
7:   Else if(There is no identical or similar condition)
8:    Randomly generate initial population
9:   End if
10: While(t<=T)
11:    Perform genetics operation on the host population
12:       Perform evolutionary operation on the virus
13:       Generate new viruses
14:    Calculate chromosome similarity of the host population
15:       If(The host population did not reach the specified similarity)
16:       Do not generate new viruses
17:    Else
18:              Generate new viruses
19:       End if
20:       Select regenerative individuals based on fitness
21:       t=t+1
22: End while
23: Return the optimal solution

 

4.2.4 Analysis of algorithms 

The proposed algorithm consists of two stages. First, we traverse individuals in the 

knowledge base to find the same or similar conditions. This consists of only traversing 

the candidates once. The complexity of this process is O(n). Following genetic 

manipulation, a similarity measure is applied to determine if a new virus must be 

produced. The complexity of this process is O(n2). Therefore, we obtain the complexity 

of the entire algorithm as follows: 

( ) ( )2O n O n = +                                                                                                          (15) 
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4.3 Maintenance knowledge push based on context model 

The information required for each period of maintenance is different, because of which it 

is necessary to study the push mechanism for maintenance knowledge to achieve accurate 

push matching with maintenance personnel, equipment, and tasks. 

4.3.1 Problem description 

It is difficult for maintenance personnel to fully understand information concerning each 

device due to the complexity of resource devices. In the absence of information about the 

corresponding equipment, maintenance work may not be carried out, which significantly 

affects maintenance efficiency. Knowledge refers to information that can guide practice. 

By intelligently pushing relevant knowledge to on-site maintenance personnel, two-way 

information flow between the maintenance site and the edge server can be implemented, 

the cost of knowledge acquisition can be reduced, and the efficiency of on-site 

maintenance personnel can be improved. 

4.3.2 Maintenance knowledge push based on context model 

Similarity is the degree of sameness between a and b, expressed as Simil(a, b), Simil(a, b)

∈[0, 1]. The larger the value, the greater the similarity between a and b. By calculating 

the similarity between the maintenance context model and the knowledge context model, 

knowledge suitable for a given task is pushed to on-site maintenance personnel, thereby 

improving the quality and efficiency of on-site maintenance work. 

The context model has three dimensions: user, equipment, and task. Each dimension 

consists of several related attributes, which may have different weights. When calculating 

similarity between context models, the similarity of their leaf nodes is first calculated, 

following which similarity between intermediate nodes is calculated according to weights, 

and finally, the similarity of the root node is obtained. The similarity of the root node is 

the similarity between context models. 

The AR-based maintenance mode generally assists on-site maintenance personnel by 

using AR glasses. Thus, the context model generally contains two types of attributes: text 

and images. Due to the complexity of the components of the device being maintained, if 

only text is used for description, the state of the device being maintained cannot be 

accurately described at any given time. AR-based maintenance collects images of the 

maintained device through the AR device, and combines it with user and task information 

to obtain more accurate push knowledge. 

Once on-site maintenance personnel arrive at the maintenance site, the AR device 

automatically identifies the device to be maintained, obtains related component 

information for the device, and takes photos and uploads them to the edge server. The 

edge server acquires device information according to the images and establishes a 

maintenance context model in combination with the given user, device, and task 

information. It then pushes auxiliary information for the AR device based on the context 

model. At this time, the similarity between the user and the task is calculated by the text, 

and similarity calculation for the device is based on images supplemented by text. The 
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similarity of attributes is calculated by type, and more accurate results can thus be 

obtained. 

The different types of similarity calculations are as follows: 

 (1) Leaf attribute of text type 

( )
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 

                                                                      (16) 

As shown in Eq. (16), the attribute values of u and v are (u1, u2, …, un) and  (v1, v2, …, vn), 

respectively. The larger the value, the greater the similarity. 

(2) Leaf attribute of image type 

( ) ( ) ( )
1

,
n

i

Simil u v p i q i
=

=                                                                                              (17) 

In Eq. (17), p and q respectively represent the image histogram data of context models u 

and v, and the calculated result is the similarity value of the images. The larger the value, 

the greater the similarity. 

(3) Non-leaf attribute 

( )
( )

1

1

,

,

n

i i i

i

n

k

k

w Simil u v

Simil u v

w

=

=

=



                                                                                      (18) 

Suppose u and v are non-leaf attributes, and the number of their sub-attributes is n. In Eq. 

(18), ui and vi are the i-th sub-attributes of u and v, respectively, wi are the weights of ui 

and vi, respectively, and Simil(ui, vi) is the similarity of their corresponding i-th sub-

attributes. 

The similarity between context models is calculated recursively by the above method of 

similarity calculation. The knowledge context model is sorted by similarity. Several 

knowledge context models with large similarities are selected as candidate models. 

Suppose n knowledge context models are in the knowledge base. u is the root node of the 

maintenance context model and vi is the root node of a knowledge context model. The 

greatest similarity of the context model is: 

( )
1

max ,
n

i

i

MaxSimil Simil u v
=

 
=  

 
                                                                                  (19) 

The candidate knowledge context models are then sorted by popularity, and the model 

with the greatest popularity is selected, and its knowledge is pushed to the given device. 

The popularity of knowledge is calculated as follows: 
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( )

max

i

N i
KPop

N
=                                                                                                              (20) 

In Eq. (20), N(i) is the number of uses of knowledge item i, and Nmax is the maximum 

number of uses of all knowledge. 

Once maintenance work has been completed, the weight of the knowledge context model 

attribute can be updated according to feedback to ensure the dynamic update of the 

knowledge base. For example, the user model can be modified based on the historical 

behavior of on-site maintenance personnel to better match the user’s skills and 

knowledge preferences. 

The updated weight of each attribute in the knowledge context model is related to the 

weight before the update as well as the weight of the corresponding attribute in the 

matching maintenance context. The method of updating the weights is as follows: 

( ) '1c c mw w w = − +                                                                                                     (21) 

In Eq. (21), wc
’ and wc are the weights before and after the update of the attributes in the 

knowledge context, and wm is the weight of the corresponding attribute in the matching 

maintenance context model.  is the coefficient of the weight update, which is usually set 

to 0.05. 

The framework for knowledge push is as shown in Fig. 6. 

 

Figure 6: Framework for knowledge push  

4.3.3 Steps of the algorithm 

The brief algorithm is as follows: 
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Algorithm 2: Maintenance knowledge push based on context model

Input: A user, a task and the equipment to be maintained
Output: Knowledge pushed to AR devices
Steps:
1:   Knowledge in the knowledge base is initialized for modeling
2:   Build a maintenance context model
3:   For(leaf nodes u and v in the context models)
4:    If(u and v are texts)
5:          Calculate their similarity according to Eq. (16)
6:         Else if(u and v are images)
7:          Calculate their similarity according to Eq. (17)
8:    End if
9:   End for
10: For(non-leaf nodes u and v in the context models)
11:    Calculate their similarity according to Eq. (18)
12:       If(u and v are root nodes)
13:                 Break
14:    End if
15: End for
16: Select the knowledge with large similarity as candidate knowledge
17: Select the most popular knowledge from the candidate knowledge
18: Return the knowledge pushed to AR devices
19: Update the weight of attributes in the knowledge context model

 

4.3.4 Analysis of algorithms 

The proposed algorithm has two stages. First, we calculate similarity between root 

attributes recursively by calculating similarity between the leaf attributes of the given 

context models. The complexity of this process is O(nlogn). We then compare the 

popularity of knowledge based on similarity, and select the knowledge with the greatest 

popularity. The complexity of this process is O(n). Therefore, we obtain the complexity 

of the entire algorithm as follows: 

( ) ( )nloO O ngn = +                                                                                                      (22) 

5 Result and analysis 

5.1 Simulation environment 

We conducted simulations of our proposed methods using Visual C++ and MATLAB. 

Some of the parameter settings for the L-VEGA are shown in Tab. 2. 

Table 2: Parameter explanation 

Symbol Meaning Value 

POPhost Size of the host generation 100 

Pmut Probability of mutation 0.05 

Pcross Probability of crossover 0.89 

POPvirus Size of the virus generation 10 

Pcopy Probability of copy 0.2 

Pcut Probability of cut 0.15 

Pinfect  Probability of infection 0.02 

 Decline in vitality rate 0.9 
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5.2 Results of simulation of L-VEGA 

5.2.1 Average performance for different numbers of tasks 

We randomly generated 100 instances, and calculated the average calculation times and 

generations using different algorithms. Here, we compare L-VEGA with GA and VEGA. 

The results are shown in Tab. 3, Tab. 4 and Fig. 7.  

As shown in Fig. 7(a), when the number of tasks is small, the calculation time of the GA 

is slightly shorter than that of VEGA and L-VEGA. However, as the number of tasks 

increases, they average time grows exponentially, whereas the average performance of 

VEGA and L-VEGA does not change much. The average time spent by L-VEGA is 

slightly less than that spent by VEGA. Because the local search capability of GA is poor, 

the search efficiency is low in the late evolution. In maintenance work, the number of 

tasks is usually large. Therefore, compared with GA and VEGA, L-VEGA can obtain an 

optimal solution with a shorter calculation time. 

Like in the analysis of the average calculation time, the average generation of the GA is 

larger than that for the other two algorithms. The average generation for L-VEGA is 

slightly less than that of VEGA as shown in Fig. 7(b). As the number of tasks increases, 

the difference between these three algorithms grows larger. As a result, L-VEGA obtains 

the optimal solution with the shortest calculation generation. 
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                                    (a)                                                                        (b) 

Figure 7: Average performance for different numbers of tasks. (a) Average calculation 

times for different numbers of tasks. (b) Average calculation generations for different 

numbers of tasks 

Table 3: Average calculation times for different numbers of tasks 

  4   6   9  18  34  57  74 104  121  151

  7   8  10  13  19  24  32  36   44   47

  6   7   9  11  16  22  27  31   40   43

10 20 30 40 50 60 70 80 90 100
Number of tasks

Algorithms

GA

VEGA

L-VEGA
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Table 4: Average generations for different numbers of tasks 

 22  60  83 121 163 170 181 192  201   215

 20  29  52  61  71  77  87  84   93   100

 19  28  49  56  62  71  80  80   85    89

10 20 30 40 50 60 70 80 90 100
Number of tasks

Algorithms

GA

VEGA

L-VEGA
 

5.2.2 Fitness of different generations 

We calculated the fitness of 25 to 200 generations. Tab. 5 and Fig. 8 show changes in 

fitness of generations of populations. Of them, the GA obtained the highest fitness. We 

see that it had the worst results, and its fitness was in the range of 0.80 to 0.84. VEGA 

was slightly better, in the range of 0.75 to 0.83. We think that because it used a learning 

mechanism, L-VEGA had a strong global optimization resistance to precocity, and its 

fitness was lowest. 
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Figure 8: Fitness of different generations 

Table 5: Fitness of different generations 

0.84 0.83 0.83  0.82  0.83  0.81  0.81  0.80 

0.83 0.81 0.80  0.77  0.79  0.78  0.76  0.75

0.81 0.80 0.79  0.76  0.77  0.75  0.75  0.74

25 50 75 100 125 150 175 200
Generation

Fitness

GA

VEGA

L-VEGA
 

5.2.3 Average optimum 

The average optimum is the average ratio of the optimal value to the maximum of the 

given instance. The initialization parameters were the same as above. The size of the host 

generation was kept at 100, and the average optimum (avg. opt.) of 100 instances was 

used as evaluation index.  
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As shown in Fig. 9, when the number of viruses is small, the optimal solution can be 

obtained by properly increasing the infection probability of the virus. However, it is easy 

to locate a local optimum if the infection probability is large. Increasing the size of the 

virus generation helps obtain the optimal solution, but the computation cost is high. In 

this experiment, when the size of the virus population was 100 and the maximum 

probability of infection was 0.1, L-VEGA generated the optimal order of scheduling and 

resource mode at a faster rate. 

 

Figure 9: Impact of the size of the virus population and the maximum probability of 

infection 

5.2.4 Average variance of task quantity 

We randomly selected five on-site maintenance personnel to calculate the variance in the 

number of tasks assigned over a period of time. As shown in Fig. 10, variance for the GA 

is large and fluctuating, while L-VEGA and VEGA have smaller variance values. This is 

because the GA uses only the vertical search method, which easily reaches a local 

optimum. L-VEGA and VEGA use a combination of horizontal and vertical search to 

achieve a global optimum. L-VEGA considers load balancing in the objective function 

and uses a learning-based mechanism. This improves the speed of convergence and 

attains load balancing for tasks.  
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Figure 10: Average variance in task quantity 

5.3 Results of simulation of CMKP 

5.3.1 Accuracy under different conditions 

To explore the impact of the user, equipment, and task on the accuracy of CMKP, we set 

different weights for them, as w1, w2, and w3, respectively. The number of knowledge 

items was fixed at 50. When w2=1, only the similarity of equipment was considered, and 

when w3=1, only the similarity of tasks was.  

In maintenance work for a communication network, knowledge push must consider the 

impact of the users, equipment, and tasks. Tab. 6 shows a comparison in terms of 

accuracy of knowledge for 10 random users under different weight settings. We see that 

regardless of weight setting, the general trend of CMKP is similar. As shown in Fig. 

11(a), when w1=0.25, w2=0.4, and w3=0.35, the accuracy of knowledge push was higher 

than in other cases. If only a single factor is considered, lower accuracy obtains.  
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Figure 11: Accuracy under different conditions. (a) Different users. (b) Different items 

of knowledge 
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Tab. 7 and Fig. 11(b) show a comparison of accuracy of knowledge under different 

weight settings for different items. We see that as the number of knowledge items 

increases, accuracy under different weight settings declines. When w1=0.25, w2=0.4, and 

w3=0.35, the accuracy of knowledge push is higher than for other settings.  

Combining the above two conditions, CMKP has the highest accuracy when w1=0.25, 

w2=0.4, and w3=0.35. 

Table 6: Accuracy for different users 

0.77 0.76 0.76 0.74 0.73 0.76 0.75 0.74 0.77 0.76

0.82 0.82 0.80 0.79 0.80 0.79 0.80 0.79 0.80 0.80

0.90 0.90 0.89 0.90 0.91 0.89 0.90 0.88 0.90 0.91

0.86 0.86 0.84 0.85 0.84 0.84 0.85 0.83 0.84 0.85

0.95 0.94 0.94 0.96 0.95 0.93 0.94 0.93 0.95 0.95

1 2 3 4 5 6 7 8 9 10User ID
Weights

w1=0,w2=0,w3=1

w1=0,w2=1,w3=0

w1=0.33,w2=0.33,w3=0.33

w1=0.5,w2=0.2,w3=0.3

w1=0.25,w2=0.4,w3=0.35
 

Table 7: Accuracy for different numbers of knowledge items 

0.82 0.80 0.79 0.76 0.75 0.74 0.73 0.72 0.69 0.69

0.86 0.85 0.83 0.82 0.81 0.78 0.77 0.75 0.74 0.73

0.94 0.93 0.91 0.91 0.89 0.88 0.88 0.86 0.85 0.84

0.90 0.89 0.87 0.86 0.84 0.83 0.81 0.81 0.79 0.79

0.97 0.97 0.95 0.95 0.94 0.94 0.92 0.92 0.91 0.91

10 20 30 40 50 60 70 80 90 100
Number of knowledge 

                       itemsWeights

w1=0,w2=0,w3=1

w1=0,w2=1,w3=0

w1=0.33,w2=0.33,w3=0.33

w1=0.5,w2=0.2,w3=0.3

w1=0.25,w2=0.4,w3=0.35
 

5.3.2 Comparisons of popularity of knowledge 

We use the rate of knowledge adoption to measure the popularity of knowledge. The 

higher the adoption rate of knowledge, the higher its intrinsic quality, and the greater the 

consequent assistance to maintenance work. 

Tab. 8 and Fig. 12 show a comparison of the knowledge adoption rate achieved by eight 

random users using different knowledge push methods. We see that the feature points-

based knowledge push algorithm has the worst results, and its knowledge adoption rate is 

in the range of 0.7 to 0.8. Content-based knowledge push algorithm is slightly better, and 

is in range of 0.8 to 0.9. We think these results obtained because the factors of similarity 

and popularity were considered when pushing knowledge, with the result that the 

adoption rate of the knowledge pushed by CMKP was higher than the other two 

algorithms. 

Table 8: Adoption rates of pushed knowledge for different users 

0.92 0.89 0.94 0.91 0.93 0.88       0.90     0.92

0.83 0.82 0.85 0.84 0.86 0.81 0.82     0.80

0.76 0.73 0.78 0.73 0.79 0.75 0.72     0.74

1 2 3 4 5 6 7 8User ID
Algorithms

CMKP

Content-based knowledge push

Feature points-based knowledge push
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Figure 12: Adoption rates of pushed knowledge for different users 

5.3.3 Time cost under different conditions 

Fig. 13(a) shows the time cost of the three knowledge push algorithms with different 

numbers of knowledge items. It can be observed that the time cost of CMKP and the 

content-based knowledge push algorithm is similar, and less than the time cost of the 

feature points-based knowledge push algorithm. As the number of knowledge items 

increases, the difference becomes more apparent. This is explained by the fact that the 

feature points-based knowledge push algorithm must extract the feature points of the 

devices, which increases its complexity. Thus, the time cost is greater. 

In Fig. 13(b), a time cost comparison of the CMKP algorithm based on two architectures 

is shown. Time cost based on the edge architecture is approximately half of that of the 

cloud architecture because with edge architecture, the relevant calculations of the CMKP 

algorithm can be processed at the edge server, which is closer to the users, and thus no 

data need to be passed to the data center for calculation.  
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Figure 13: Time costs under different conditions. (a) Time costs under different numbers 

of knowledge items. (b) Time costs of CMKP under different architectures 
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6 Conclusion 

In this study, we proposed an AR-based maintenance architecture using the concepts of 

edge computing, and context-based intelligent scheduling and knowledge push 

algorithms to quickly assist on-site maintenance personnel. The results show that L-

VEGA and CMKP perform well for the maintenance work in a communication network. 

Challenges persist in this domain, and require research, such as those relating to the 

optimization of database search, the dynamic update mechanism in context models, the 

methods of determining weights, and knowledge relationship in context models. 
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