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Solving the Nonlinear Variable Order Fractional Differential 
Equations by Using Euler Wavelets

Yanxin Wang1,∗, Li Zhu1 and Zhi Wang1

Abstract: An Euler wavelets method is proposed to solve a class of nonlinear variable
order fractional differential equations in this paper. The properties of Euler wavelets and
their operational matrix together with a family of piecewise functions are first presented.
Then they are utilized to reduce the problem to the solution of a nonlinear system of alge-
braic equations. And the convergence of the Euler wavelets basis is given. The method is
computationally attractive and some numerical examples are provided to illustrate its high
accuracy.

Keywords: Euler wavelets, variable order fractional differential equations, caputo fraction-
al derivatives, operational matrix, convergence analysis.

1 Introduction
Many phenomena in fluid mechanics, chemistry, physics, finance and other sciences can
be described successfully by models using mathematical tools from fractional calculus, i.e.
the theory of derivatives and integrals of fractional order [Miller and Ross (1993)]. Due
to the fractional order exponents in differential operators, analytical solutions of fraction-
al equations are usually difficult to obtain. Consequently, different methods have been
developed to give numerical solutions for fractional equations, including fractional differ-
ential transform method [Wei and Chen (2014)], Adomian decomposition method [Song
and Wang (2013)], Chebyshev pseudo-spectral method [Khader and Sweilam (2013)], Ho-
motopy perturbation method [Abdulaziz, Hashim and Momani (2008)], Homotopy analysis
method [Dehghan, Manafian and Saadatmandi (2010)], and wavelet method [Li and Zhao
(2010); Wang and Fan (2012); Wang and Zhu (2016)].
Recently, the concepts of fractional derivatives of variable order have been introduced and
some research works of the relative practical applications have arisen [Sun, Chen and Chen
(2009); Samko (2013)]. Several numerical approximation methods are proposed to solve
the variable order fractional differential equation [Chen, Liu, Li et al. (2014); Chen, Liu,
Turner et al. (2013); Lin, Liu, Anh et al. (2009); Chen, Wei, Liu et al. (2015); Zhao, Sun

1 School of Science, Ningbo University of Technology, Ningbo, China.  
∗ Corresponding Author: Yanxin Wang. E-mail: yxwang@nbut.edu.cn.

CMES. doi:10.31614/cmes.2019.04575 www.techscience.com/cmes



340 Copyright c© 2019 Tech Science Press CMES, vol.118, no.2, pp.339-350, 2019

and Karniadakis (2015); Zayernouri and Karniadakis (2015); Li and Wu (2017); Jia, Xu
and Lin (2017); Doha, Abdelkawy, Amin et al. (2018)].
Recently, a Euler wavelet numerical method has been presented to solve the nonlinear
Volterra integro-differential equations [Wang and Zhu (2017)]. The Euler wavelets are
constructed by Euler polynomials. It is well known that Euler polynomials have many
advantages over Legendre polynomials in approximating arbitrary functions. Fristly, the
Euler polynomials have less terms than Legendre polynomials. Hence, for approximating
an arbitrary function, we use less CPU time by applying Euler polynomials as compared to
Legendre polynomials. Secondly, the computational errors are less by using Euler polyno-
mials in function approximation. Therefore, we have reason to believe that Euler wavelets
inherit these advantages of Euler polynomials. So the main purpose in this paper is to
introduce the Euler wavelets operational matrix method to solve the nonlinear variable or-
der fractional differential equation. The Euler wavelets method is based on reducing the
equation to a system of algebraic equations by expanding the solution as Euler wavelets
with unknown coefficients. The convergence analysis of the Euler wavelets basis is given.
Also the characteristic of the operational matrix method is to transform the differential e-
quations into the algebraic one. It not only simplifies the problem, but also speeds up the
computation.
The outline of this paper is as follows: In Section 2, some necessary mathematical prelim-
inaries and notations of variable order fractional derivatives are given. Section 3 is devoted
to the basic formulation of wavelets and the Euler wavelets. In Section 4, we derive the Eu-
ler wavelets operational matrices. Section 5 is devoted to the numerical method for solving
the variable order fractional differential equations, and in Section 6 we report our numerical
findings and demonstrate the accuracy of the proposed numerical scheme by considering
two numerical examples. Finally, conclusions are drawn in last Section.

2 Basic definitions and properties of the variable order fractional integrals and deriva-
tives

There are several definitions for variable order fractional derivatives, such as the one in
Riemann-Liouville’s sense and the one in Caputo’s sense [Samko (2013)].
Definition 1. Riemann-Liouville fractional integral of the first kind with order α(t) is
defined as

I
α(t)
a+ u(t) =

1

Γ(α(t))

∫ t

a+
(t− τ)α(t)−1u(τ)dτ, t > 0, [Re(α(t)) > 0]. (1)

Definition 2. Riemann-Liouville fractional derivate of the first kind with order α(t) is
defined as

D
α(t)
a+ u(t) =

1

Γ(m− α(t))

dm

dtm

∫ t

a+

u(τ)

(t− τ)α(t)−m+1
dτ, m− 1 ≤ α(t)) < m, (2)

but Dα(t)
a+ I

α(t)
a+ u 6= u.
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Definition 3. The Caputo definition of fractional derivate with order α(t)

Dα(t)u(t) =
1

Γ(1− α(t))

∫ t

0+

u′(τ)

(t− τ)α(t)
dτ +

(u(0+)− u(0−))t−α(t)

Γ(1− α(t))
, (3)

where 0 < α(t) ≤ 1. If we assume the starting time in a perfect situation, we can get the
definition as follows:

Dα(t)u(t) =
1

Γ(1− α(t))

∫ t

0+

u′(τ)

(t− τ)α(t)
dτ, 0 < α(t) < 1, (4)

with the definition above, we can get the following formula (0 < α(t) ≤ 1)

Dα(t)tβ =

{
Γ(β+1)

Γ(β+1−α(t)) t
β−α(t) β = 1, 2, 3 . . .,

0, β = 0.
(5)

3 Euler wavelets and function approximation
3.1 Euler wavelets

Euler wavelets ψnm(t) = ψ(k, n,m, t) involve four arguments, n = 1, ..., 2k−1, k is as-
sumed any positive integer,m is the degree of the Euler polynomials and t is the normalized
time. They are defined on the interval [0, 1) as [Wang and Zhu (2017)]

ψnm(t) =

{
2
k−1

2 Ẽm(2k−1t− n+ 1), n−1
2k−1 ≤ t < n

2k−1 ,
0, otherwise,

(6)

with

Ẽm(t) =

{
1, m = 0,

1√
2(−1)m−1(m!)2

(2m)!
E2m+1(0)

Em(t), m > 0, (7)

where m = 0, 1, . . . ,M − 1 and n = 1, ..., 2k−1. The coefficient 1√
2(−1)m−1(m!)2

(2m)!
E2m+1(0)

is for normality, the dilation parameter is a = 2−(k−1) and the translation parameter b =
(n− 1)2−(k−1). Here, Em(t) are the well-known Euler polynomials of order m which can
be defined by means of the following generating functions [He (2015)]

2ets

es + 1
=

∞∑
m=0

Em(t)
sm

m!
(|s| < π). (8)

In particular, the rational numbers Em = 2mEm(1/2) are called the classical Euler num-
bers. Also, the Euler polynomials of the first kind for m = 0, · · · , N can be constructed
from the following relation
m∑
k=0

(mk )Ek(t) + Em(t) = 2tm,

where (mk ) is a binomial coefficient. Explicitly, the first basic polynomials are expressed by

E0(t) = 1, E1(t) = t− 1

2
, E2(t) = t2 − t, E3(t) = t3 − 3

2
t2 +

1

4
, · · · .
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These polynomials satisfy the following formula∫ 1

0
Em(t)En(t)dt = (−1)n−1 m!(n+ 1)!

(m+ n+ 1)!
Em+n+1(0), m, n ≥ 1. (9)

Euler polynomials form a complete basis over the interval [0, 1]. Furthermore, when t = 0,
we have

E0(0) = 1, E1(0) = −1

2
, E3(0) =

1

4
, E5(0) = −1

2
, · · · .

3.2 Function approximation

A function f(t), square integrable in [0,1], may be expressed in terms of the Euler wavelets
as

f(t) =

∞∑
n=1

∑
m∈Z

cnmψnm(t),

and we can approximate the function f(t) by the truncated series

f(t) '
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t), (10)

where the coefficient vector C and Euler function vector Ψ(t) are given by

C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]
T (11)

Ψ(t) = [Ψ1(t),Ψ2(t), . . . ,Ψ2k−1M (t)]T = [ψ10(t), ψ11(t), . . . , ψ2k−1(M−1)(t)]
T. (12)

To evaluate C, we let aij =
∫ 1

0 ψij(t)f(t) dt. Using Eq. (10) we obtain

aij =

2k−1∑
n=1

M−1∑
m=0

cnm

∫ 1

0
ψnm(t)ψij(t)f(t) dt =

2k−1∑
n=1

M−1∑
m=0

cnmd
ij
nm,

where dijnm =
∫ 1

0 ψnm(t)ψij(t)f(t) dt and i = 1, 2, · · · , 2k−1, j = 0, 1, · · · ,M − 1.
Therefore,

AT = CTD,

with

A = [a10, a11, . . . , a1(M−1), a20, . . . , a2(M−1), . . . , a2k−10, . . . , a2k−1(M−1)]
T

and

D = [dijnm],

where D is a matrix of order 2k−1M × 2k−1M and is given by

D =

∫ 1

0
Ψ(t)ΨT (t) dt. (13)
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The matrix D in Eq. (13) can be calculated by using Eq. (9) in each interval n =
1, 2, · · · , 2k−1.
Hence, CT in Eq. (10) is given by

CT = ATD−1. (14)

We investigate the convergence of the Euler wavelets expansion in the following Theorem.
Theorem 4. Suppose that the function f : [0, 1] → R is m + 1 times continuously dif-
ferentiable and f ∈ Cm+1[0, 1]. Then f̃(t) = CTΨ(t) approximate f(t) with mean error
bounded as follows

‖f(t)− f̃(t)‖2 ≤
√

2M̃

2(k−1)(m+1)(m+ 1)!
√

2m+ 3
,

where M̃ = maxt∈[0,1] |f (m+1)(t)|.
Proof: The proof is similar to that of the Theorem 1 in Wang et al. [Wang and Zhu (2017)],
so it is omitted here.

4 Operational matrix of Euler wavelets
4.1 A new family of functions

Since Euler wavelets functions are formulated based on polynomials, a family of functions
defined on [0, 1] is constructed as follows

ϕnm(t) =

{
tm, n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise, (15)

for n = 1, 2, . . . , 2k−1,m = 0, 1, . . . ,M − 1. Unlike Euler wavelets functions, this family
of functions is not normalized. The connection between these functions and Euler wavelets
can be demonstrated as follows:

Φi(t) =

2k−1M∑
j=1

pijΨj(t), i = 1, 2, · · · , 2k−1M, (16)

where

Φ(t) = [Φ1(t),Φ2(t), . . . ,Φ2k−1M (t)]T = [ϕ10(t), ϕ11(t), . . . , ϕ2k−1(M−1)(t)]
T.

Then, the following result is obtained:

Φ(t) = PΨ(t), (17)

where P = [pij ] is calculated by the means of C in Eq. (14).

4.2 Transformation of differential operators

In order to numerically solve the variable order fractional differential equations, we propose
to transform both integer and fractional order differential operators into matrix forms.
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First, the following equation can be easily obtained for the first order differential operator:

d

dt
Φ(t) = SΦ(t) =


H 0 0 · · · 0
0 H 0 · · · 0
0 0 H · · · 0
...

...
...

. . .
...

0 0 0 · · · H

Φ(t). (18)

where

H =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
0 0 3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · m− 1 0

 .

and the number of H in matrix S is n. Using (17)-(18), the following equation is derived

d

dt
Ψ(t) = RΨ(t) = P−1SPΨ(t). (19)

Second, using Eq. (5) the following equation can be obtained for the variable order frac-
tional differential operator:

Dα(t)Φ(t) = TΦ(t) =


G 0 0 · · · 0
0 G 0 · · · 0
0 0 G · · · 0
...

...
...

. . .
...

0 0 0 · · · G

Φ(t). (20)

where

G =



0 0 0 · · · 0

0 Γ(2)
Γ(2−α(t)) t

−α(t) 0 · · · 0

0 0 Γ(3)
Γ(3−α(t)) t

−α(t) · · · 0
...

...
...

. . .
...

0 0 0 · · · Γ(m+1)
Γ(m+1−α(t)) t

−α(t)

 . (21)

The number of G in matrix T is n. Using (17) and (20), the following equation is derived:

Dα(t)Ψ(t) = QΨ(t) = P−1TPΨ(t). (22)

where Q is the variable order fractional differential operational matrix of Euler wavelets.
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5 Method of numerical solution
Consider the nonlinear variable order fractional differential equation

Dα(t)u(t) + λ1u
′(t) + λ2u(t) + λ3u

′′(t)u(t) = f(t), (23)

subject to initial conditions u(0) = u0, where f(t) ∈ L2[0, 1] is known, u(t) ∈ L2[0, 1] is
the unknown function which we want to approximate, λ1, λ2, λ3 and u0 are all constants.
If λ3 is equal to 0, the equation reduces to linear case.
Now we approximate u(t) in terms of Euler wavelets as follows

u(t) ≈ CTΨ(T ), (24)

Using Eq. (19), we have
d

dt
u(t) ≈ d

dt
(CTΨ(t)) = CTRΨ(t) = CT (P−1SP )Ψ(t). (25)

By combining (10) with (22), the following result is obtained:

Dα(t)u(t) ≈ Dα(t)(CTΨ(t)) = CTQΨ(t) = CT (P−1TP )Ψ(t). (26)

Finally, Eq. (23) can be rewritten into the following matrix form:

CTQΨ(t) + λ1C
TRΨ(t) + λ2C

TΨ(t) + λ3C
TR2Ψ(t)CTΨ(t) = f(t). (27)

Then, by taking ti = 2i−1
2k−1M , for i = 1, 2, ..., 2k−1M and solving the equations, we can

obtain the unknown C by solving a system of algebraic equations.

6 Numerical examples
In this section, two examples are given to demonstrate the applicability and accuracy of our
method.
Example 1. Consider the following linear variable order fractional differential equation:

Dα(t)u(t)− 10u′(t) + u(t) = f(t), 0 ≤ t < 1, (28)

where α(t) = t+2et

7 , f(t) = 10( t2−α(t)

Γ(3−α(t)) + t1−α(t)

Γ(2−α(t))) + 5t2 − 90t − 95, and the initial
condition is equal to u(0) = 5. The exact solution of this equation is given by u(t) =
5(1 + t)2. By applying the proposed method with k = 1, 2,M = 2, the numerical solutions
can be obtained. Tab. 1 shows the numerical errors obtained by Euler wavelets (Euler),
Legendre wavelets (Leg) and finite difference scheme (FDS) [Chen, Wei, Liu et al. (2015)]
respectively. In fact, for Legendre wavelets, the basis functions are not wavelets functions,
but normalized Legendre polynomial when k = 0. Similarly, for Euler wavelets, they are
no longer the wavelets functions but the Euler polynomials when k = 1. From Tab. 1 we
can see, the polynomials functions and the wavelets functions have the same error order
with the same M , but the coefficient matrix obtained by wavelet decomposition is sparse,
which can greatly reduce the calculation amount and reduce the storage space. However,
the polynomials basis functions have not such advantages. Meanwhile, The comparisons
between approximate and exact solutions for various k are shown in Fig. 1. The numerical
results for α1(t) = t+2et

3 , α2(t) = t+2et

5 , α(t) = t+2et

7 , α3(t) = t+2et

9 are shown in Tab.
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Figure 1: The approximate solution of Example 1 for different k

2. The absolute errors in Tab. 2 corresponding to different α(t) indicate that the numerical
solutions are in good agreement with the exact values.

Table 1: Numerical errors for Example 1
Absolute errors

t Exact solution FDS (N = 20) Leg (k=0,M=4) Leg (k=2,M=4) Euler (k=1,M=2) Euler (k=2,M=2)
0.2 7.200000 7.247370 4.245503e-11 8.091305e-12 1.443737e-12 1.993516e-011
0.4 9.800000 9.877180 4.334849e-11 2.024535e-09 1.473957e-12 2.035882e-011
0.6 12.800000 12.878905 4.428849e-11 9.564669e-10 1.505782e-12 8.341771e-012
0.8 16.200000 16.248209 4.527084e-11 1.696030e-10 1.539072e-12 8.530065e-012
1.0 20.000000 19.990749 4.628863e-11 1.734222e-10 1.573855e-12 8.622436e-012

Table 2: The absolute errors of different α(t) for Example 1
Absolute errors

t α3(t) α2(t) α(t) α1(t)
0.2 7.636113e-13 1.436628e-13 2.524647e-13 1.993516e-011
0.4 7.769340e-13 1.467714e-13 2.577937e-13 2.035882e-011
0.6 6.705747e-14 9.983125e-13 4.085176e-12 8.341771e-012
0.8 6.927791e-14 1.019850e-12 4.176659e-12 8.530065e-012
1.0 7.105427e-14 1.040945e-12 4.270361e-12 8.622436e-012

Example 2. Consider the following nonlinear variable order fractional differential equa-
tion:

Dα(t)u(t)− 7u′(t) + 5u(t)− 6u′′(t)u(t) = f(t), 0 ≤ t < 1, (29)

where α(t) = 3(cos(t)+sin(t))
5 , and f(t) = 5( 2t2−α(t)

Γ(3−α(t)) + 3t1−α(t)

Γ(2−α(t)))− 275t2 − 895t− 105.
The exact solution of this equation is u(t) = 5(3t + t2). Then, by applying the proposed
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Figure 2: The approximate solution of Example 2 for different k

method with k = 1, 2 and M = 2, the numerical solutions can be obtained. Tab. 3 shows
the numerical errors obtained by Euler wavelets(Euler), Legendre wavelets (Leg) and finite
difference scheme (FDS) [Chen, Wei, Liu et al. (2015)] respectively. The comparisons
between approximate and exact solutions for various k are shown in Fig. 2. The numerical
results for α1(t) = 3(cos(t)+sin(t))

3 , α2(t) = 3(cos(t)+sin(t))
5 , α(t) = 3(cos(t)+sin(t))

7 , α3(t) =
3(cos(t)+sin(t))

9 are shown in Tab 4.

Table 3: Numerical errors for Example 2
Absolute errors

t Exact solution FDS (N = 10) Leg (k=0,M=4) Leg (k=2,M=4) Euler (k=1,M=2) Euler (k=2,M=2)
0.2 3.200000 3.199530 1.989522e-13 1.199041e-14 1.09690035e-13 4.440892e-015
0.4 6.800000 6.805765 8.526513e-14 1.421085e-14 4.24105195e-14 1.598721e-014
0.6 10.800000 10.812471 3.410605e-13 2.842171e-14 1.86239912e-14 2.842170e-014
0.8 15.200000 15.218643 5.719869e-13 1.669775e-13 7.36632977e-14 3.907985e-014
1.0 20.000000 20.024094 7.958079e-13 2.273737e-13 1.23234756e-13 4.973799e-014

Table 4: The absolute errors of different α(t) for Example 2
Absolute errors

t α1(t) α(t) α2(t) α3(t)
0.2 2.584044e-14 4.440892e-015 0 0
0.4 1.814104e-13 1.598721e-014 0 0
0.6 2.625431e-13 2.842170e-014 8.093525e-14 2.220446e-16
0.8 2.346275e-13 3.907985e-014 1.251776e-14 5.551115e-17
1.0 4.764582e-14 4.973799e-014 5.101474e-14 -5.551115e-17

According to the numerical examples, the numerical solutions obtained via Euler wavelets
method have better accuracies than by Legendre wavelets and finite difference method-
s. Since Euler wavelets functions and the new functions are both constructed based on
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polynomials of commensurate degrees and also have a similarity on their forms, the de-
rived operational matrices are quite accurate. Therefore, due to the uniform convergence of
Euler wavelets functions, satisfactory approximation of exact solution could be found by
appropriately choosing k and M .

7 Conclusion
A general formulation for the Euler wavelets operational matrix of variable order fractional
order differential has been derived. This matrix is used to approximate numerical solu-
tions of variable order fractional differential equations. Numerical examples are given to
illustrate the powerfulness of the proposed method. Moreover, the achieved results are
compared with the exact solution and the solutions derived by other approaches presented
in open literatures, which further demonstrate the effectiveness of the presented method.
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