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Abstract: In order to satisfy the high efficiency and high precision of collaborative 

robots, this work presents a novel trajectory planning method. First, in Cartesian space, a 

novel velocity look-ahead control algorithm and a cubic polynomial are combined to 

construct the end-effector trajectory of robots. Then, the joint trajectories can be obtained 

through the inverse kinematics. In order to improve the smoothness and stability in joint 

space, the joint trajectories are further adjusted based on the velocity look-ahead control 

algorithm and quintic B-spline. Finally, the proposed trajectory planning method is tested 

on a 4-DOF serial collaborative robot. The experimental results indicate that the 

collaborative robot achieves the high efficiency and high precision, which validates the 

effectiveness of the proposed method. 
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1 Introduction 

Collaborative robots are widely used in modern industrial manufacturing fields. With the 

development of industry, the demand for efficiency and precision of collaborative robots 

become higher and higher. The trajectory planning is one of the most important ways to 

improve the motion performance of robots. The trajectory planning is generally carried 

out in Cartesian space and/or in joint space. 

In Cartesian space, aiming to create a smooth trajectory under kinematic constraints, the 

look-ahead interpolation techniques and nonlinear optimization algorithms [Pham and 

Nakamura (2015); Zhu, Hou, Wang et al. (2015)] are adopted in general. The former is 

usually used in computer numerical control (CNC) and mobile robots. Based on the 

smooth interpolation functions, such as jerk function, B-spline, non-uniform rational B-

spline (NURBS) and S curve, the velocity look-ahead control algorithms have been 

adopted to obtain the smooth trajectory of robots [Wang, Yang, Gai R et al. (2015); Lin, 

Lee, Lee et al. (2016); Tsai, Nien and Yau (2008); Zhang, Yu, Hu et al. (2009); Huang 

(2018)]. Moreover, the look-ahead interpolation algorithm based on the micro-line was 

presented to construct the trajectory for CNC [Zhang, Sun, Gao et al. (2011); Shi and Ye 

(2011)]. These methods have effectively improved the kinematic performance of robot by 

estimating the curvature of trajectory and calculating the suitable velocity and 

acceleration. As for the industrial robots, the nonlinear optimization algorithms are 
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adopted. The B-spline was used to interpolate trajectory, and the optimization algorithms, 

including the sequential quadratic programming (SQP) and genetic algorithm (GA), were 

adopted to optimize the trajectory [Li, Huang and Chetwynd (2018); Su, Cheng, Wang et al. 

(2018); Saravanan and Ramabalan (2008); Chettibi, Lehtihet, Haddad et al. (2004); Wang 

and Horng (1990)]. The trajectory planning in Cartesian space is easy to observe the motion 

trail and attitude of the end effector of the robot. However, because of the nonlinear 

relationship between the end-effector trajectory in Cartesian space and joint motion in joint 

space, and the kinematic singularity of robots, the final joint trajectory obtained by inverse 

kinematic solver cannot be guaranteed to meet the kinematic constraints. So, the efficiency 

and precision of collaborative robots may deteriorate obviously. 

In joint space, the trajectories of joints can be constructed by using the polynomial, jerk 

function, Bezier curve or B-spline to fit the discrete points of each joint gained through 

inverse kinematic solver [Valente, Baraldo and Carpanzano (2017); Wu, Zhu and Liu 

(2009); Lin, Chang and Luh (1983)]. In order to meet the kinematic constraints and 

optimize the efficiency and accuracy of robots, the time [Kim and Kim (2011); Koblick, Xu, 

Foge et al. (2016)], jerk and energy optimal [Hashemiana, Hosseinib and Nabavib (2017)] 

techniques have been investigated in the past decades. For industrial robots, Huang et al. 

[Huang, Hu, Wu et al. (2018)] applied the quintic B-spline and non-dominated sorting GA 

(NSGA-II) to achieve the time-jerk synthetic optimal planning trajectory. Liu et al. [Liu, 

Lai and Wu (2013)] utilized B-spline in the joint trajectories interpolation to optimize the 

trajectory with SQP. For a 6-DOF PUMA560 robot, Zhang et al. [Zhang, Meng, Feng et al. 

(2018)] constructed time optimal trajectories by using cubic spline and NSGA-II. The CVX, 

which is convex optimization toolbox in MATLAB, was adopted to obtain time optimal 

trajectories [Mulik (2015)]. However, due to the robot system is nonlinear, the planning 

trajectory in joint space cannot guarantee that the final motion of the end-effector satisfies 

the kinematic constraints in Cartesian space. And the end-effector is easy to vibrate at large 

curvature of trajectory. Further, because the complex optimization algorithms are applied, 

the response time of the system is increased obviously. 

This work presents a trajectory planning method based on the velocity look-ahead control 

algorithm. First, under the kinematic constraints of end-effector, the end-effector 

trajectory is constructed by combining a modified velocity look-ahead control algorithm 

and cubic polynomial. Then, the joint trajectories are derived through inverse kinematics 

of robot. Last, in order to improve the smoothness and stability in joint space, the 

modified velocity look-ahead control algorithm and quintic B-spline are combined to 

further adjust the joint trajectories. The rest of this paper is organized as follows. Section 

2 describes a novel trajectory planning method in Cartesian space. And a novel trajectory 

planning method in joint space is proposed in Section 3. In Section 4, the experimental 

results are shown to validate the proposed method. Section 5 gives the main conclusions. 

2 Trajectory planning method in cartesian space 

A paper for publication can be subdivided into multiple sections: a title, full names of all 

the authors and their affiliations, a concise abstract, a list of keywords, main text 

(including figures, equations, and tables)), acknowledgements, references, and appendix. 

Running title is optional.  
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2.1 Velocity calculation of break points 

The curve path of end-effector consists of discrete break points, as shown in Fig. 1. When 

the manipulator passes through these break points, it will generate large acceleration. In 

order to improve the motion performance of manipulator, we propose the modified velocity 

look-ahead control algorithm to restrict the velocity and acceleration at break points. 
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Figure 1: The discrete break points of curve path 

The velocity at a break point must satisfy the following constraints. 
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where, iv  is the velocity of the i th break point, stepl  is the step length of discrete path, il  

is the linear displacement from the ( 1i − )th to the i th break points, il  and it  are the 

distance and time for velocity direction changes from the vector 1i i−P P  to 1i i+P P , 

respectively. mv  and ma  are the maximum velocity and acceleration of end-effector, 

respectively.
 
n is the number of break points, iv  is the velocity change between the 

( 1i − )th and the i th break points, and 
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where, ix , iy  and iz  are the angles between the vector 1i i−P P  and X-axis, Y-axis and 

Z-axis, respectively. 

Substituting Eqs. (2) and (3) to Eq. (1), we can get the maximum permissible velocity of 

break points as follows. 
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For the high efficiency of robot motion, the velocity of break point takes the maximum 

permissible value.  

i imv v=   (7) 

Further, the displacement constraints of adjacent break points must be taken into account. 

If the velocities of break point i-1 ( 1iv − ) and i ( iv ) are not the same, the 1iv −  must change 

to iv  under the constraint conditions that the displacement and acceleration of this 

process are less than il  and ma  respectively, so 

2 2

1
, 1,2, ,

2
    

i i

imin i

m

v v
l l i n

a

−−
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where， iminl  is the minimum displacement required for 1iv −  changing into iv . 

According to Eq. (8), when imin il l  and 1i iv v − , iv  needs to be reduced as 

2

12i m i iv a l v −= +   (9) 

when imin il l  and 1i iv v − , 1iv −  needs to be reduced as  

2

1 2i m i iv a l v− = +  (10) 

The traditional velocity look-ahead control algorithm only adjusts the velocity of break 

points once and cannot guarantee that all the velocities meet the displacement constraints 

shown in Eq. (8). For this, a novel velocity look-ahead control method is proposed to 

adjust the velocities of all break points and the adjustment flow chart is shown in Fig. 2. 

2.2 Velocity calculation of linear points 

The linear points, which are between the adjacent break points, are obtained by 

dispersing straight lines. To ensure the smoothness and stability of trajectory, we utilize 

the acceleration/deceleration (ACC/DEC) hybrid algorithm, based on the cubic 

polynomial, to calculate the velocity of these linear points. The velocity equation of 

ACC/DEC is described as 

 33 21 0
0 1 0 1 0 1 0 0 0 13

1 0

( ) 2 3( ) 6 (3 ) ,   ,  
( )

V V
V t t T T t T T t T T T V t T T

T T

−
 = − + +  −  + − +  −

  (11) 

where, 0V , 1V , 0T  and 1T  are the initial velocity, terminal velocity, initial time and 

terminal time of ACC/DEC period, respectively. 
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When the velocities of start and end points are sV  and eV , respectively, the velocity of 

uniform phase is aV , the maximum velocity is mV , there exist seven profiles of velocity 

curves with the ACC/DEC hybrid algorithm. The velocity curves are shown in Fig. 3. 
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Figure 2: Flow chart of velocity adjustment 
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Figure 3: Seven profiles of velocity curves 
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In order to meet the kinematic constraint ( ) m

'V t a  and reach the high efficiency of 

motion, the average acceleration of ACC/DEC is defined as 
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= =

−
  (12) 

The boundary conditions corresponding to the seven profiles of velocity curves are 

shown in Tab. 1. 

Table 1: Boundary conditions corresponding to the seven profiles of velocity curves 

Cases I II III IV V VI VII 
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
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


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  (13) 

where, L  is the total displacement along a straight line， bL  is a displacement boundary 

condition, when bL L , there has a uniform phase, when bL L , the uniform phase does 

not exist. 

3 Trajectory planning method in joint space 

3.1 Time calculation of discrete points 

On the basis of trajectory planning in Cartesian space, we can get the angles and angular 

velocities by applying inverse kinematic transformation. In joint space, the joint 

trajectories also need to meet the constraints shown in Eq. (8). Therefore, the angular 

velocities must be adjusted, and the adjustment process is as follows. 

Step 1: detecting the break points in joint space and changing the angular velocities of 

break points to zero. 

Step 2: using the points whose velocities are zero as boundaries to separate the entire 

trajectory to independent parts. 

Step 3: defining m  and m  as the maximum angular velocity and angular acceleration, 

respectively, and taking all discrete points as break points. Then, the angular velocities of 

each independent part can be adjusted through the method shown in Fig. 2. 
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The proposed ACC/DEC hybrid algorithm is applied to fit the adjacent points in joint 

space. According to the seven profiles of velocity curves shown in Fig. 3, the motion time 

between two adjacent points can be calculated by the equations described in Tab. 2. 

Table 2: The motion time of adjacent points 

Cases Time 

I 
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where, m mV = , 
2

3
a mA = . 

The time of discrete points is 

 1 1, 1, ,,  ,  ,  ,     1,2, ,i i i i p it t max T T T i n−= +    =   (14) 

where, p  is the number of joints, ,  ( 1,2, , )j iT j p =  is the time that the j th joint 

moves from point 1i −  to point i . 

3.2 Quintic B-spline fitting 

Through the above calculation, we have gained the discrete angles and time of every joint. 

In order to get the smooth trajectory of each joint, the multi-degree B-splines which have 

good smoothness and local support is adopted to fit these discrete joint points. Based on 
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the Cox-de Boor recursion formula, we can get the basis function of the kth-degree B-

spline as follows. 
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where, iu  is the knot and normalized to the interval [0, 1] . Using the accumulative chord 

length method, we normalize the time variable it  to gain the knot variable iu . 
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where, the knots have multiplicity 1k +  at each end so that the parameters at the 

endpoints of trajectory can be controlled. 

To interpolate 1n+  discrete points ip  by the kth B-spline, the 1n+  equations of 

trajectory can be written as follows. 
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where, ( 0,1, , 1) jd j n k= + −  is the control points that need to be solved, the vector ip  

is 

( ), , 0,1,2, ,      i i it i n= =p   (19) 

where, i  and it  is the angle and time of point i , respectively. 

According to Eqs. (18) and (19), we only have 1n+  equations to solve n k+  control 

points, the extra 1k −  equations must be provided by kinematic constraint conditions, 

including velocity and acceleration constraints at start and end points. The rth order 

derivatives for kth-degree B-spline can be expressed as 
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When the angular velocities and angular accelerations at starting and ending positions ( 0t  

and nt ) are  0( ), ( ) nt t   and  0( ), ( ) nt t  , respectively, we can obtain the kinematic 

constraint conditions through Eqs. (20) and (21). 
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  (22) 

According to Eqs. (18), (19) and (22), we can solve all control points of quintic B-spline 

( 5k = ). Then, substituting the control points to Eq. (18), we can obtain the continuous 

joint trajectories. Fig. 4 shows the whole process of trajectory planning.  
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Figure 4: The whole process of trajectory planning 

4 Experimental results 

To verify the effectiveness of the proposed trajectory planning method, the experiments 

are carried out on a 4-DOF serial collaborative robot, as shown in Fig. 5. Fig. 5(a) shows 

the simulated model of robot including four joints with its standard D-H link coordinate 

shown in Fig. 5(b). The D-H parameters of the robot are described in Tabs. 3, and the 

initial value of ( 1,2,3,4) i i =  is zero. The kinematic constraints in Cartesian space (the 

maximum velocity and acceleration of end-effector) are given as in Tab. 4. Tab. 5 shows 

the working range and kinematic constraints of each joint (the maximum angular velocity 

and angular acceleration of each joint). 

The task of experiments is to track a closed path in the XY plane (Z=0), as shown in Fig. 

6. The closed path is made up of 686 discrete points. The end effector starts from point S 

and moves along the closed path anticlockwise. The velocity and acceleration at the 
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initial and the ending moments are configured as zero. We adopt the proposed velocity 

look-ahead control algorithm and ACC/DEC algorithm to gain the velocities of all 

discrete points in Cartesian space. The displacement and velocity of discrete points are 

described in Fig. 7. From Fig. 7, we can find that the velocity of end effector increases 

from zero quickly at the beginning because the curvature of line 
bSP  shown in Fig. 6 is 

zeros. But after the point bP  is an arc and the curvature rise suddenly. In order to 

guarantee the motion of end-effector meets the kinematic constraints when passing the 

arc with large curvature, the velocity drops steadily in advance when approaching the 

point bP . Moreover, the acceleration period reduces with the linear distance decreases 

between adjacent break points, like the line
c dP P  shown in Fig. 6. 
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(a)                                                  (b) 

Figure 5: The 4-DOF serial collaborative robot. (a) Simulation model. (b) D-H link 

coordinate system 

Table 3: Standard D-H parameters 

Parameters (mm)id  (mm)
i

a  (rad)
i

  (rad)
i

  

1 255 0 0.5  1  

2 0 257 0 2 0.5 +  

3 0 250 0 3 0.5 −  

4 0 140 0 4 0.5 −  
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Table 4: Kinematic constraints for end-effector 

Constraints Sup mm / s( ) mv  
Sup 

2
mm/ s( ) ma  

Values 200 100 

Table 5: Kinematic constraints for each joint 

Joint  

number 

Working  

range (rad) 
Sup rad / s ( )

m


 
Sup 2

rad / s ( )
m


 

1 [ 0.75 , 0.75 ]  −  2.0 1.0 

2 [ 0.75 , 0.75 ]  −  2.5 1.2 

3 [ 0.25 , 1.25 ]  −  3.0 1.5 

4 [ 0.25 , 1.25 ]  −  3.0 1.8 
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Figure 6: The closed path in the XY plane 
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Figure 7: The displacement and velocity of discrete points 

After obtaining the position and velocity of end effector, the joint angle and angular 

velocity can be gained by the inverse kinematic solver which is constructed through the 

standard D-H method based on the D-H parameters shown in Tab. 3. Then, the trajectory 

planning method in joint space is adopted to construct the smooth joint trajectories which 

are shown in Fig. 8. From Fig. 8, we can see the angular velocity and angular acceleration 

of each joint satisfy the kinematic constraints illustrated in Tab. 4, and the execution time 

of robot is 26.8 s. Moreover, because the joint trajectories are the quintic B-spline, the 

movement of each joint is continuous and smooth which is useful to reduce the flexible 

impact caused by the joint actuator and improve the fluency performance. 
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Figure 8: The trajectory of each joint. (a) Joint 1, (b) Joint 2, (c) Joint 3, (d) Joint 4 

To display the experimental result that the manipulator tracks the closed path shown in 

Fig. 6, we use a black pen as the end effector and the pen length is 60 mm. The 

experimental result is shown in Fig. 9, which indicates that the 4-DOF collaborative robot 

achieves the expected requirements successfully. The trajectory of end effector is shown 

in Fig. 10, and the equations of velocity and acceleration are as follows. 

2 2

2 2

x y

x y

V V V

A A A

 = +


 = +


  (23) 

where, xV  , yV  , xA  and yA  are the projections of velocity and acceleration on the X-axis 

and Y-axis, respectively. 

From Fig. 10, we can find that the manipulator trajectory meets the kinematic constraints 

shown in Tab. 4. Because of the nonlinear relationship between the end-effector and joint 

and the kinematic singularity of joints, the final trajectory of end-effector is properly 

adjusted at some of break points, like the stage R. Fig. 11 indicates the period that the 

acceleration is greater than specified value of boundary. From Fig. 11 we can see that the 

period that the acceleration is greater than 0.8 ma  is more than 15 s, the period that the 

acceleration is greater than 0.5 ma  is more than 20 s in the whole movement. The average 

acceleration is 2
66.8 mm / s  which is greater than 60% of the maximum acceleration of 

end-effector obviously. Therefore, the robot achieves the high efficiency and high 

precision. 
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Figure 9: The experimental result 
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Figure 10: The trajectory of end effector 

 

Figure 11: The period that the acceleration is greater than its boundary 
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5 Conclusions 

This paper proposed a novel trajectory planning method for collaborative robots. 

Compared with the traditional methods based on the complex optimization algorithm, the 

proposed method has higher computational efficiency. Furthermore, through the cubic 

polynomial, the trajectory in Cartesian space are twice continuous differentiable. When 

using the quintic B-spline in joint space, the angular acceleration and jerk of joints are 

continuous. Because the kinematic constraints and minimum-time problem are all taken 

into account in both Cartesian space and joint space, the precision and efficiency of robot 

are improved effectively. The experimental results on a 4-DOF serial collaborative robot 

show that the robot maintains the high efficiency for about 75% of whole movement 

under kinematic constraints. Therefore, the effectiveness and practicability of the 

proposed method is verified. 
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