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Model Studies of Fluid-Structure Interaction Problems
X. Sheldon Wang1,∗, Ye Yang2 and Tao Wu2

Abstract: In this work, we employ fluid-structure interaction (FSI) systems with
immersed flexible structures with or without free surfaces to explore both Singular Value
Decomposition (SVD)-based model reduction methods and mode superposition methods.
For acoustoelastic FSI systems, we adopt a three-field mixed finite element formulation
with displacement, pressure, and vorticity moment unknowns to effectively enforce the
irrotationality constraint. We also propose in this paper a new Inf-Sup test based on
the lowest non-zero singular value of the coupling matrix for the selection of reliable
sets of finite element discretizations for displacement and pressure as well as vorticity
moment. Our numerical examples demonstrate that mixed finite element formulations
can be effectively used to predict resonance frequencies of fully coupled FSI systems
within different ranges of respective physical motions, namely, acoustic, structural, and
slosh motions, without the contamination of spurious (non-physical) modes with non-
zero frequencies. Our numerical results also confirm that SVD-based model reduction
methods can be effectively used to reconstruct from a few snapshots of transient solutions
the dominant principal components with moderate level of signal to noise ratio, which may
eventually open doors for simulation of long-term behaviors of both linear and nonlinear
FSI systems.

Keywords: Model reduction, fluid-structure interaction, mixed finite element, singular
value decomposition, acoustic.

1 Introduction
Over the past two decades, there have been a surge of research in the modeling of fluid-
solid interaction (FSI) systems, many of which are related to the combination of nonlinear
and meshless finite element methods with the immersed boundary method concepts [Boffi,
Gastaldi, Heltai et al. (2008); Liu, Zhang, Wang et al. (2004); Wang (2006); Wang, Zhang
and Liu (2009); Wang and Liu (2004); Liu, Liu, Farrell et al. (2006); Zhang, Gerstenberger,
Wang et al. (2004)]. In this paper, we explore a further improvement of monolithic
FSI modeling techniques by adopting model reduction techniques. More specifically, we
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employ traditional mixed finite element formulations for very complicated acoustoelastic
FSI problems in which there exist three different ranges of coupled modes, namely,
sloshing, structural, and acoustic modes. It is important to notice that although we name
these three frequency bands as sloshing, structural, and acoustic ranges, the coupled effects
are fully incorporated in the formulation. For example, the structural frequencies do depend
on added mass effects of the surrounding fluid. In engineering practice, it is essential
to focus on particular problems which involve different frequency ranges and to develop
corresponding efficient spectrum methods. In this paper, in addition to a comprehensive
review of mixed formulations for acoustoelastic FSI systems, we also explore two different
types of model reduction procedures, namely, mode superposition methods and singular
value decomposition (SVD)-based model reduction methods. For mode superposition
methods, the advantage is the direct calculation of mode shapes and natural frequencies,
whereas the disadvantage is the requirement of an explicit formulation for the FSI system
at that particular configuration, which is essential for nonlinear FSI problems such as
vocal track acoustic resonance. For SVD-based model reduction methods, snap shots of
transient solutions derived from linear or nonlinear FSI formulations or experiments can be
used to formulate the dominant principal modes surrounding the physical configuration as
illustrated in Schmid [Schmid (2010)].
A number of finite element formulations have been proposed to model an acoustic fluid
for the analysis of acoustoelastic FSI problems, namely, the displacement formulation
(Belytschko [Belytschko (1980)]; Bathe et al. [Bathe and Hahn (1979)]; Hamdi et
al. [Hamdi, Ousset and Verchery (1978)]; Belytschko et al. [Belytschko and Kennedy
(1976)]; Olson et al. [Olson and Bathe (1983)]), the displacement potential and pressure
formulation, and the velocity potential formulation (Morand et al. [Morand and Ohayon
(1995)]; Everstine [Everstine (1981)]; Olson et al. [Olson and Bathe (1985)]; Felippa et al.
[Felippa and Ohayon (1990)]).
Since its inception, primitive variable formulation has received considerable attention for
simple and direct interface conditions no different from element assemblage processes
[Kiefling and Feng (1976); Olson and Bathe (1983)]. The key reason is of course
the monolithic formulations for both media around the interfaces, which are useful in
frequency calculations and response spectrum analysis. Various approaches have been
introduced to eliminate spurious non-zero frequency circulation modes and to obtain
improved formulations [Wilson and Khalvati (1983); Chen and Taylor (1990); Bermúdez
and Rodríguez (1994)]. It has been proposed that the spurious non-zero frequencies are
caused by the irrotationality constraint [Wilson and Khalvati (1983); Hamdi, Ousset and
Verchery (1978)]. Only recently, the true origins of the spurious non-zero frequency
rotational modes have been identified [Wang (2008); Wang and Bathe (1997a)]. It was
concluded that the reported non-zero frequency spurious modes are caused either by the
pure displacement formulation, the use of mixed elements which do not satisfy the Inf-Sup
condition, or the improper treatment of the boundary conditions. Therefore, a proper way
of eliminating the non-zero frequency spurious modes is to use the displacement/pressure
(u/p) based mixed formulation with elements satisfying the Inf-Sup condition. In addition
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to the traditional u/p formulation (as used for solids with zero shear modulus) [Wang
and Bathe (1997a)], an effective three-field mixed finite element formulation, namely, the
displacement/pressure/vorticity moment (u − p − Λ) formulation was presented in Wang
[Wang (2008)].
In this paper, we briefly review the u/p and u−p−Λ formulations for acoustic fluid media
and the related fluid-solid interaction (FSI) models. Moreover, we adopt the same mixed
finite element formulations for both fluid and solid domains with mixed finite elements
with continuous pressure. Hence, the coupling of fluids and solids in our monolithic
fluid-solid is identical to standard finite element assemblage processes. Our numerical
examples demonstrate that mixed finite element formulations are feasible for the prediction
of coupled frequencies and mode shapes even if primary slosh, structural, and acoustic
modes are within separate frequency ranges. A similar yet more straightforward numerical
Inf-Sup test based on the lowest non-zero singular value of the coupled matrix.
The focus of this paper however is on issues related to model reduction methods with
mixed finite element formulations. One of the most popular model reduction methods is
the mode superposition method [Daniel (1980); Bathe (1996)], the other one is the so-called
Singular Value Decomposition (SVD)-based method or Principal Component Analysis
(PCA) [Berrar, Dubitzaky and Granzow (2004); Jolliffe (2002)]. Recent studies include the
overview of modeling of large-scale dynamical systems [Antoulas and Sorsensen (2001);
Antoulas (2005)] and interpolating method based on diffeomorphism or differentiable
manifold instead of tangent plane [Amsallem, Cortial, Carlberg et al. (2009)]. In general,
the mode superposition method is limited to linear systems, whereas various forms of PCA
can be extended to nonlinear systems with frequent updates of the principal directions.
In order to illustrate the procedures of these two approaches, in this paper, we employ a
fairly comprehensive two-dimensional acoustoelastic FSI model with both submerged two-
dimensional elastic structure and free surface. If we do not know the material properties
of the system, with SVD-based principal component analysis, combinations of eigen
modes can still be constructed by taking the first few dominant principal components of
snapshots of available transient data which could also be derived from experiments or
other black box simulation tools. In general, excellent agreements are confirmed between
the original transient solutions and the data reconstructed with a few dominant principal
components. The figures of energy are also plotted in order to verify the realization of this
objective, namely, recovering the transient data with a few principal components without
losing dominant characteristics. Finally, some temporal coarse-grained techniques are also
proposed for the study of long-term behaviors of FSI systems.

2 Mixed formulations for acoustic continua

2.1 Formulations for fluids

In linear analysis, for isentropic and inviscid fluids undergoing small vibrations, the
momentum balance and constitutive equations show
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ρü +∇p− fB = 0, (1)

∇ · u +
p

β
= 0, (2)

where ρ, u, p, fB , and β represent the density, displacement vector, pressure, body force
vector, and fluid bulk modulus, respectively.
Assume the inertia force −ρü is included in the body force term and combine Eqs. (1) and
(2), we have

β∇(∇ · u) + fB = 0. (3)

In addition, it is known that the inviscid fluid must satisfy the following irrotationality
constraint:

∇× u = 0. (4)

The variational form of Eq. (3) can then be expressed as

∫
Vf

[
β(∇ · u)(∇ · δu)− fB · δu

]
dV +

∫
Sf

p̄δusndS = 0, (5)

where Vf and Sf stand for the fluid domain and Neumann boundary, respectively; usn is the
displacement normal to Sf ; and p̄ is the given pressure on Sf corresponding to usn with the
following variational indicator

Π =

∫
Vf

[
β

2
(∇ · u)2 − fB · u

]
dV +

∫
Sf

p̄usndS.

In practice, it has been observed that with such a displacement-based formulation
circulation modes with non-zero frequencies may emerge with the zero frequency
circulation modes [Bathe (1996)]. In engineering practice, it is difficult to delineate
such non-zero frequencies, often named as spurious or non-physical, from non-zero
frequency physical modes. Furthermore, when the fluid acts as almost incompressible,
the usual constraint of near incompressibility is shown as Eq. (2), with the bulk modulus
β → ∞. However, the displacement-based formulation with irrotationality and (almost)
incompressibility conditions often lead to a much too stiff response, i.e., ’locking’ behavior.
In order to eliminate these deficiencies, the penalty-form variational indicator based on
constraint (2) is introduced
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Π =

∫
Vf

[
p2

2β
− u · fB − λp

(
p

β
+∇ · u

)]
dV +

∫
Sf

p̄uSndS, (6)

where λp is the Lagrange multiplier.
For this indicator, the first term corresponds to the strain energy with respect to pressure,
the second term stands for the external body force potential, which also includes the inertia
force, and the last term is the potential due to the boundary pressure. Eq. (6) is often called
u/pmixed finite element formulation or simply u/p formulation. Furthermore, because the
irrotationality constraint is not imposed in the u/p formulation, therefore exist too many
exact zero frequencies. In reliable finite element analysis, these zero frequency modes are
often eliminated with the following modification of Eq. (4)

∇× u =
Λ

α
, (7)

where Λ is the so-called vorticity moment and α stands for a very large number.
With this additional constraint, another variational indicator Π is defined by the Lagrange
multiplier method on the bases of the u/p formulation

∫
Vf

[
p2

2β
− u · fB − λp

(
p

β
+∇ · u

)
+

Λ ·Λ
2α

− λΛ ·
(

Λ

α
−∇× u

)]
dV +

∫
Sf

p̄uSndS,

(8)

where λΛ is a Lagrange multiplier vector corresponding to the vorticity moment.
The fourth term is introduced to statically condense out the degrees of freedom of the
vorticity moment Λ. From the numerical tests, as discussed in Refs. [Wang and Bathe
(1997a,b)], it is found that α can be any numerically reasonable value larger than β, for
example, 100β ≤ α ≤ 106β. In this work, α is defined as 1000β. Invoke the stationarity
of Π with respect to u, p, Λ and identify λp as p and λΛ as Λ, we have the three field
equations

−fB +∇p+∇×Λ = 0, (9)
p

β
+∇ · u = 0, (10)

∇× u− Λ

α
= 0, (11)

with the boundary conditions
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u · n = ūn, on Su, (12)
p = p̄, on Sf , (13)
Λ = 0, on S, (14)

where Su indicates the Dirichlet boundary with S = Su
⋃
Sf and Su

⋂
Sf = �.

Notice that the pressure unknown p is a physical quantity in the formulation as governed
by Eq. (10) as well as the boundary condition (13). However, the vorticity moment Λ is
an artificial vector introduced to enforce the irrotationality constraint (4). Moreover, the
governing equation (11) implies a small value for the vorticity. It is therefore natural to
simplify the problem by imposing a zero value for the vorticity moment on all boundaries
as described in (14). Detailed descriptions of this point and the relative issues are available
in Refs. [Bao, Wang and Bathe (2001); Wang and Bathe (1997b)]. Applying the standard
Galerkin finite element discretization, and considering a typical element, we have

u = HU, p = HpP, Λ = HΛΛ, (15)

∇ · u = (∇ ·H)U = BU, ∇× u = (∇×H)U = DU, (16)

where U, P, and Λ list all the nodal point displacements, pressure, and vorticity moment,
respectively in global coordinates and H, Hp, and HΛ refer to the displacement, pressure,
and vorticity moment interpolation matrix, respectively.
Finally, the field equations can be expressed in matrix form with respect to nodal unknown
vectors U, P, and Λ

 M 0 0
0 0 0
0 0 0

  Ü
P̈
Λ̈

+

 0 L Q
LT A 0
QT 0 G

  U
P
Λ

 =

 R
0
0

 , (17)

with

M =

∫
Vf

ρHTHdV, L = −
∫
Vf

BTHpdV, Q =

∫
Vf

DTHΛdV,

A = −
∫
Vf

1

κ
HT
p HpdV, G = −

∫
Vf

1

α
HT

ΛHΛdV, R = −
∫
Sf

(Hs
n)T p̄dS.

Combining the coefficients of different variables, we can systematically rewrite the entries
of the mass matrix and stiff matrix as follows
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 Muu 0 0
0 0 0
0 0 0

  Ü
P̈
Λ̈

+

 0 Kup KuΛ

Kpu Kpp 0
KΛu 0 KΛΛ

  U
P
Λ

 =

 R
0
0

 , (18)

with subscripts indicating their corresponding unknowns.

2.2 Formulations for solids

Consider a structure with isotropic material

τij,j + fBi = 0, in V, (19)

τijnj = f
Sf

i , on Sf , (20)

ui = uSu

i , on Su, (21)

where τ , fB , n, and fSf represent the stress tensor, body force vector, outward normal
vector, and the applied surface traction vector on the Neumann boundary Sf , respectively.
Based on the governing equation and boundary conditions, the principle of virtual
displacements can be derived:

∫
V
δεijτijdV =

∫
V
δuif

B
i dV +

∫
Sf

δu
Sf

i f
Sf

i dS +
∑
k

δUki R
k
ci, (22)

where δε is the virtue strain tensor; Rk
c is the kth concentrated load vector; δu, δuSf

,
and δU are the virtue displacement over the volume, the Neumann boundary, and isolated
points, respectively.
If the material is almost incompressible, the constitutive relations are derived as

τij = κεvδij + 2Gε′ij , (23)

where κ is the bulk modulus with κ = E/3(1− 2ν); G is the shear modulus with G =
E/2(1 + ν); εv is the volumetric strain with εv = εkk in Cartesian coordinates; and ε′ij are
the deviatoric strain components with respect to Kronecker delta, ε′ij = εij − εvδij/3.
As the Poisson’s ratio ν gradually approaches to 0.5, the bulk modulus κ approaches to
infinity and the volumetric strain εv approaches to zero. Naturally, it is difficult to evaluate
the pressure from the relationship p = −κεv, even though the pressure is finite. Therefore,
the governing equation should involve another unknown, pressure p, which is independent
of the displacement unknown u. Consequently, with the shear modulus G, the relation can
be achieved as
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τij = −pδij + 2Gε′ij . (24)

Now the principle of virtual work is introduced in terms of independent variables u and p

∫
V

(δε′
T

: S− δεvp)dV = δR, (25)

∫
V

(
p

κ
+ εv)δpdV = 0, (26)

with S = C′ε′, S = τ + pδ, and ε′ = ε − εvδ/3, where S and ε′ are the deviatoric stress
and strain tensors, respectively; the material matrix C′ is defined by Eq. (24) and linearly
proportional to the shear modulus G; and δR corresponds to the net external virtual work.
Implement the standard Galerkin discretization

ε′ = BDU, εv = BvU, p = HpP, (27)

we derive the following governing equation in matrix form with respect to discretized
unknowns U and P

(
Kuu Kup

Kpu Kpp

)(
U
P

)
=

(
R
0

)
, (28)

where BD and Bv are the deviatoric and volumetric strain interpolation matrix, respectively;
R represents the external force corresponding to the net external virtual work R̄; and the
components of stiffness matrix are defined as

Kuu =

∫
v

BTDC′BDdV, Kpp = −
∫
v

1

κ
HT
p HpdV, (29)

Kup = Kpu = −
∫
v

BTv HpdV. (30)

In transient analysis, the inertia forces need to be considered. Using d’Alembert’s principle,
the element inertia forces can be directly included as part of the body forces

RB =

∫
V

HT (fB − ρHÜ)dV, (31)

where RB is the body force vector; ρ is the mass density; and Ü lists the nodal point
accelerations, i.e. the second time derivative of the nodal point displacements U.
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At this point, fB no longer includes the inertia forces and the dynamic equilibrium equation
becomes

MÜ + KU = R, (32)

where the matrix M =

∫
V
ρHTHdV is the so-called consistent mass matrix of the solid.

2.3 Coupled formulation and mixed elements

In this section, we will explicitly illustrate the coupling procedures for mixed formulations.
Notice that there is no need to use the so-called mixed formulations with additional pressure
and vorticity moment unknowns for the solid domain. Therefore, the additional pressure
and vorticity moment unknowns will only show up for the fluid domain. Let’s first employ
the pure displacement-based formulation for solid

(
Mss Msc

Mcs Ms
cc

) (
Üs

Üc

)
+

(
Kss Ksc

Kcs Ks
cc

) (
Us

Uc

)
=

(
Rs

Rs
c

)
, (33)

and the u/p formulation for fluid

 Mff Mfc 0
Mcf Mf

cc 0
0 0 0

 Üf

Üc

P̈

 +

 Kff Kfc Kfp

Kcf Kf
cc Kcp

Kpf Kpc Kpp

 Uf

Uc

P

 =

 Rf

Rf
c

0

 , (34)

respectively, where Us, Uf , and Uc refer to the nodal displacement unknowns in the
structure interior, fluid interior, and fluid-structure interface, respectively; and Rs, Rf , Rs

c,
and Rf

c stand for the nodal forces in the structure interior, fluid interior, structure, and fluid
side of the fluid-structure interface,respectively.
It is important to notice that in this case the kinematic matching of the coupling of fluid
and solid domains share only the displacement unknown Uc between the fluid and solid
domains, whereas the dynamic matching will cancel the effects of Rs

c and Rf
c according

to the Newton’s third law. In Ref. [Wang (2008)], wang provides a more comprehensive
explanation for the coupled fluid-structure matrices. In the practical analysis, Uc might only
consist of normal displacement components of fluid elements. In the assemblage process,
Eqs. (33) and (34) are combined and yield the final governing equation for FSI systems


Mss 0 Msc 0

0 Mff Mfc 0
Mcs Mcf Mcc 0

0 0 0 0




Üs

Üf

Üc

P̈

+


Kss 0 Ksc 0

0 Kff Kfc Kfp

Kcs Kcf Kcc Kcp

0 Kpf Kpc Kpp




Us

Uf

Uc

P

 =


Rs

Rf

0
0

 ,
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(35)

with Mcc = Ms
cc + Mf

cc and Kcc = Ks
cc + Kf

cc.
In order to choose appropriate mixed elements, we must consider the Inf-Sup condition
[Chapelle and Bathe (1993)]. It has been proven that 9 − 4c − 4c and 9 − 3 − 3
mixed elements are appropriate choices in two-dimensional analysis [Bao, Wang and
Bathe (2001); Bathe (1996)]. Figure 1 depicts the element configurations for these two
types of mixed elements schematically. Take the second one as an example, there are 9
continuous nodal displacements and 4 continuous pressure and vorticity moment nodes in
each element. When elements are adjacent to each other. The same assemblage procedures
are utilized for the displacement, pressure, and vorticity moment unknowns. Letter c
indicates that these quantities are continuous among elements. In order to obtain the
continuity of the pressure and vorticity moment unknowns, we can also employ 9−4c−4c
elements for our test problems.

Figure 1: Two mixed elements for u-p-Λ formulation. Full numerical integration is used
(i.e., 3 × 3 Gauss integration)

In the mesh generation figure, it shows that each pressure node, except the nodes on the
boundary, is shared by four neighboring elements. Based on the configuration of 9−4c−4c
element, to describe the pressure of a generic element, a bilinear interpolation function is
introduced

p = p1 + p2r + p3s+ p4rs, (36)

where r and s are the natural coordinates for a single element.
Comparing Eq. (2) with (4), it can be observed that these two constraints are very similar
in nature and are not coupled in the displacement-based formulation. Therefore, it can
be assumed that they should be imposed with the same interpolation functions in generic
element discretization. That is to say, for the inviscid acoustic fluid formulation, the
interpolation for the vorticity moment is

Λ = Λ1 + Λ2r + Λ3s+ Λ4rs. (37)
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2.4 Mesh generation and stability analysis

In the following discussion, the stability analysis is based on the u− p−Λ formulation for
acoustic fluid and the u/p formulation for structure in a typical acoustoelastic fluid-solid
interaction system. The basic observations and conclusions are also directly applicable to
the u/p formulation for fluid and displacement-based formulation for structure or solid.
Assign

Uh = U, Sh = (PT ΛT )T (38)

Rh = R, (Kus)h = (Kup KuΛ), (Kss)h =

(
Kpp 0

0 KΛΛ

)
(39)

therefore, the coupled formulation with either u− p−Λ or u− p formulation for acoustic
fluid can be expressed as follows

(
Muu 0

0 0

) (
Üh

S̈h

)
+

(
(Kuu)h (Kus)h
(Kus)

T
h (Kss)h

) (
Uh

Sh

)
=

(
Rh

0

)
, (40)

where Uh contains all the variables of the nodal point displacements and Sh lists all the
pressure and vorticity moment unknowns.
For step-by-step transient analysis, after transforming, the following equation is considered
for every time step:

(
(K∗uu)h (Kus)h
(Kus)

T
h (Kss)h

) (
Uh

Sh

)
=

(
R∗h

0

)
, (41)

where R∗h is an effective load vector.
Moreover, it is known that the shear modulusG = 0 for invisid fluid, according to Eq. (24),
we have

(K∗uu)h = C(Muu)h, (42)

where C is a constant depending on the time integration method, for example, C = 1/α4t2,
with α ≥ 0.25 for Newmark method.
Since (Muu)h is positive definite, (K∗uu)h is always a positive-definite matrix. The stability
and effectiveness of the u/p or u− p−Λ formulation and corresponding mixed elements
which will be employed in the test problems are verified through ellipticity and Inf-Sup
conditions, which are necessary and sufficient conditions for well-posedness:
(a) Ellipticity Condition:
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VT
h (Kuu)∗hVh ≥ c1 ‖ Vh ‖2V , ∀ Vh ∈ ker[(Kus)

T
h ], (43)

with c1 > 0, ‖ v ‖2V =
∑
i,j

‖ ∂vi
∂xj
‖2L2(V ), ker[(Kus)

T
h ]=
{

Vh|Vh ∈ Rn, (Kus)
T
hVh = 0

}
.

(b) Inf-Sup Condition:

inf
Sh

sup
Uh

UT
h (Kus)hSh
||Uh|| · ||Sh||

≥ c2 > 0, (44)

where the constant c2 is independent of the mesh size h, the constant α in the irrotationality
constraint and the bulk modulus β.
Generally, whether the Inf-Sup condition is satisfied depends on the specific chose of
finite element discretization, the boundary condition, and the macromesh generation of
the mathematical models [Bao, Wang and Bathe (2001)]. The Inf-Sup condition or often
called Brezzi-Babus̆ka condition, was popularized by Babus̆ka and Brezzi in early 1970s
[Babus̆ka (1973); Brezzi (1974)] and stated in an earlier theoretical work by Necas in 1962.
References [Brezzi and Fortin (1991); Ern and Guermond (2003)] introduce this condition
from the viewpoint of Banach space theorems. Although the Inf-Sup condition for mixed
formulations was proposed some time ago, the analytical proof of whether the Inf-Sup
condition is satisfied by a specific set of elements can be very difficult [Chapelle and Bathe
(1993)]. Reference [Bathe (1996)] gives its very first numerical proof of Inf-Sup condition
derived from the matrix equations and feasible for engineering applications. As a part of the
novelties presented in this paper, we will explore a similar yet different type of numerical
proof of Inf-Sup condition based on the singular values of the coupling matrix (Kus)h,
which is a direct extension or benefit of SVD-based model reduction method and does not
introduce additional numerical challenges.

3 Model reduction methods
Since the finite element procedure is realized on the basis of elements, in engineering
practice, we often encounter a large number of elements and the degrees of freedom
which lead to high-dimensional matrices. To accommodate the challenges in both spatial
and temporal resolutions, we must develop efficient methods to construct equivalent low-
dimensional dynamic descriptions which can capture the essence of the full fledged finite
element model with high fidelity. In this paper, two different model reduction methods
are introduced, namely, mode superposition methods and SVD-based model reduction
methods.

3.1 Mode superposition method

The mode superposition method depends on the explicit construction of mass and stiffness
matrices. If the coupled system is well known along with all material properties, this
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method can be efficient and useful for all linear systems. Suppose we have the following
governing dynamic equilibrium equation without damping effects

Mẍ + Kx = r(t). (45)

We propose to transform this equation into a more effective form for direct integration
by using the following transformation x(t) = Pu(t) = uiPi, where P is a square modal
matrix, each column Pi of which represents a mode shape, and u is a time-dependent
general coordinate vector. Pre-multiply Eq. (45) by PT , we derive

M̃ü + K̃u = r̃(t), (46)

with M̃ = PTMP, K̃ = PTKP, and r̃ = PT r.
The transformation matrix is established by solving the generalized eigenvalue problem

(K− ω2
i M)pi = 0. (47)

The homogeneous solution of Eq. (46) can be written as ui(t) = ci sinωi(t − ti), where
ci is the scaling factor corresponding to the i-th eigenvector pi and eigenvalue ωi, ti is the
corresponding time constant related to the phase shifts. Note that both the scaling factor ci
and the time shift ti depend on the initial conditions.
To further simplify the formulation, we can also scale the eigenvectors according to
the so-called M-orthonormal condition, i.e., pTi Mpj = δij , we can finally define the
transformation matrix as P = [p1,p2, . . . ,pn], Λ = diag{ω2

1,ω
2
2, . . . ,ω

2
n} and Eq. (47)

can be rewritten as

KP = MPΛ, (48)

with PTKP = Λ and PTMP = I, where I is an n× n dimensional identity matrix.
Note that in engineering practice, due to the restraints of physical conditions, it is
safe to assume the eigenvalue problem in Eq. (47) is simple, namely, the matrices are
diagonalizable and no Jordan form is needed [Strang (1988)].

3.2 Singular value decomposition

In comparison with the mode superposition method, SVD-based model reduction methods
do not depend on the explicit construction of mass and stiffness matrices. If a few
snapshots of the transient solution are available, it is possible to identify the dominant
principal directions and the proportionality of the energy content. In fact, this type of
model reduction method is also applicable to nonlinear systems in which the principal
directions can be altered or updated through time [Gunzburger (2003)]. It is also important
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to recognize that for linear systems, the principal directions are often a linear combination
of the mode shapes which depends very much on the transient conditions or snapshots
around that particular time.
Consider an n×m matrix A with the column number m much smaller than the dimension
of the problem n. We can easily construct two symmetric matrices ATA (m×m) and AAT

(n × n). Suppose the rank of the matrix A is r (r ≤ m � n), there will be r non-zero
eigenvalues of these two symmetric matrices. Based on the linear algebra theories [Jolliffe
(2002)], the null space along with the row space span the entire Rm whereas the left null
space along with the column space span the entireRn. As a consequence, the eigenvectors
of the matrix ATA denoted as vi in Rm, span the row space of the matrix A whereas the
eigenvectors of the matrix AAT represented with ui in Rn comprise the column space of
the matrix A. In fact, ui and vi are similar to the right and left eigenvectors of the square
matrix provided we have m = n.
Denote a matrix U, the first r columns of which are the eigenvectors of the symmetric
matrix AAT , and the last m − r columns are constructed with the left null space vectors.
In addition, introduce a matrix V, the first r columns of which are the eigenvectors of the
symmetric matrix ATA, and the last n− r columns are made of the null space vectors. The
singular value decomposition of the matrix A is then depicted as

A = UΣVT =

r∑
i=1

σiAi, (49)

where Ai = uivTi are the basis matrices and the first r diagonal entities of the n×mmatrix
Σ are the square root of the non-zero eigenvalues of the matrix ATA or AAT , namely,
singular values of the matrix A.
Another popular and efficient modal reduction procedure based on singular value
decomposition is the so-called principal component analysis. Instead of dealing with
a much larger n-dimensional problem in the time domain, it is often more practical to
use the model reduction method to construct generalized coordinates in a much smaller
m-dimensional Krylov subspace [Dunteman (1989)]. For example, let us have m time
snapshots within the time interval [t0, t1]. Notice here that such a time interval should be
shifted to explore the landscapes of interest to the research subjects in nonlinear problems;
whereas such a shift is not necessary for linear problems. For a typical channel or

snapshot xk, denote x̄k =

n∑
j=1

xjk/n, the variance of this channel can be expressed as

n∑
j=1

(xjk − x̄k)
2/n. Therefore, we have a matrix x = (x1,x2, · · · ,xm), the column of

which represents each time snapshot. Moreover, we can also denote a new shifted matrix
y = (y1,y2, · · · ,ym), the column of which represents each time snapshot shifted by its
own average, namely, yik = xik− x̄k. The procedure to maximize the variance inRn leads
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to an optimization problem: find φ ∈ Rm such that φTyTyφ is maximized subject to the
constraint φTφ = I, where I is an m×m dimensional identity matrix. It is then clear that
the principal component φ is in fact the eigenvector of the covariance matrix C, the ijth

entity can be expressed as Cij =

n∑
k=1

(xki − x̄i)(xkj − x̄j)/(n − 1), and the number of

principal components r depends on the rank of the covariant matrix C. The eigenvalues,
which are also called principal values, represent the variances of each principal component.
Then the singular values are sorted in descending order with the eigenvectors (principal
components) arranged accordingly. Furthermore, in engineering practice, the directions in
which the data set has the most significant amounts of energy can be found. Once the first
l principal components are selected, a m× l matrix Ψ = [φ1,φ2, · · · ,φl] can be built up.
This matrix is called feature vectors. Using the feature vectors, the projected data set can
be obtained by xΨ.
PCA involves a procedure that transforms a number of correlated variables into a much
smaller set of variables and respective principal components or independent base vectors.
The objective of PCA is to discover and to reduce the dimensionality of the data in the
most effective way with respect to the variance of the data. Besides, it provides the most
efficient way of capturing the dominant components of many processes with only few
instead. Another method closely related to PCA and SVD is called proper orthogonal
decomposition (POD) or Karhunen-Loève decomposition (KLD). The mathematical proof
of the equivalence of these methods is presented in Ref. [Liang, Lin, Lee et al. (2002)].

4 Ito process and Brownian motion
In physical world, random perturbations often present themselves in dynamical modeling
of fluid-solid interaction systems. A familiar way to quantify such random perturbations
has been elegantly characterized as Einstein’s Random Walk [Haw (2005)]. In fact, the
coupled governing equation can adopt the following general form

Mẍ + Kx = R + Rr, (50)

in which the external forces include a perturbation vector Rr, characterized as the white
noise Vt, formal derivative of a Wiener process Wt [Ostoja-Starzewsk and Wang (1999)].
Let y = ẋ, we can express the governing equation into a typical dynamical system form(

ẋ
ẏ

)
= −

(
0 −1

M−1K 0

)(
x
y

)
+

(
0

M−1

)
Vt. (51)

In this standard dynamical system form, with X = (xT yT )T , so-called Langevin
equation [Lemons and Gythiel (1997)], the governing equation has been abbreviated as

dX
dt

= −a(t,X) + b(t,X), (52)
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in which the drift term a(t,X) could be simplified as AX with A a constant matrix for
linear dynamical systems, and the diffusion term b(t,X) is often characterized as BVt

with a constant matrix B multiplied by a vector Vt, every entity of which is represented by
a white noise random process.
Assume the constant matrix A is simple, namely, diagonalizable, with A = φΛφ−1,
the generalized coordinate ξ = φ−1X is introduced. Following the so-called Ornstein-
Uhlenbeck process [Higham (2001)], we can then employ the Ito process for all the
generalized coordinate ξi satisfying the stochastic differential equation(SDE) with so-
called additive noise cidWt:

dξi = −λiξidt+ cidWt, (53)

where for the ith mode the drift term is represented by λiξi and the diffusive term increment
cidWt yields from φ−1BVtdt along with the definition of the white noise as the formal
derivative of a Wiener process Wt [Ostoja-Starzewsk and Wang (1999)].
For the ith mode, if λi is zero, the general solution ξi for that mode will be Martingale.
Consequently, we can express the explicit solution as

ξi = e−λit(ξi(0) +

∫ t

0
eλiscidWs) = e−λitξi(0) + e−λit

∫ t

0
eλiscidWs, (54)

or an implicit approximation as

ξi,n+1 = ξi,n − λiξi,n+14tn + ci4Wn, (55)

4Wn represents a normal distribution with zero mean and variance proportional to4tn.
Assume N is the number of realization, the sample variance can be expressed as

S2
N =

1

N − 1

N∑
i=1

(xi − x̄N )2, (56)

where x̄N is the sample mean.
Moreover, based on the Ito calculus, the mean of the solutions for SDE (53) for ith mode,
can be expressed as

E(ξi(t)) = E(ξ0)eλit. (57)

For any given initial value, repeat N different simulations of sample path by implicit Euler
method. Then use M different initial values, i.e., generating a series of trajectories with
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distinct starting points, the mean error of the jth batch by the statistic is

µ̂j =
1

N

N∑
k=1

ξi(t)k,j − E(ξi(t)) (58)

for j = 1, 2, . . . ,M , and their average

µ̂ =
1

MN

M∑
j=1

N∑
k=1

ξi(t)k,j − E(ξi(t)), (59)

where ξi(t)k,j represents the k-th numerical simulation at time t of the ith mode with the
jth initial value.
The variance of the batch average µ̂j can be estimated by

σ̂2
µ =

1

M − 1

M∑
j=1

(µ̂j − µ̂)2. (60)

For the student t-distribution with M − 1 degree of freedom, a 90% confidence interval
(α = 0.1) for the mean error µ is

(µ̂−∆µ̂, µ̂+ ∆µ̂) (61)

with

∆µ̂ = t1−α,M−1

√
σ̂2
µ

M − 1
. (62)

5 Numerical examples
The mathematical models considered in this paper are not restrictive, although for
simplicity, we choose to work in two-dimensional solutions, the application can be
directly extended to similar three-dimensional problems. To demonstrate the capabilities of
proposed mixed formulations for both fluid and structure, we present the numerical results
of two typical acoustoelastic fluid-solid interaction problems.

5.1 Immersed deformable solid block

The first model is a typical FSI system as shown in Fig. 2. It depicts a square deformable
solid immersed in an open square cavity filled with an acoustic fluid. The immersed solid
is connected to the bottom with two springs to compensate the effects of buoyancy and
introduce some kind of resistance to rotational motion. In this problem, there exist three
distinctive sets of modes, namely, surface wave sloshing modes, structural modes, and
acoustoelastic modes.
Table 1 lists the first few frequencies of sloshing/structural/acoustic modes based on
different formulations and different mesh density. Convergence issues for mixed
formulations will be addressed in a separate paper. In general, mixed formulations do



22 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.5-34, 2019

Figure 2: Model I: Acoustoelastic FSI system with a square acoustic solid vibrating in an
acoustic fluid

Table 1: Frequencies of Sloshing/Structural/Acoustic Modes of FSI Model I

Formulation Eigenmode Number Number of zero Frequencies (rad/s)
Fluid Structure of elements Theory Result First Second Third Fourth

Sloshing 1.6742 5.6735 7.7958 10.027
u− p−Λ u Structure 9 31 31 127.72 156.75 276.62 281.72

Acoustic 10228 12939 14644 14886
Sloshing 1.7952 5.5529 7.9521 10.099

u− p−Λ u Structure 36 159 159 115.43 130.39 140.16 156.83
Acoustic 10327 11930 12695 13523
Sloshing 1.7843 5.5405 7.8638 9.6822

u− p−Λ u Structure 144 703 703 86.456 99.892 99.969 121.25
Acoustic 10160 10164 10174 10267
Sloshing 1.8029 5.5529 7.9523 10.099

u− p−Λ u/p Structure 36 159 159 64.306 73.208 85.608 94.529
Acoustic 10430 12120 12725 13942
Sloshing 1.7925 5.5405 7.8640 9.6822

u− p−Λ u/p Structure 144 703 703 107.11 114.25 122.10 130.74
Acoustic 10161 10296 10304 10670
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Figure 3: Displacement of sloshing/structural/acoustic modes of FSI Model I

not yield monotonic convergence. However, it is clear in Tab. 1 that there exists a clear
separation of sloshing, structure, and acoustic modes and the precise number of zero
modes from our implemented program matches exactly with the theoretical prediction
based on the same mesh. Furthermore, the first four sloshing, structure, and acoustic
modes predicted by both displacement and displacement/pressure mixed formulations
with refined meshes match very well with each other. It is also important to note that
displacement/pressure formulation is not as accurate as displacement formulation for
compressible solid. Displacement/pressure formulation is only needed when the solid is
also incompressible.
To ensure there exists no non-zero spurious (not physical) frequency, we compare the
number of zero frequencies with the mathematical prediction [Wang and Bathe (1997a)].
Assume that we have n displacement unknowns, m pressure and vorticity moment
unknowns, and k free surface nodes, then the total number of zero frequencies is n −
m − (k − 1). Here, we assume that the physical constant pressure mode arisen from the
boundary condition v · n = 0 on S has been eliminated. From the table, we can see the
numerical results are identical to the predictions. It is also important to point out that the
u − p − Λ formulation for acoustic fluid works equally well with both the displacement
formulation or the u/p formulation for immersed solid.
Figure 3 describes the first four structural modes in addition to the first two sloshing and
acoustic modes. Note here for mode shapes, the absolute scale is not relevant since there
always exists a scaling constant. The upward direction is defined as positive. The top
two sub-figures depict the sloshing modes, which describe the fluid motion on the free
surface. The surface displacements are involved and the free surface is no longer flat.
Since the gravitational phenomena depend very much on the gravity, the corresponding
coupled frequencies would be within low frequency ranges. The next four sub-figures
are structural modes, which involve significant motions of the immersed solid. Naturally,



24 Copyright c© 2019 Tech Science Press CMES, vol.119, no.1, pp.5-34, 2019

(a) Former Approach (b) New Approach

Figure 4: (a) Numerical Inf-Sup test of 9 − 4c − 4c elements for u − p −Λ formulation.
(b) Lowest non-zero singular value of matrix [Kup Kul]. N represents the square root of
the number of the elements used for any local element

such modes will have higher ranges of frequencies than sloshing modes. Based on the
configurations of the immersed solid, it can be recognized that the first and fourth structural
modes are flexural or bending modes; the second one is a stretching mode and the third is a
shearing mode. The last two sub-figures are acoustic modes, which focus on the coupling
of acoustic modes between both immersed solid and the surrounding fluid. Of course, the
key characteristics for the acoustic mode is reflected in the constant pressure condition on
the free surface and much higher ranges of coupled frequencies.
As for the stability conditions, the ellipticity condition is automatically satisfied, since
(K∗uu)h is always a positive-definite matrix. Therefore, the problem becomes to verify that
9−4c−4c elements with corresponding mixed formulation satisfies the Inf-Sup condition.
Fig. 4(a) shows the Inf-Sup value vs. the number of elements N in log − log coordinates.
It is clear that the Inf-Sup value approaches some value without decaying to zero, which
indicates that the 9−4c−4c elements pass the test. If an appropriate basis for displacement
and pressure unknowns is selected, the Kup matrix can be composed by a diagonal matrix
followed by its kernel. Therefore, the minimum non-zero singular value is attempted
to generate consistent information with respect to numerical Inf-Sup tests. As shown in
Fig. 4(b), the lowest (non-zero) singular value does not decay as the number of elements
employed increases. Since we are using the SVD in our model reduction methods, it is
straightforward to employ the singular value of the coupling matrix to replace the standard
numerical Inf-Sup test. With the given mesh densities which are self-accommodating,
Fig. 4(a) demonstrates a possibility of the plateau in the standard numerical Inf-Sup test
as described in Bathe [Bathe (1996)]; whereas utilizing the lowest singular value of the
coupling matrix [Kup Kul], as shown in Fig. 4(b), our proposed new numerical Inf-Sup test
yield the same if not more visible conclusion.
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Figure 5: Model II: Another acoustoelastic FSI model with a free surface and an immersed
structure

5.2 Immersed slender solid/structure

Fig. 5 describes the paradigm of another two-dimensional acoustoelastic FSI model. In the
following example, an elastic slender solid, similar to a structure, is immersed in acoustic
fluid with the left hand side attached with the cavity boundary, a build-in support. Fig. 6
depicts the pressure distributions of the first two sloshing, structural, and acoustic modes,
respectively. According to the convention, the pressure is assumed positive in compression.
As shown in Fig. 6, for acoustic modes, the free surface essentially is a surface with a
constant pressure which is consistent with traditional assumptions for underwater acoustics.
Likewise, for sloshing modes, the pressure distributions match directly with the surface
elevations in tank sloshing problems. Since the coupled structural natural frequencies are
much higher than the coupled sloshing natural frequencies, it is not difficult to conclude that
in this case, surface sloshing waves do not significantly influence the structural dynamical
behaviors. Similarly, the structural modes hardly trigger the sloshing motion. Finally, for
a test mesh, we have the following theoretical prediction of the zero frequencies as well as
the ranges of the sloshing, structural, and acoustic modes in Tab. 2.

Table 2: Frequency range of FSI Model II

Eigen mode Number Number of zero Range of frequency
of elements Theory Result (rad/sec)

Sloshing 5.3889 to 33.468
Structure 40 343 343 149.59 to 1806.7
Acoustic 7384.6 to 103531

In general, if we arbitrarily choose a primary unknown vector u, the Rayleigh-Ritz quotient
α calculated according to the following formula could be a combination of all natural
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Figure 6: Pressure distributions of sloshing, structural, and acoustic modes of FSI Model
II

Figure 7: Rayleigh-Ritz quotient vs. nstep for sloshing and structural modes of FSI Model 
II
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frequencies ωi. However, if the vector u represents a particular eigen mode such as
sloshing or structural modes, the Rayleigh-Ritz quotient α will be approaching to the
respective natural frequencies as we increase the number of snapshots, which is confirmed
by our numerical test shown in Fig. 7. Assume that a white noise in Gaussian distribution
N(0;4t) is added to all the fluid nodes. Due to the disturbance of the white noise, the first
singular vector, on which the transient data projected, could lose the characteristics of the
corresponding eigen modes of the FSI system. Therefore, noise level is detrimental to the
SVD-based model reduction method.

Raleigh-Ritz quotient: α2 =
uTKu

uTu
. (63)

In Fig. 8, we illustrate a procedure to use the dominant principal directions constructed
with the small time snapshot interval dt to extrapolate at a much larger time interval dT .
Suppose we start from the initial time and take 5 snapshots at time step dt and we have
n overall degrees of freedom, a n × 5 matrix A can be assembled. We can recover the
transient data A by a selected number of principal components. Essentially, at every time
instance, the coefficients or general coordinates related to these principal components are
calculated by solving a normal equation.
Using the recovered transient information, we can then extrapolate the transient system
based on a much larger time step dT . At the new time instance t + dT , after relaxation
within a prescribed time duration which is often smaller than dT . We can then repeat the
same process with this type of combination of fine and coarse time step sizes. Fig. 9 shows
the Root Mean Square Deviation (RMSD) error between the original and extrapolated
results with respect to dT . From the figure, we find that the slopes at the point 40dt
and 60dt are very small (less than 0.03). Moreover, Fig. 10 suggests that as soon as the
number of snapshots are sufficiently large, there is no need to further increase the number
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Figure 8: An illustration of coarse graining in time

Figure 9: RMSD error vs. dT
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Figure 10: RMSD error vs. nstep.

(a) Sample Number N (b) Batch Number M

Figure 11: Sample variance vs. sample number and confidence intervals of displacement
for increasing number of batches based on mean error
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(a) Random motion (b) Recovered energy

Figure 12: Energy of transient combined modes and recovered data by SVD and relaxation

of snapshots. Therefore, we set dT = 60dt with the number of time snapshots nstep 
equal to 2000. Similar studies can also be carried out for fine time step size dt. Fig. 10 
shows some results based on different time steps. In this case, considering the memory and 
numerical flops, dt is set to be 0.0005. Then we go back to the former procedure and relax 
the extrapolated solution for ever time step dT . Further discussions are also available in 
the conference publication of earlier results of this work [Yang, Wu and Wang (2010)]. In 
order to verify the effect of PCA, we also employ the first order Sobolev norm to represent 
the stored energy in the FSI system denoted with the total volume V

(‖ v ‖0)2 =
∑
i

‖ vi ‖2L2(V ) +
∑
i,j

‖ ∂vi
∂xj
‖2L2(V ) . (64)

It is shown in Fig. 11 that the sample variance as defined by Eq. (56) begins to converge
when the number of samples N approaches 50. Figure 11 also shows the confidence
intervals of displacement and velocity for increasing number of batches M , respectively.
It can be seen from the figure that the length of the interval decreases as the number of
batches increases. In other words, 90% of the times that upper and lower thresholds are
calculated, the true mean lies below the upper threshold and above the lower threshold. As
the number of batches M increases, the range between upper and lower thresholds gets
smaller and smaller.
Fig. 12 shows the energy of original transient displacements and recovered data by the first
few basis matrices. In this case, the white noise is handled with Ito integration. The solid
curve depicts the energy at discretized time snapshots while the dashed curve describes
the energy of recovered data. This test confirms that even with a limited number of time
snapshots the recovered data is fairly close to the original data for the aforementioned
acoustoelastic FSI systems.
Traditional mode superposition methods can only be applied to linear systems.
Furthermore, the entire system behaviors have to be well established. Therefore, it is an
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effective tool to handle different external loads with different frequencies, for example,
the spectrum analysis in civil engineering disciplines. However, SVD based model can be
used without the prior knowledge of systems, the selection of dominant response is based
on the magnitude of singular values which is a direct presentation of the proportionalities
of energies within different response modes. Finally, we must point out the Krylov space
constructed with the snapshots of the transient solutions can only be valid for the time
vicinity at which the snapshots are recorded. The relationship between the linear Krylov
space and the actual nonlinear transient behavior is very much the same as the tangent plane
at a particular point of a curved surface. Therefore, for nonlinear problems, such Krylov
space must be frequently updated depending on the actual nonlinear behaviors.

6 Conclusion

The acoustoelastic FSI problems are very challenging, in particular when free surface
modes, structural modes, and acoustic modes are fully coupled together. In this paper,
utilizing the monolithic u/p and u − p − Λ mixed finite element formulations for fluid
and solid domains, we have demonstrated that coupled frequencies separated in different
frequency ranges, can be effectively and efficiently captured in the same implementation.
The crucial advantage of u−p−Λ formulation is that it can solve the acoustic FSI problems
without introducing the spurious non-zero frequencies and many zero frequencies. In
addition, we have confirmed that similar to the traditional numerical Inf-Sup test the
singular values of the coupled matrix can also be used to identify mixed finite elements
which satisfy the Inf-Sup condition.
In comparison with the mode superposition methods, we have shown through our numerical
experiments that SVD-based model reduction methods do not necessarily depend on the
explicit construction of mass and stiffness matrices and can be used to identify the dominant
principal components with the proportionality of the energy content. In SVD-based model
reduction methods, a few snapshots of the transient solution can be derived from linear or
nonlinear FSI formulations as well as experiments. It is also important to recognize that for
linear systems, the principal directions are often a linear combination of the mode shapes
which depends very much on the initial and transient conditions. Again, unlike the mode
superposition method, SVD-based model reduction methods are applicable to nonlinear
systems in which the principal directions can be altered through time.
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