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Abstract: The low frequency load of an underwater explosion bubble and the generated 

waves can cause significant rigid motion of a ship that threaten its stability. In order to 

study the fluid-structure interaction qualitatively, a two-dimensional underwater explosion 

bubble dynamics model, based on the potential flow theory, is established with a 

double-vortex model for the doubly connected bubble dynamics simulation, and the bubble 

shows similar dynamics to that in 3-dimensional domain. A fully nonlinear fluid-structure 

interaction model is established considering the rigid motion of the floating body using the 

mode-decomposition method. Convergence test of the model is implemented by 

simulating the free rolling motion of a floating body in still water. Through the simulation 

of the interaction of the underwater explosion bubble, the generated waves and the floating 

body based on the presented model, the influences of the buoyancy parameter and the 

distance parameter are discussed. It is found that the impact loads on floating body caused 

by underwater explosion bubble near the free surface can be divided into 3 components: 

bubble pulsation, jet impact, and slamming load of the generated waves, and the intensity 

of each component changes nonlinearly with the buoyance parameter. The bubble 

pulsation load decays with the increase in the horizontal distance. However, the impact 

load from the generated waves is not monotonous to distance. It increases with the distance 

within a particular distance threshold, but decays thereafter.  

 

Keywords: Underwater explosion, bubble dynamics, fluid-structure interaction, 

double-vortex model, waves generated by underwater explosion. 

1 Introduction 

The underwater explosion load is one of the crucial topics in the study of warship strength. 

In previous studies, shock wave and explosion bubble have received more attentions, and 

plenty methods are proposed to solve these problems [Zhang, Wu, Liu et al. (2017); Chen, 

Qiang and Gao (2015); Liu, Zhang and Tian (2014); Wang, Chu and Zhang (2014); Wang 

(2013); Lee and Keh (2013); Barras, Souli, Aquelet et al. (2012); Grenier, Antuono, 

Colagrossi et al. (2009); Geers (1978); Cole (1948)]. The underwater explosion shockwave 

is so short that usually induces the high frequency responses of the structure and cause 
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local structure failure. During this phase, the compressibility of the fluid must be 

considered to simulate the propagation of the shockwave and the radiation effects of the 

structure. The bubble load with long period can induce the overall whipping responses and 

the rigid motion that threaten the global strength [Zhang and Zong (2011); Stettler (1995); 

Hicks (1986); Vernon (1986); Wilkerson (1985)]. For this problem, BEM based on 

potential flow theory is one of the most widely used methods, because the viscosity and the 

compressibility of the fluid are neglectable. Zhang et al. [Zhang and Zong (2011)] studied 

the dynamic responses of a surface ship subjected to underwater explosion bubble, and 

found that rigid motions cannot be ignored for shorter/wider hulls. Lu et al. [Lu, He and 

Wu (2000)] presented a completely coupled method for the hydroelastic interaction during 

the impact of a structure with water. There are some studies on the later phase showing that 

the underwater explosion near free surface can generate great waves [Torsvik, Paris, 

Didenkulova et al. (2010); Méhauté and Wang (1996)]. If the waves are strong enough, 

they can impact the floating structure seriously. Although the interaction of waves and 

ships has been studied previously [Wang, Yeo, Khoo et al. (2005); Wu and Hu (2004)], the 

interaction between the ship structure and bubble generated waves is extremely rare. 

Because of the strong nonlinear interaction and the large ratios of dimensions in both space 

and time, many difficulties have to be overcome. Thus, there are only few published papers 

available on the impact of both the underwater explosion bubble and its generated waves 

on the floating body, which is not consistent with the increasing urgency of relevant 

studies. 

This paper aims to discuss the nonlinear interaction between the underwater explosion 

bubble, generated waves, and floating body. BEM based on potential flow theory is used 

with the double-vortex model for the doubly connected bubble dynamics established in this 

paper. The convergence is verified by the ship roll theory, and the validity of the 

2-dimensional (2D) bubble dynamics model is proved by comparing with the 

axisymmetric model. Then, the dynamic response of floating body subjected to underwater 

explosion bubble and generated waves is summarised by the discussion of the influence of 

buoyancy parameter and distance parameter.  

2 Theoretical and numerical methods 

Boundary Element Method (BEM) has been one of the most widely used methods in 

underwater explosion bubble dynamics and the wave-body interaction because of its 

advantages in accuracy, efficiency and interface tracking [Liu, Wang and Zhang (2016); 

Liu, Wang, Wang et al. (2016); Zhang and Liu (2015); Li, Zhang, Wang et al. (2018); Wang 

and Blake (2010); Wang, Yeo, Khoo et al. (2005); Klaseboer, Huang, Wang et al. (2005)]. 

However, when the studied fluid field involves change of the field topology, special 

numerical treatments must be used to remesh the field boundary, such as the progress that a 

bubble bursting at a free surface and generating waves. In conventional 3-dimensional (3D) 

BEMs, the numerical treatments are too complex to code. Besides the ship is usually so 

slender that the variation of fluid field variables along the longitudinal direction is very 

small during the interaction of the bubble, free surface, and surface ship. Thus, the model 

can be simplified as 2D at the transverse section of the ship with the qualitatively consistent 

dynamics compared with the axisymmetric case. Although the 2D model is imaginary for 
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the underwater explosion bubble, the dynamics and characteristics of pulsation, jet, and the 

interaction between the bubble and various boundaries are similar to the axisymmetric 

model, which will be proved later in this paper. Consequently, the 2D model presented here 

is used for the qualitative analysis. 

2.1 Boundary integral equation (BIE)for bubble dynamics 

The coordinate system is established as shown in Fig. 1, with its origin located at the 

floating centre of the structure on the free surface and the z axis pointing to the direction 

opposite to that of the gravitational acceleration. Here, h and d are the initial depth of the 

bubble and the horizontal distance between the bubble and floating body, respectively. 

         

Figure 1: Interaction between an underwater explosion bubble and a floating structure 

Because the surrounding fluid flow caused by the underwater explosion bubble is a typical 

flow with high Reynolds number and low Mach number, it is reasonable to simplify the 

fluid as an incompressible one and the flow as inviscid [Klaseboer, Huang, Wang et al. 

(2005); Klaseboer, Khoo and Huang (2005); Wang (2004); Rungsiyaphornrat, Klaseboer, 

Khoo et al. (2003); Best (2002)]. Thus, the problem is analysed using the potential theory, 

with the fluid potential ϕ satisfying the Laplace equation 

2 0 =                      (1) 

Let G denote Green’s function. Then, using Green’s second identity, the fluid boundary 

potential ϕ satisfies the boundary integral equation as follows: 

( ) ( )
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where p and q are the field point and source point, respectively. S denotes all the boundary 

surfaces of the fluid field. The unit normal vector of which is expressed by n pointing 

inward to the closed flow field. For 2D problems, ( )lnG = − R . λ stands for the solid angle 

denoted as: 
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n
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

      (3) 

where Sc is part of an infinitesimal circle inside the fluid domain with its centre located at P. 

By discretising the free surface and bubble boundary into elements and nodes, Eq. (2) can 

be expressed in matrix form [Zhang and Liu (2015); Rungsiyaphornrat, Klaseboer, Khoo et 

al. (2003)]: 

=GX HΦ                  (4) 

where G is the influence coefficient matrix corresponding to the first integral in Eq. (2). H 

is the influence coefficient matrix after the combination of the left solid angle and the 

second integral on the right equation. X and Φ are the column vector corresponding to the 

normal velocity and the velocity potential of the boundary nodes. The influence matrixes 

are determined by the geometrical features of the mesh. Either velocity potential or its 

normal derivative is known by introducing the boundary conditions, the linear equations 

can be solved.  

2.2 Initial and boundary conditions 

The solution of the equations above can be obtained only if sufficient initial and boundary 

conditions are provided. To solve the boundary integral equation, it is necessary to analyse 

the conditions corresponding to each research object after obtaining the initial conditions. 

The impenetrable condition for the rigid boundary, i.e., the second boundary condition 

called the Neumann boundary condition, can be described as the known normal derivative 

of velocity potential and unknown velocity [Klaseboer, Huang, Wang et al. (2005); Koo 

and Kim (2004)]. The following equation can be obtained based on the kinetic boundary 

condition: 

n


= 


v n                 (5) 

where v is the velocity of the structure boundary which can be obtained by the kinematic 

function of the rigid body or the structural dynamics theory. 

The boundary condition of the bubble and the free surface are given by the Dirichlet 

boundary condition, which can be expressed as the unsteady Bernoulli equation: 

21

2

P P
gz

t





−

= −  − −


     (6) 

where z is the vertical coordinate of the point of interest, and g, ρ, and P are respectively the 

gravitational acceleration, fluid density, and fluid boundary pressure, which is equal to 

either Patm at the free surface or Pb at the bubble surface. The inner gas is assumed to be 

adiabatic because the duration of the bubble is relatively short for thermal transmission 

[Wang, Zhu, Cheng et al. (2014); Wang and Khoo (2004); Wang, Khoo and Yeo (2003); 

Best (2002)]. Thus, the pressure Pb can be expressed as: 

0

0b

V
P P

V


 

=  
 

                 (7) 

where, V0 and Vm are the initial and maximum volume of the bubble, respectively. γ is the 
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ratio of the specific heat, which is taken as 1.25 for the gas production of TNT. 

As for the initial condition, the bubble is assumed to be still initially in the water. If the 

bubble expands spherically, the velocity of the flow field at the instant the bubble reaches 

its maximum volume is 0 so that the kinetic energy of the fluid field around the bubble is 

also 0. Thus, the work done by the inner gas on the fluid outside the bubble is equal to the 

change of its kinetic energy, which is zero specifically, 

( ) ( )
m m

0 0
b b 0

R V

R V
P P S r dr P dv− = =           (8) 

here, R0 and Rm are the initial and the maximum bubble radius. S(r) is the area of the bubble. 

Substitute Eq. (7) into Eq. (8) we have, 
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By solving Eq. (9), the equation for P0, V0, and Vm is obtained as: 

( )( )0 m

0 1
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− −
=

−
              (10) 

Then, there is always an initial pressure corresponding to the initial and maximum volume. 

In the same way, if the initial pressure is known, there is an initial volume satisfying Eq. (9) 

in a reasonable range. Then, the equation is solved by a suitable nonlinear equation solver 

such as Newton’s method. As for the underwater explosion bubble, two additional 

equations can be obtained by some empirical formula [Klaseboer, Huang, Wang et al. 

(2005); Best (2002); Cole (1948)]: 
1

3
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               (11) 
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    (12) 

Here, Rm is the maximum radius; kR and kp are experimental coefficients, where kR=3.38 

and kp=1.39×105

 
for the TNT explosive. By combining Eqs. (10)-(12), the initial pressure 

and volume of the underwater explosion bubble can be determined based on the explosive 

weight W and depth h. As for the 2D model, the same initial pressure and volume as those 

of the axisymmetric model are used in this study. The initial radius can be obtained for the 

2D model by solving the nonlinear equation.  

2.3 Double-vortex model for the doubly connected bubble dynamics 

The fluid flow transforms from simply connected to doubly connected when the jet 

penetrates the bubble. Thus, the velocity potential of the flow field is no longer a 

single-valued function for the spatial coordinates, and it cannot be solved by the 

conventional BEM. The vortex ring model is the prevalent approach in previous studies 

[Wang, Yeo, Khoo et al. (2005); Zhang, Yeo, Khoo et al. (2001); Wang, Yeo, Khoo et al. 

(1996a)]. Assuming that the jet impacts the bubble wall starting from a single point, the 

increase in velocity potential at the penetrating point has a specific value. Then, through 
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the configuration of a certain intensity vortex ring, the velocity of the flow field u 

surrounding the toroidal bubble can be decomposed into velocity induced by the vortex 

ring and residual velocity ures
 [Wang, Yeo, Khoo et al. (2005); Zhang, Yeo, Khoo et al. 

(2001); Lundgren and Mansour (1991)]: 

vr res= +u u u          (13) 

In a similar way, the velocity potential of the fluid flow ϕ can be also decomposed into 

velocity potential ϕvr induced by the vortex ring and residual velocity potential ϕres:  

vr res  = +      (14) 

The residual velocity potential ϕres is continuous in the entire fluid domain, which satisfies 

the Laplace equation and boundary integral equation. Hence, it can be solved as follows. 

First, the residual normal velocity of nodes is obtained by solving the boundary integral 

equation. Second, the residual velocity is calculated. Third, the resultant velocity is 

obtained by adding the residual and induced velocities.  

The residual velocity potential can be updated using Eq. (15): 

( )
2res

res

1

2

d P P
g z h

dt


  


 −= −  − + + 

      (15) 

 

Figure 2: Double-vortex model for penetrated 2D underwater explosion bubble 

In contrast with the toroidal bubble in axisymmetric model, there are two independent 

bubbles in the 2D model after jet penetration, and two vortexes instead of the original 

vortex ring, i.e. the double-vortex model, is proposed in this study. Clearly, in order to 

satisfy the same velocity integral regardless of the path from impact point M to N, it is 

necessary to ensure that the double vortexes have an equal value and opposite orientation, 

as shown in Fig. 2. 

The induced velocity is calculated using Eq. (16): 

vr 2 2 2 2
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where xA, zA, xB, zB, and x, z are the coordinate components of point vortex A, B, and the 

point of interest; nx and nz are the unit normal vector of axis x and axis z, and Γ is the 

intensity of the point vortex. The induced velocity potential can be expressed by Eq. (17): 

( )vr
2π

A B  


= −                (17) 

where θA and θB are as shown in Figure 2. To ensure that the residual velocity potential is a 

continuous function after introducing the point vortexes, it is necessary to let the velocity 

potential jump at the location affected by the point vortexes, which is equal to the balance 

of velocity potentials of the two sides of the jet impacting point, as given by Eq. (18): 

( )
1

2
M N  = −      (18) 

where ϕM and ϕN are the velocity potentials at point M and point N; then, the velocity 

induced by the double vortexes can be obtained if we substitute Eq. (18) into Eq. (16). The 

reference angle for θA and θB is required to determine if Eq. (17) is adopted. Hence, it is 

always necessary to adopt other approaches, for example, an arbitrary curve L can be 

introduced to connect the two point vortexes; then, the velocity potential of field point p 

induced by the vortexes can be obtained by calculating the solid angle of point p from 

curve L: 

( )( )vr

2π
ln d

L

l
n




= −
 

p q              (19) 

Theoretically, the exact locations of the point vortexes are not important as long as they are 

inside the bubbles. However, a small distance between a point vortex and bubble surface 

will result in a significant error in the numerical integration induced by the singularity and 

the simulation instability. Hence, it is necessary to update the location of the vortexes along 

with the deformation of bubble surface during the simulation. The exact arrangement 

method can be referred to the previous study [Zhang and Liu (2015)]. 

2.4 Fluid-structure interaction model 

The problem of warship structures impacted by underwater explosion bubble and its 

generated waves is a typical fluid-structure interaction problem. It must be solved 

considering the bidirectional influences. To solve the interaction problem, some 

implements of the bubble and free surface model are illustrated in the foregoing parts, and 

the fluid-structure interaction implementation is presented as follows. 
Because the transverse stiffness in the studied problem has a higher structure shock 

frequency compared with the outside excitation from the waves generated by the bubble, 

the resilience of the structure can be ignored and the structure can be assumed as rigid. The 

configuration of the coordinate system for the structure motion is shown in Fig. 1. The rigid 

motion of the structure can be decomposed into sway motion along axis x, heave motion 

along axis z, and rolling motion in the xoz coordinate plane. 

Following the existing research [Koo and Kim (2004); Tanizawa (1995)], the normal 

velocity of the nodes on the rigid structure surface, i.e. the nodes on the surface of the 

fluid-structure interaction, can be expressed by introducing an acceleration potential Φ. 
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The relationship between the acceleration potential and velocity potential is obtained by 

exploiting the relationships between the velocity and velocity potential of fluid flow nodes 

and that between the acceleration and derivative of velocity as given by Eq. (20): 

21

2 t





 =  +


                (20) 

The equation of the acceleration potential above contains both linear and nonlinear terms. 

There is only one linear term ϕt satisfying the Laplace equation, which can be solved by the 

boundary integral equation as indicated in Eq. (21): 
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q q
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In order to solve Eq. (21), the mode-decomposition method is adopted. Based on the 

accelerations of sway, heave, and rolling motion and the acceleration generated by the 

velocity field, ϕt can be decomposed into four modes as given in Eq. (22): 
3

4

1

t i i

i

a  
=

− =                (22) 

where ai and 𝜑i denote the acceleration and velocity potential of the ith mode, respectively, 

and i=1, i=2, and i=3 are for the sway motion, heave motion, and rolling motion respectively; 

𝜑4 is the acceleration potential for the diffraction motion. Then, the acceleration potential 𝜑i 

on the wet surface of the structure can be determined using the following boundary 

conditions. The boundary condition of the free surface is given in Eq. (23): 
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                (23) 

The boundary condition of the bubble can be expressed as Eq. (24): 
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Eq. (21) can be solved by obtaining the value i

n




 of the wet surface of the floating body 

as indicated in Eq. (23); then, the values i

n




 of the free surface and bubble surface can be 

obtained: 

,      1 3

, 4

ii

B

n i

in





= − 
=  

=  
                 (25) 

where B  denotes the contribution of velocity field to the acceleration field; ni are the 

components of unit rigid motion in the ith degree projecting to the direction of n, 
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where xR and zR are the 2 components of R which denoting the vector from the rotation 

center to point p; ex and ez are the unit vector in the x and z directions, respectively; i=1, 2 

correspond to the translational degrees in the x and z directions, respectively; i=3 

corresponds to the rotational degree of the floating body. 

To determine the acceleration of each mode, the hydrodynamic force can be obtained by 

integration of the pressure at the wet surface expressed by Eq. (28): 

( )
2

1 1 2 2 3 3 4

1
=

2
sP a a a g z h     

 
− + + + + + +  

 
              (28) 

where Ps stands for the hydrodynamic pressure on the floating body. Then the equilibrium 

equation of the resultant force at the ith direction can be written as: 
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                   (29) 

where 
Bs  presents the surface of the floating body; Ixx is the moment of inertia of the 

floating body. Rewrite Eq. (29) in the matrix form: 

( )a+ =M M A F                    (30) 

where, A and F are the column vector of the acceleration and external force independent 

with the acceleration, respectively; M is the diagonal mass matrix; Ma is the added mass 

matrix. F and Ma are defined as 

( )
2

4

1
d

2
B

i i

S

F g z h n s  
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= − + + +  
 
                  (31) 

, d

B

a i j i j

S

M n s = −                      (32) 

respectively. By solving the equation above, the acceleration ai of each mode can be 

obtained. Furthermore, the derivative of the velocity potential can be solved. The velocity 

of the structure, motions of sway, heave, and roll can be obtained by the 4th order 

Runge-Kutta method, and the new geometrical location of the structure for the next time 

step can be adopted. Thus, the strategy of the modelling can be expressed as the flow chart 

in Fig. 3. 
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Figure 3: Flow chart of the numerical model for the interaction of underwater explosion 

bubble, generated wave and floating body 

2.5 Non-dimensionalization 

For convenience of generalisation, all variables are non-dimensionalized with the breadth 

B of the ship, fluid density ρ, and hydrostatic pressure P∞ at the depth of the initial bubble 

[Klaseboer, Huang, Wang et al. (2005); Zhang and Liu (2015)]. Then, the non-dimensional 

scales for the mass, moment of inertia, velocity, and time are ρB3, ρB5, P 
, and 

B P 
 respectively. Hence, the Bernoulli equation of the flow field in its dimensionless 

form is given below: 
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
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    (33) 

where B g P  =  stands for the ratio of the buoyancy and inertial force, which 

increases with the increment of the characteristic dimension when the gravitational 

acceleration maintains a specific value. The main non-dimensional parameters for the 

initial condition of the bubble are the intensity parameter ε=P0∕P∞, initial depth parameter 

H=h ∕B, initial radius parameter R0=R0s /B (R0s stands for the initial bubble radius), and the 

distance parameter r=d/B. 
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3 Model verification 

3.1 Comparison between 2D and axisymmetric bubble dynamics 

To verify the qualitative equivalence between the 2D and axisymmetric bubble dynamics 

models [Wang, Yeo, Khoo et al. (1996b)], the evolution of the bubble and the free surface 

are simulated with the presented 2D model and the conventional axisymmetric model with 

the same initial conditions, where 𝜀=100, H=0.5, and δ=0.92.  

Fig. 4 indicates that during the shrinking phase of the bubble, the upper part of the bubble in 

each case develops a downward jet owing to the Bjerknes force of the free surface, while the 

bottom bubble generates an upward jet subjected to buoyancy. Simultaneously, the spike of 

the free surface becomes thinner and arches as a water column. Obviously, the dynamics in 

the 2D model is similar to that in the axisymmetric model in spite of the differences in the 

sizes of the spike and downward jet. This is because the infinite cylindrical bubble represented 

by the 2D model amplifies the interaction between the bubble and the free surface, resulting in 

a higher and thinner spike and downward jet. Thus, the 2D model is suitable for the qualitative 

analysis of the studied problem. Moreover, the 2D model has irreplaceable advantages in 

efficiency and handling of the breaks of the free surface and the bubble compared with the 

3-D model. Thus, the 2D model is used in this study. 

  

(a) (b) 

Figure 4: Evolution of bubble and free surface shapes during the collapse phase for H=0.5, 

ε=100 and δ=0.92: (a) axisymmetric model [Wang, Yeo, Khoo et al. (1996b)] results at 

t=0.44, 0.61, 0.69 and 0.75; (b) 2D model results at t=0.70, 0.91, 1.03, 1.11 and 1.16 

3.2 Convergence test of the fluid-structure interaction model 

In order to validate the theoretical model described in Section 2, the free rolling motion of 

the floating body is simulated, and the results are compared with those of analytical 
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solutions.  

In the simulation, the floating body is chosen as a 1×1 square with two filleted corners, and 

the fillet radius is 0.25. The draft of the floating body is 0.45, and the moment of inertia Ixx 

is 0.093. The floating body and the free surface are discretised into 60 and 300 linear 

elements. The simulation starts with the floating body released from rest, and the initial 

heel angle is 0.15. Subsequently, the floating body rolls because of the restoring moment 

from the water. 

According to the ship rolling theory, the rolling motion period of the floating body without 

damping effect is given by: 

*
2π xx xxI J

T
Dh

+
=      (34) 

where D is the tonnage of the ship, h* is the initial metacentric height, Ixx is the moment of 

inertia, and Jxx is the added moment of inertia, which can be expressed as: 

hull

3 3xx

S

J n ds = −                               (35) 

The simulation results at different time increments are compared in Fig. 5. 

 

Figure 5: Convergence test of numerical model 

From the curve, we can observe that the results are not sensitive to the time increment in 

the chosen parameter range, which indicates good convergence of the numerical model. 

The rolling period of the floating body is 111.6, which is 0.26% smaller than the empirical 

result of 111.9. In the simulation below, the time increment Δt is set as less than T/50. 

4 Numerical results and discussion 

4.1 Primary phenomenon discussion 

Based on the verified model described in the preceding section, we choose the following 

case parameters to simulate and analyse the interaction of the bubble, free surface and the 

nearby floating body: buoyancy parameter δ=0.14, intensity parameter ε=100, distance 
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parameter r=1.5, and initial radius parameter R0=0.0446. 

4.1.1 Discussion on bubble dynamics 

Fig. 6 and the following figures of the same kind show the motions of the bubble, free 

surface and floating body before jet penetration. The colour contours stand for the different 

dimensionless pressure and the arrow arrays indicate the velocity. 

In Figs. 6a-6c, the floating body begins to move toward the upper right with a little 

clockwise slope under the effect of bubble load. In addition to the hump on the free surface 

above the bubble, a smaller hump emerges near the fluid-structure interaction during the 

bubble expansion. The pressure inside the bubble is low as the bubble achieves its 

maximum volume and it radiates negative pressure to the field. In Figs. 6d-6f, during the 

bubble shrinking phase, the negative pressure region extends from the bubble to the lower 

surface of the floating body, and the free surface between the hump and the interaction 

point hollows rapidly stimulating a huge cavity. As a result, an anticlockwise restoring 

moment is produced owing to the decrease of buoyancy at the left side of the floating body. 

The hump near the fluid-structure interaction keeps growing simultaneously under the 

action of the high-pressure region between the bubble and free surface; thus, there is an 

independent liquid drop forming and breaking away from the flow field. The liquid drop is 

so small that the re-entry effects on the field can be ignored. 

 
  

(a) (b) (c) 

 

 
 

(d) (e) (f) 

Figure 6: Interaction between the bubble and floating body before jet penetration at 

t=0.00, 0.20, 0.98, 1.57, 1.75 and 1.89. The colour contour and the arrows represent the 

pressure and the velocity of the field 

When the bubble is penetrated by the jet, it is split into two independent bubbles, and the 

flow field is transformed into a doubly connected field as shown in Fig. 7.  
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At the instant when the bubble is penetrated by the jet, there is a high-pressure region 

forming near the impact point. The new independent bubbles keep shrinking until they 

reach their minimum volumes. Because the cavity of the free surface isolates the floating 

body from the bubble, the second pulsation pressure from the bubble barely affects the 

floating body. Then, the new bubbles begin to rebound, and a high-pressure region near the 

interaction point emerges, which causes the cavity of the free surface to collapse rapidly 

and subsequently impacts the floating body. 

During expansion of the split bubbles, the liquid film between the two bubbles becomes 

thinner and thinner. When the film breaks, the two bubbles coalesce into a new simply 

connected bubble. The criterion for the film breaking is chosen as the thickness of the 

liquid film that is smaller than the average element length of the bubbles.  

   

(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 7: Interaction between the bubble and floating body after jet penetration at t=1.93, 

1.95, 1.97, 2.00, 2.04 and 2.18. The colour contour and the arrows represent the pressure 

and the velocity of the field 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 8: Interaction between the bubble and floating body after re-fusion at t=2.25, 2.95, 

3.80, 4.00, 6.50 and 8.50. The colour contour and the arrows represent the pressure and the 

velocity of the field 

The colour contours in Fig. 8 represent the dimensionless pressure in the flow field when 

the two bubbles coalesce into one bubble. In Figs. 8a-8c, the bubble after the coalescence 

keeps expanding and moving downward because of the repelling effect of the free surface, 

and subsequently reaches its maximum volume. Then, the second downward jet emerges 

during its shrinking phase and will penetrate the bubble again. A large amount of bubble 

energy is consumed during every pulsation, and the distance from the free surface is 

increasing simultaneously. Thus, the disturbances on the free surface and the floating body 

caused by the bubble are extremely small that the effect can be ignored, as shown in the 

pressure nephogram in Figs. 8d–8f. In such cases, the initial bubbles induced mainly by the 

free surface during the previous pulsations always move downward. When the bubbles 

begin to move up after most of the energy is consumed, they burst into many smaller 

bubbles that cannot generate appreciable waves and can be ignored. Thus, to simplify the 

computation, the small bubbles are removed from the flow field. 

4.1.2 Analysis of the motion of the floating body 

As shown in Figs. 6-8, the floating body exhibits serious rigid motion subjected to the bubble 

load. The histories of the displacements in directions of x, z and ω are shown in Fig. 9. 
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Figure 9: Rigid motion curves of the floating body 

During the initial bubble expansion phase, the floating body moves to the upper right under 

the influence of the bubble, while it is attracted to move back during the bubble shrinking 

phase. The floating body moves upward rapidly when the bubbles reach their minimum 

volumes and radiate the second pulsation load after the first jet penetration. Because of the 

existing free surface cavity at the bottom left of the floating body, the horizontal movement 

of the structure is not affected by the second pulsation load. 

4.2 Influence of buoyancy parameter 

Compared with the case with δ=0.14, the buoyancy parameter in this case is set as δ=1.0, 

which can be classified as a large buoyancy parameter case. The other parameters remain 

the same as in the case discussed above. 

4.2.1 Discussion on bubble dynamics 

During the initial bubble expansion phase, the variation of the fluid flow is similar to that 

of the small buoyancy parameter case. The shrinking phase is shown in Figs. 10d-10f. 

Because the buoyancy is obviously larger than the free surface effect, the bubble motion is 

mainly influenced by the buoyancy. Under the driving effect of the high-pressure region 

below, an upward jet develops at the bottom of the bubble, and eventually penetrates the 

bubble. The motion of the free surface is similar to that of the small buoyancy parameter 

case; however, the cavity of the surface near the interaction point is apparently smaller than 

that of the previous case. This is because the cavity is generated by the inertial force from 

the bubble, which is larger than the free surface effect in this case. 
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(a) (b) (c) 

 

  

(d) (e) (f) 

Figure 10: Interaction between the bubble and floating body before jet penetration at 

t=0.00, 0.20, 0.85, 1.30, 1.50 and 1.60. The colour contour and the arrows represent the 

pressure and the velocity of the field 

 
  

(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 11: Interaction between two bubbles and the floating body after jet penetration at 

-2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

20

40

60

80

100

120

140
Z

-2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0.5

1

1.5

2

2.5

Z

-2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0.5

1

1.5

2

2.5

-2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0

0.5

1

1.5

2

2.5

-2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

1

1.5

2

2.5

3

3.5

4

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

2

4

6

8

10

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

5

10

15

20

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

2

4

6

8

10

12

14

16

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0.5

1

1.5

2

2.5

-2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

x

z

 

 

0

0.5

1

1.5

2



 

 

414  Copyright © 2019 Tech Science Press      CMES, vol.118, no.2, pp.397-423, 2019 

 

t=1.62, 1.64, 1.67, 1.77, 1.90 and 2.05. The colour contour and the arrows represent the 

pressure and the velocity of the field 

As shown in Fig. 11a, there is a high-pressure region developed near the jet impact position 

in the flow field after the jet penetration. When the two newly formed bubbles begin to 

expand, the cavity near the interaction point is restored by the effect of the high-pressure 

region and it produces an impact on the floating body, as shown in Fig. 11d, which is 

clearly larger than that of the small buoyancy parameter case. Then, there is a splash 

generated on the free surface near the impact point, while the two bubbles expand to some 

extent and coalesce into a simply connected bubble. 

 
  

(a) (b) (c) 

Figure 12: Interaction between the new single bubble and floating body after jet 

penetration at t=2.10, 2.30 and 2.70. The colour contour and the arrows represent the 

pressure and the velocity of the field 

In Fig. 12, we can observe that the new simply connected bubble keeps expanding and 

moving upward, generating a huge spike on the free surface that pushes the floating body 

to heel to starboard. When the bubble is close to the free surface, the bubble will burst, and 

will generate a huge initial disturbance on the free surface as shown in Fig. 13. 
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(e) (f) 

  

(g) (h) 

  

(i) (j) 

Figure 13: Interaction between the bubble and floating body after bubble bursting at 

t=3.13, 3.60, 4.60, 5.00, 5.50, 5.75, 6.20, 7.20, 8.50 and 10.50. The colour contour 

and the arrows represent the pressure and the velocity of the field 

A huge cavity on the free surface appears after bubble bursting and will occupy the 

surrounding fluid. Then, because of the inertia of the fluid, the free surface keeps rising and 

becomes a huge water column as shown in Figs. 13a-13c, the mechanism of which is 

similar to the jet development caused by the buoyancy effect. In Figs. 13d-13e, the water 

column keeps rising until the kinetic energy entirely converts to potential energy, and then 

it begins to fall. During the falling process, the free surface on both sides of the water 

column is lifted rapidly and becomes a single curling wave propagating away from the 

water column. Because the initial distance from the explosion point is small, the generated 

waves have not fully developed when they reach the floating body. The waves impact the 

structure and cause it to heel to the right and move horizontally. Meanwhile, the floating 

body is lifted by the expanding wave and moves to the upper right, as shown in Figs. 

13e-13h. During the interaction between the solitary wave and floating body, we can 

observe in Fig. 13g that the height of the wave is larger than that of the freeboard, which 

indicates that the deck of the floating body will be subjected to high water impact from the 

generated waves. As shown in Figs. 13h-13j, the floating body will squeeze to the right 
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side free surface and a solitary wave will develop and propagate to the right during the 

falling process of the floating body, which will consume a large amount of the structure’s 

kinetic energy. 

From the foregoing discussions, the effect of the bubble on the floating body in the large 

buoyancy parameter case is weaker. However, the impact of the waves generated on the 

free surface is more severe when the bubble floats to the free surface and bursts, resulting 

in more violent rolling motion that threaten the safety of the floating body. 

4.2.2 Analysis of the motion of the floating body 

Fig. 14 shows the time histories of motions of the floating body with large buoyancy 

parameter. During the early stage of the interaction (t<3.0), the heave and rolling motion in 

this case are basically as the same as those of the case with small buoyancy parameter, 

while the horizontal motion is different. During the bubble shrinking phase, the floating 

body moves right away from the bubble with a smaller velocity, whereas it moves toward 

the bubble in the small buoyancy parameter case. The reason is that the floating body in 

this case is on the suitable slope of the spike, and the slope will offer a suitable component 

of buoyancy to the body, which will offset the negative influence of the fluid flow and 

cause the body to keep moving horizontally to the same direction. At t=3.13, the bubble 

bursts on the free surface and generates waves. Although the peak value of the wave load is 

smaller than the bubble pulsation pressure, the impact time on the floating body is as long 

as 2.5, as indicated in Fig. 13, which is larger than the bubble pulsation period and less than 

a quarter of the natural rolling period. During this period, the rolling motion is more severe 

and the maximum rolling angle is as large as 30.  

 

Figure 14: Time history of rigid body motion of the floating body 

4.3 Influence of distance parameter 

From the discussion above, we can observe that the bubble motion is mainly influenced by 

the buoyancy, while it is not sensitive to its effect on the floating body. However, under the 
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impact of generated waves, the floating body moves more violently with a larger buoyancy 

parameter. In this section, we will discuss the influence of distance parameter on the rigid 

motion of the floating body.  

We simulate two cases of interactions with different distance parameters. The case with 

r=2.0 as shown in Fig. 15 is similar to that with r=1.5 as shown in Fig. 13, where the red 

arrow indicates the time-marching direction. The main difference is that the main motions 

of the floating body after the effect of solitary wave are translations directed horizontally to 

the right and rolling motions, whereas the heave motion is as small as the increase in 

distance. 
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(d) 

Figure 15: Interaction between the bubble and floating body after bubble bursting with 

r=2.0 at t=2.8, 3.3, 3.8, 4.3, 4.8, 5.3, 5.8, 6.3, 6.8, 7.3, 7.8, 8.3, 8.8, 9.3, 9.8, 10.3, 10.8 and 

11.3. The arrows indicate the time increasing direction 

 

(a) 

 

(b) 

Figure 16: Interaction between the bubble and floating body after bubble bursting with 

r=2.5 at t=2.8, 3.3, 3.8, 4.3, 4.8, 5.3, 5.8, 6.3, 6.8, 7.3, 7.8 and 8.3. The arrows indicate the 

time increasing direction 

Compared with the two cases, the rigid body motions with r=2.5 are more violent as shown 

in Fig. 16. Under the impact of the solitary wave, there is a small heave motion for the 

floating body. Most of the slamming momentum from the waves converts to rolling motion 

of the floating body, which is more dangerous to the ship stability. 
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The influence of a pulsating bubble near the free surface of a fluid domain can be equivalent 

to that of a dipole under the linear free surface assumption. In the 2D cases, the influence of 

the fluid flow on the velocity potential caused by the dipole decays linearly along with the 

reciprocal of the distance. Considering the induced pressure is approximately proportional 

to the induced velocity potential, it is easy to obtain that the induced pressure is linearly 

related to r-1. 

  

Figure 17: Comparison among horizontal 

displacements of different distances 

Figure 18: Comparison among vertical 

displacements of different distances 

 

Figure 19: Comparison among swing angles of different distances 

Figs. 17-19 show the comparison of the histories of the motions of the floating body for 

different distance cases. The comparison indicates that there are two development regions 

for the generated waves. The motion of the body under the influence of generated waves 

changes along with the distance parameter. At the early stage, the influence of the distance 

parameter is displayed as the difference in the peak values of the motions, while the motion 

styles are nearly the same. When the bubbles burst (at approximately t=2.8), the 

interactions become much more complex. Compared with the small distance parameter 

case, the rigid motion in the large parameter case decreases rapidly, and the floating body is 

lifted slightly and even capsizes owing to the solitary wave. Because it requires some time 

for the wave to propagate to the floating structure, there is a time delay for the violate 

motion induced by the wave impact as shown in the history curves. 
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5 Conclusions  

In this study, a 2D underwater explosion bubble dynamics model is established with a 

double-vortex model for the doubly connected bubble dynamics simulation based on the 

potential flow theory. The evolution of bubble and the free surface is simulated 

successfully and shows similar dynamics to that in 3D domain. A fully nonlinear 2D 

fluid-structure interaction model is established considering the rigid motion of the floating 

body using the mode-decomposition method, whose convergence is provided by the 

comparison with the free rolling motion of the floating body. Thus, the models can 

qualitatively analyse the nonlinear interaction between the underwater explosion bubble, 

free surface, and floating body. Several conclusions are summarized as follows to serve as 

reference for anti-shock studies on warships. 

The impact on warships caused by underwater explosion bubble near the free surface can 

be divided into three components, i.e. jet impact, bubble pulsation, and slamming load of 

the generated waves. Before the bubble burst, the rigid motion of the floating body is 

mainly determined by the inertia force represented by the bubble pulsation load, which is 

not obviously related to the buoyancy. However, the buoyancy plays a dominant role in the 

interaction between the floating body and the generated waves after the bubble bursting. 

Thus, in the large buoyancy parameter case, the stability of the body is more seriously 

threatened by the generated waves. 

The bubble pulsation load decays with the increase in distance. However, the impact load 

from the generated waves increases with the distance within a particular distance threshold, 

and decays thereafter. 
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