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Abstract: A elastic-plastic fatigue crack growth (FCG) finite element model was 

developed for predicting crack growth rate under cyclic load. The propagation criterion 

for this model was established based on plastically dissipated energy. The crack growth 

simulation under cyclic computation was implemented through the ABAQUS scripting 

interface. The predictions of this model are in good agreement with the results of crack 

propagation experiment of compact tension specimen made of 304 stainless steel. Based 

on the proposed model, the single peak overload retardation effect of elastic-plastic 

fatigue crack was analyzed. The results shows that the single peak overload will reduce 

the accumulation rate of plastic energy dissipation of elements at crack tip plastic zone, 

so that crack growth will be arrested. The crack growth rate will not recover until the 

crack tip exceed the affected region. Meanwhile, the crack growth rate is mainly 

determined by the amplitude rather than the mean load under the condition of small scale 

yielding. The proposed model would be helpful for predicting the growth rate of mode I 

elastic-plastic fatigue crack. 

Keywords: Plastic dissipation energy, elastic-plastic fatigue crack, finite element model, 

crack growth rate. 

1 Introduction 

Fatigue failure of components usually involves the initiation and propagation of cracks. 

Accurate prediction of crack growth rate has a great significance for evaluating the 

service life of equipment and components. Currently, there are many approaches which 

base on corresponding failure criteria has been proposed to predict fatigue crack growth 

rate, including damage mechanics, stress intensity factors and energy criteria [Meneghetti 

and Ricotta (2016); Noroozi, Glinka and Lambert (2007); Kujawski (2001); Paris (1963); 

Huffman (2016)]. The formulas based on stress intensity factors have been widely used 

for calculating fatigue crack growth rate, which are mainly derived based on the theory of 

linear elastic fracture mechanics or empirical formula obtained by fitting experimental 

results. The application scope of these formulas is limited. Especially for the metal 

materials with high toughness, the calculation accuracy is relatively low [Huseyin, Gall 

and Garcia (1996)]. However, with the continuous deepening and development of 

relevant researches, plastic deformation near the crack tip usually occurs during crack 

propagation. The existence of plastic zone will introduce residual compressive stress near 

the tip which can rationally explain the single peak overload retardation effect of fatigue 
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cracks. Many scholars have carried out a lot of experimental and theoretical studies on 

the plastic zone near the crack tip. Gao et al. [Gao, Wang, Kang et al. (2010)] presented 

an analytical solution to calculate the crack tip plastic zone in plane stress states based on 

stress field equations and Hill yield criterion. Besel et al. [Besel and Breitbarth (2016)] 

studied the types of plastic zones at crack tip of a commercially available aluminium 

alloy under cyclic loading and found that there are five kinds of plastic zones (PZ) 

including primary plastic zone (PPZ), persistent part of primary plastic zone (PPPZ), 

cyclic plastic zone (CPZ), backward cyclic plastic zone (BCPZ) and forward cyclic 

plastic zone (FCPZ). Rice [Rice (1967)] pointed out that the plastic deformation of 

metallic materials is mainly due to dislocation movement caused by fatigue. The 

accumulation of plastic strain can directly lead to the increase of plastically dissipated 

energy. Microplastic strain hysteresis energy is considered to be an index for fatigue 

damage. The fracture failure would occur when the plastic dissipation energy of the 

material reaches a critical value [Feltenr and Morrow (1961)]. Therefore, the propagation 

of cracks can be regarded as the failure of materials near the crack tip with the 

accumulation of plastic dissipation energy under cyclic loading. The application of 

critical plastic dissipation energy criterion for fatigue crack extension was first suggested 

by Rice [Rice (1967)], and large number of numerical and experimental studies were 

followed. Klingbeil [Klingbeil (2003)] proposed a new theory for predicting fatigue crack 

growth based on the total plastic energy dissipation per circle ahead of the crack. Dang 

[Dang (1993)] corroborated that dissipated energy criteria were versatile both at the 

microscopic and macroscopic analysis of fatigue through a macro-micro approach in 

high-cycle multiaxial fatigue. The experimental carried out by Ranganathan et al. 

[Ranganathan, Chalon and Meo (2008)] also show that the plastic dissipation energy can 

be used to determine crack propagation rates under both constant amplitude and variable 

amplitude cyclic loading. Pandey [Pandey (2003)] developed a FCG model under 

constant amplitude loading by considering energy balance during growth of the crack. 

Zuo et al. [Zuo, Kermanidis and Pantelakis (2002)] proposed a strain energy density 

crack growth model which can predict the lifetime of fatigue crack growth. 

Numerical methods have been increasingly used to solve complex engineering problems 

since the development of computers and numerical method, especially, since the 

significant growth of computing power in the last decades [Ding, Karlsson and Santare 

(2017); Breitbarth and Besel (2017); Camas, Lopez, Gonzalez et al. (2017); Paul (2016); 

Paul and Tarafder (2013)]. The plastic zone at crack tip is relatively small. The numerical 

model with refining grid can be used to simulate the change rule of crack tip plastic zone 

under periodic load, and the plastic dissipation energy of the elements can also be 

determined easily. Nittur et al. [Nittur, Karlsson and Carlsson (2013)] investigated the 

crack growth rate during cyclic loading via numerical simulation, and the crack extension 

is governed by a propagation criterion that relates the increment in plastically dissipated 

energy ahead of the crack tip to a critical value. Ding et al. [Ding, Karlsson and Santare 

(2017)] simulated the paris-regime fatigue crack growth in polymers via a numerical 

procedure. The propagation is calculated based on the assumption that crack extension is 

controlled by the plastically dissipated energy in the plastic zone around crack tip. 

Compared with the approach based on stress, strain or displacement, the prediction 

method of crack growth rate based on plastic dissipation energy is attractive for the 
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following two reasons: (1) even with classical sharp crack modeling, the plastic strain 

energy is nonsingular, which makes for straightforward interpretation of numerical 

results [Klingbeil (2003)]; (2) predicting the crack growth rate based on the total 

dissipated energy is in good agreement with broad trends in crack growth data for a 

variety of ductile metals, such as several aluminum, low carbon steel, titanium and nickel 

based alloys used in aerospace applications. 

In this study, a two-dimensional finite element model of precracked compact tension (CT) 

specimen was established to simulate crack growth under cyclic computation. Meanwhile, 

the critical plastic dissipation energy has been developed as the failure criterion of elements 

to study the crack growth rate under cyclic load, including constant amplitude loads, single 

peak overload, and random loads. The two-dimensional plane strain finite element model is 

suitable for simulating stress state of thick plate, which can also save computing cost. It was 

found that this model can predict the crack growth rate accurately by comparing the 

calculation results and experimental results. Based on the finite element model proposed in 

this paper, the distribution of plastic dissipation energy in the vicinity of crack tip under 

cyclic loading and crack propagation rate under different loads were studied. 

2 Modeling framework 

2.1 Material and determination of critical plastic dissipative energy 

The plastic dissipation energy is caused by plastic deformation and the accumulation law of 

which is determined by the constitutive relation of materials under cyclic loading. The 304 

stainless steel (304SS) has good mechanical properties and toughness, which has been 

widely used in many fields of manufacturing industry. This paper will take 304SS as the 

research object and the mechanical properties of this material are shown in Tab. 1 [Syed, 

Jiang, Wang et al. (2015)]. The cyclic stress-strain curve of 304SS is shown in Fig. 1. 

Table 1: Mechanical properties of 304SS 

Tensile strength  

(MPa) 

Yield strength 

(MPa) 

Elongation  

(%) 

Elastic modulus 

(MPa) 
Poisson’s ratio 

520 206 40 195100 0.267 

 

According to Ramberg-Osgood [Niesłony, Dsoki and Kaufmann (2008)] cyclic stress 

strain curve, the correlation between stress and strain under uniaxial load can be 

described with the following expression. 
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where 'k  is the cyclic strength coefficient; 'n  is the cyclic strain hardening exponent; 
 and  are the strain and stress; E is the modulus of elasticity. 

The correlation between strain amplitude and cycle numbers can be expressed by the 

Manson-Coffin-Basquin strain-life fatigue curve [Ricotta (2015)], as shown below. 
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where 2  is the strain amplitudes; 2 fN  is the number of reversals to strain failure; 
'

f  is the fatigue strength coefficient, calculated as the value of the stress amplitude for 

2 1fN = ; b  is the fatigue strength exponent; 
'

f  is the fatigue ductility coefficient, 

defined as the value of the plastic strain component for 2 1fN = ; c  is the fatigue 

ductility exponent and 'E  is the material dynamic elastic modulus, which is usually 

considered to be equal to elastic modulus E.  

 

Figure 1: Comparison between test results and Ramberg-Osgood model curve 

The Ramberg-Osgood stress-strain equation of 304SS can be obtained by least squares 

fitting method, the calculation process is shown as follows. 

The Eq. (1) can be rearranged in the form of y Ax B= +  is shown as follows [Liu, Zhou, 

Xia et al. (2016)]: 
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B −= . Therefore, parameters A and B can 

be estimated by least squares fitting as shown in the following Eq. (4) and Eq. (5). 

Constant n  is the number of corresponding variables. 
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The fatigue life of the material under a strain amplitude a  can be obtained by 

conducting fatigue test, the total strain amplitude a  is consists of elastic strain 

amplitude e  and plastic strain amplitude p . The fatigue life under corresponding 

elastic strain amplitude and plastic strain amplitude can be obtained according to the 

strain-life data of stainless steel 304 [Wang, Kan and Zhang (2003)] and Eq. (2). The 

undetermined coefficient of Eq. (6) and Eq. (7) is 
'

f , b , 
'

f  and c , which can be got 

by linear regression. Then, the Manson-Coffin-Basquin strain-life fatigue equation can be 

determined ultimately. The calculation process can be completed through the Curve 

Fitting tool in the commercial software Matlab. 
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Figure 2: Fitting curve of strain-life 

Pandey [Pandey (2003)] presents the concept that energy cW  absorbed till fracture is the 

area below the cyclic stress strain curve. The formula for calculating critical plastic 

energy is shown as follows. 
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where cW  is critical plastic dissipation energy; 
'

f  is fatigue strength coefficient; 
'

f  

is fatigue ductility coefficient; 'k  is cyclic strength coefficient; 'n  is cyclic strain 

hardening exponent. 
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2.2 Calculation of crack propagation rate 

According to the Neuber micro-support concept, the engineering metallic materials can 

be modeled as a medium made of element blocks of dimension   [Mikheevskiy, 

Bogdanov and Glinka (2015)]. The propagation of cracks can be considered as the 

fracture failure of elements at the front of crack tip. As shown in Fig. 3a, there are eight 

elements arranged in the front of the crack tip. As they are symmetrical about ligament, 

the plastic dissipative energy of corresponding elements are equal because of their same 

plastic deformation, such as element 1 and element 5. For mode I crack, it can be 

assumed that the crack propagates along the ligament. The plastic deformation of the 

elements in plastic zone would be produced under cyclic loads. Therefore, the plastic 

dissipation energy in the elements will continue to accumulate with the increase of load 

cycles. The numerical results show that the plastic dissipation energy of element 1 and 

element 5 accumulate rapidly and much higher than that of other elements. The plastic 

dissipation energy of these two elements will reach the critical value first. When the 

plastic dissipation energy of element 1 and element 5 reaches the critical value, crack 

propagation will be accomplished by releasing the constraints on the current crack front 

nodes at the end of the load cycle, i.e. at minimum load, as shown in Fig. 3b. The increment 

of crack propagation is increased with the binding of nodes, then, the current crack growth 

rate can be expressed as Eq. (10). For standard CT specimen, the 1/2 model can be adapted 

for numerical simulation, and symmetry boundary is the ligament of crack. 

 

Figure 3: Schematic of crack propagation 

 

c

d

d

a

N N


=                              (10) 

where d da N  represent fatigue crack propagation rate, cN  is the cycles required for 

plastic dissipation energy of a element reach to the critical value. 

3 Parameterized finite element modeling and calculation process description 

In this paper, the standard CT specimen has been taken as the research object, and 

dimensions are shown in Fig. 4. The specimen with a 2 mm precrack is made by wire 

cutting machine and the total length a  of the initial crack is 18 mm. The numerical 

simulation is implemented in the commercially available finite element simulation 

package ABAQUS and the element type is CPE4. The linear kinematic hardening model 

was adopted to consider the Basinger effect under cyclic loading. The vicinity of crack 
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tip is refined by structural mesh with the size of  . A reference point is set in the center 

of pin hole, and the kinematic type coupling constraint is established between the 

reference point and the inner wall of pin hole. The load in the direction of the X-axis is 

applied on the reference point. 

 

Figure 4: Dimensions and finite element model of CT specimen 

In order to achieve computational scheme for cyclic crack propagation, the parameterized 

modeling was complete through ABAQUS script file. The script file of ABAQUS is 

written in an object-oriented programming language based on Python. The contents of 

script file include creation of model, setting the parameters of material and element type, 

specifications of loads and boundary conditions, finite element mesh generation and so 

on. Then the Job file was automatically submitted to the ABAQUS to complete the 

calculation. Once the computation was completed, the plastic dissipative energy of 

specific element was extracted from the database file. Then compare the values with the 

critical dissipation energy to judge whether the crack can growth, otherwise the number 

of loads would be further increased. If the extension criterion was satisfied, the crack 

would propagate a length of da  which is equal to  . When the crack extends to a 

specified length ca , the program would automatically exit. The data transfer function of 

ABAQUS can achieve the goals of setting previous database as the predefined field of 

current model, which can effectively avoid repeated computation and save computing 

time. The specific computing process can refer to the flow chart of Fig. 5. 
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Figure 5: Flow chart for prediction of crack growth life based on ABAQUS 

4 Crack propagation experiment of 304CT specimen 

In order to verify the accuracy of numerical model established in this paper, the crack 

propagation experiment of CT specimen made of 304 stainless steel was carried out by 

MTS 810 material test system. The CT specimens with 2 mm prefabricated cracks were 

prepared in accordance with ASTM E647-12 standards and the dimensions of which is 

shown in Fig. 4. As the precrack was created by a wire electric discharge machining system, 

the irregular crack front may affect the generation of initial cracks. Before the experiment 

was started, the fatigue crack with a length about 0.2 mm was prefabricated with low 

amplitude load. Then the distance between the newly generated crack tip and load action 

line (The connection between two centers of pin holes) is taken as the initial length of the 

crack. The sinusoidal constant amplitude periodic load was applied in the fatigue test, the 

frequency is 20 Hz, the load ratio is 0.1, and the maximum load is 8 kN. Three samples 

were used in this experiment and the basic parameters are shown in Tab. 2. 

Table 2: Basic parameters of specimen 

No. 
Initial length of crack 

(mm) 

Ultimate length of crack 

(mm) 
Total cycles 

1 18.150 24.686 88000 

2 18.195 23.318 68000 

3 18.188 22.713 57000 
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Figure 6: Experimental equipment and specimen. a. Material test system: 1. MTS 810 

material test system; 2. CT specimen; 3. measuring microscope. b. The photograph of 

crack tip prefabricated by wire cutting machine 

In general, the Paris formula is wildly used to evaluate the crack growth rate under the 

condition of small scale yielding [Mikheevskiy, Bogdanov and Glinka (2015); Toshihisa 

(2005)]. Technical manuals [Zhao (2015)] proposed a formula based on Paris' law for 

calculating the crack growth rate of 304SS, in which the material constants are 
147.45 10c −=   and 3.1m= , as shown below. 

( )
3.114da

=7.45 10
d

K
N

−                       (11) 

The range of stress intensity factor in above formular can refer to the empirical formula 

of K  presented in ASTM E647-11 standards, as shown below. 

( )
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−
         (12) 

in which a W = , P  is load range, B  is the thickness of CT specimen. 

The experimental results are compared with the results of numerical simulation and 

theoretical formula, as shown in Fig. 7. The results show that the simulation results are in 

good agreement with the results of experiment and theoretical formula. However, the 

crack growth rate evaluated by theoretical formula gradually exceeds the value with the 

increase of crack length. The reason maybe that the plastic region in the vicinity of crack 

tip is increased with the increase of crack length and the Paris formula is established on 

the basis of linear elastic fracture mechanics theory. Therefore, the accuracy of the 

theoretical formula will be reduced with the increase of the plastic zone at the crack tip. 

This result also shows the superiority of the finite element model in describing the 

propagation of elastic-plastic fatigue cracks. The curve of simulation results also show 

that crack growth rate of CT specimen under constant amplitude cyclic loads increased 

with the extension of crack. The main reason contributing to this phenomenon is the 

increase of both stress intensity factor and stress intensity factor amplitude with the 

increase of crack length. The load cycles required for the same length of crack increment 

is reduced. It is proved that this numerical model is applicable for predicting fatigue 

crack growth rate. 
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Table 3: Experimental results of crack propagation 

No. 

Specimen 1 Specimen 2 Specimen 3 

Cycles 
Crack length 

(mm) 
Cycles 

Crack length 

(mm) 
Cycles 

Crack length 

(mm) 

1 0 18.150 0 18.195 0 18.188 

2 2000 18.183 4000 18.297 3000 18.392 

3 4000 18.277 6000 18.582 6000 18.574 

4 7000 18.380 8000 18.624 10000 18.798 

5 10000 18.530 10000 18.704 14000 19.050 

6 14000 18.791 12000 18.792 19000 19.267 

7 18000 19.024 14000 19.011 24000 19.740 

8 23000 19.325 17000 19.148 29000 20.129 

9 28000 19.683 20000 19.274 34000 20.528 

10 33000 20.125 24000 19.629 39000 21.066 

11 38000 20.455 28000 19.664 44000 21.398 

12 43000 20.820 33000 20.237 54000 22.363 

13 48000 21.147 38000 20.593 56000 22.550 

14 58000 22.032 43000 21.066 57000 22.713 

15 68000 22.773 48000 21.412 -- -- 

16 78000 23.778 53000 22.042 -- -- 

17 88000 24.686 58000 22.336 -- -- 

18 -- -- 63000 22.806 -- -- 

19 -- -- 68000 23.318 -- -- 

 

 

Figure 7: Experimental results and numerical simulation results of crack propagation 
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5 Study on the law of crack propagation 

5.1 The retardation effect of single overloading 

Numerous studies show that the single peak overload will restrain the crack growth rate. 

In this section, the retardation effect will be explained from the change of plastic 

dissipation energy of elements ahead of crack tip after the single peak overloading. The 

load ratio of constant amplitude is 0.1, and the maximum load is 4 kN. As shown in Fig. 

8, the plastic zone near the crack tip usually presents butterfly shape (Only 1/2 model is 

shown). The elements located on the surface of crack ligament are numbered from 1 to 6, 

which is located in the plastic zone. The simulation results in Fig. 8 (detailed data are 

listed in Tab. 4) show that the plastic dissipation energy of elements mentioned above 

increased with the increase of load cycles. However, the plastic dissipation energy of 

element 1 adjacent to the crack tip increases fastest and its value is much higher than that 

of other elements. The simulation results also show that the area of plastic zone will 

increase with the increase of load cycles. There is no detail for such phenomenon, 

because the size of plastic zone is growing slowly. The plastic dissipation energy of these 

elements in newly generated plastic zone is relatively low, which can be ignored. The 

growth rate of plastic dissipation energy in element 1 determines the crack growth rate 

under current computing step. Of course, the accumulation of plastic dissipative energy in 

other elements also affects subsequent crack propagation. However, the basic values and 

amplitude are relatively low when compared with critical plastic dissipation energy, 

which has a little effect on the crack growth rate. The overloading is set at 16th load step, 

which is 1.25 times of the maximum load of constant amplitude cyclic loads. The load 

spectrum is shown in Fig. 9. The results show that the plastic dissipation energy of both 

element 1 and element 2 suddenly increases after overloading. If the overload is too large 

and make the plastic dissipation energy of element 1 exceeds the critical value, and the 

crack growth rate will increase slightly. But due to the effects of overloading, the average 

accumulative rate of strain dissipative energy was reduced to some degree. This trend 

shown in Fig. 10 is not evident because the total number of cycles is too small. Actual 

computation shows that the number of cycles required for the plastic dissipation of 

element to reach the critical value is about 7000 under current load condition. Therefore, 

the number of cycles required for crack to extend an incremental length will increase. It 

also means that the growth rate of crack is reduced. The plastic dissipation energy of 

element 2 increased a lot after single overloading, but the magnitude is relative low. The 

accumulative rate of the plastic dissipative energy is almost fell to 0.  

Table 4: The plastic dissipative energy of elements varies with the number of cycles 

Element 

label 

Plastic dissipation energy (mJ) 

Laod step 1 Laod step 20 Laod step 40 Laod step 60 Laod step 80 Laod step 100 

1 0.01164 0.07512 0.13103 0.17965 0.22263 0.26084 

2 0.00138 0.00174 0.00181 0.00181 0.00181 0.00181 

3 0.00079 0.00093 0.00093 0.00093 0.00094 0.00094 

4 000035 0.00063 0.00068 0.00069 0.00069 0.00069 

5 0.00009 0.00029 0.00034 0.00035 0.00035 0.00035 

6 0.0 0.00001 0.00003 0.00003 0.00003 0.00003 
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Figure 8: The plastic dissipative energy of elements varies with the number of cycles 

 

 

Figure 9: Load spectrum 

 

 

Figure 10: The effect of single peak overload on the plastic dissipative energy of 

elements. The left ordinate corresponds to element 1, and the right ordinate corresponds 

to element 2 
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Figure 11: Effect of single peak overload on crack propagation 

 

 

Figure 12: Effect of single peak overload on crack growth rate 

 

When the single peak overloading occurs, the length of crack are 20 mm. Fig. 11 shows 

that the number of cycles required to extend the same length of crack are increased due to 

the retardation effect of single peak overload. The result in Fig. 12 also shows that the 

crack growth rate is reduced after single overloading. With the crack continues to extend, 

the rate gradually returns to normal level. In order to find out the fundamental cause of 

this phenomenon, the stress of four nodes were extracted. The stress of four nodes in the 

direction of X-axis has been extracted for research (shown in Fig. 14a and Fig. 14b). The 

node 1 is directly located at the tip of the crack. The node 2 is located about 0.2 mm 

ahead of the crack tip. Node 3 is located at the edge of plastic zone, which is about 0.4 

mm ahead of the crack tip. Node 4 is located well outside the plastic zone with a distance 

of 0.7 mm to the crack tip. The location of these four points is shown in Fig. 13. First, we 

can find that the plastic zone increases significantly after overloading. The single peak 



 

 

390 Copyright © 2019 Tech Science Press      CMES, vol.118, no.2, pp.377-395, 2019 

overloading has different effects on the stress of the four nodes. 

For node 1, during the first load step the local stress reaches about 600 MPa. During the 

first unloading phase the local stress values change to -390 MPa. During the next fifteen 

load cycles the local stress under maximum and minimum load change to 580 MPa and 

-480 MPa respectively. However, the maximum stress and minimum stress reaches to 

660 MPa and -520 MPa after overloading. Consequently, the effective local stress range 

under cyclic loading changes to about 1100 MPa which is essentially equal to the value 

without overloading. But the mean stress is relatively low. 

For node 2, during the first load step the local stress reaches about 480 MPa. During the 

first unloading phase the local stress values change to 40 MPa. During the next fifteen 

load cycles this local value under maximum and minimum loading has a little change and 

reaches to 470 MPa and 50 MPa, respectively. However, the overloading has a great 

influence on the local stress, and the maximum stress and minimum stress reaches to 300 

MPa and -80 MPa after overloading. 

Different from the other three nodes, the overloading has a little effect on the local stress 

of node 4. The maximum stress and minimum stress of node 4 nearly keep a constant of 

340 MPa and 80 MPa, respectively. Due to single overloading, the maximum stress 

change to 440 MPa. However, the value returns to normal level during next load cycle. 

The stress range is basically maintained at 520 MPa. 

Comparing with node 1 and node 2, the average stress of which is decreased by 

overloading. The average stress of node 4 has a small increase after overloading. The 

maximum stress increased from 240 MPa to 340 MPa after overloading and then back to 

270 MPa during next following load cycle. 

As we can see from the variation of local stress of four key nodes mentioned above that 

large compressive residual stress in plastic zone ahead of crack tip has been induced by 

the overloading. Meanwhile, a relative small residual tensile stress also has been induced 

in some part of area ahead of plastic zone. As the compressive residual stress would 

decrease plastic deformation of the elements, thus the crack growth rate will be reduced 

caused by the decrease of accumulation rate of plastic dissipation energy. The domains 

influenced by single peak overloading are limited. When the increment of crack exceeds 

the affected region, the crack growth rate will return to normal level. 

 

 

Figure 13: Plastic zone and location of four key nodes 
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(a) 

 

(b) 

Figure 14: The cyclic stress ranges of nodes; a. node 1 and node 2; b. node 3 and node 4 

 

5.2 Effect of Load amplitude and mean load on crack propagation 

In order to study the effect of load amplitude and mean load on the crack growth rate, the 

crack growth rate under different load ratios were simulated based on above numerical 

model under the condition of the mean load and load amplitude are constant, respectively. 

When the effect of load amplitude on crack growth rate was studied, the mean load is 4.4 

kN, the range of load ratio is 0.05 to 0.4, the increment of crack propagation is 5.8 mm, 

and the results are shown in the Fig. 15. When studying the effect of mean load on crack 

growth rate, the amplitude of the load is 7.2 kN, the range of load ratio is 0.05 to 0.4, the 
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increment of crack propagation is 5.8 mm, and the results are shown in the Fig. 16. 

As can be seen from the results shown in Fig. 15, the crack propagation rate seems to 

increase exponentially with the load amplitude. Meanwhile, the results of Fig. 16 show 

that the mean load has little effect on the crack growth rate. Therefore, crack growth rate 

are mostly affected by load amplitude. That is why the crack growth rate based on linear 

elastic fracture mechanics is expressed by stress intensity factor amplitude [Paris (1963); 

Noroozi, Glinka and Lambert (2005)]. With the discovery of crack closure effect, more 

and more crack growth rate expression based on effective stress intensity factors are 

proposed [Antunes, Correia and Ramalho (2015); Jiang, Feng and Ding (2005); 

Fukumura, Suzuki and Hamada (2015)]. According to above numerical model, it also can 

be speculated that the plastic deformation in the vicinity of crack tip would not be 

induced by a certain low external load. The crack will stop propagating, as the plastic 

dissipation energy cannot be accumulated. The specific effect of crack closure needs to 

be further explored. 

 

Figure 15: The effect of load amplitude on crack growth rate 

 

Figure 16: The effect of mean load on crack growth rate 
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6 Conclusion 

In this work, a numerical model for predicting crack growth rate under cyclic loads has 

been established based on plastic dissipative energy. The critical plastic dissipation 

energy is taken as the propagation criterion of elements, and the crack growth simulation 

under cyclic computation is implemented through the scripting interface of commercial 

finite element software ABAQUS. The critical plastic dissipation energy is mainly 

determined by the constitutive relation of metallic materials under uniaxial cyclic loading. 

The crack propagation experiment of 304SS CT specimen under cyclic load has been 

carried out through material testing system. The predictions of this model are in good 

agreement with the results of experiment. The retardation effect of single overloading and 

the influence of mean load and load amplitude on crack growth rate are studied based on 

the numerical model established in this paper. The analysis results show that crack 

propagation rate is mainly affected by the load amplitude, while the effect of mean load 

on crack propagation rate is relatively small. The residual compressive stress induced by 

single peak overloading will reduce the accumulation rate of plastic dissipation, thus 

restraining the crack growth to a certain extent. This model will help to further study the 

propagation of elastic-plastic fatigue crack. 
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